
Claremont Colleges Claremont Colleges 

Scholarship @ Claremont Scholarship @ Claremont 

CGU Theses & Dissertations CGU Student Scholarship 

2020 

Novel Random Forest Methods and Algorithms for Autism Novel Random Forest Methods and Algorithms for Autism 

Spectrum Disorders Research Spectrum Disorders Research 

Afrooz Jahedi 
Claremont Graduate University 

Follow this and additional works at: https://scholarship.claremont.edu/cgu_etd 

 Part of the Neurosciences Commons, and the Statistics and Probability Commons 

Recommended Citation Recommended Citation 
Jahedi, Afrooz. (2020). Novel Random Forest Methods and Algorithms for Autism Spectrum Disorders 
Research. CGU Theses & Dissertations, 649. https://scholarship.claremont.edu/cgu_etd/649. 

This Open Access Dissertation is brought to you for free and open access by the CGU Student Scholarship at 
Scholarship @ Claremont. It has been accepted for inclusion in CGU Theses & Dissertations by an authorized 
administrator of Scholarship @ Claremont. For more information, please contact scholarship@claremont.edu. 

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/cgu_etd
https://scholarship.claremont.edu/cgu_student
https://scholarship.claremont.edu/cgu_etd?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F649&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1010?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F649&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F649&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@claremont.edu


NOVEL RANDOM FOREST METHODS AND ALGORITHMS

FOR AUTISM SPECTRUM DISORDERS RESEARCH

A Dissertation

Presented to the Faculty of

Claremont Graduate University

and

San Diego State University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in

Computational Science - Statistics

by

AFROOZ JAHEDI

Spring 2020



Copyright c© 2020

by

Afrooz Jahedi

All Rights Reserved



APPROVAL OF THE DISSERTATION COMMITTEE

This dissertation has been duly read, reviewed, and critiqued by the Committee listed below,

which hereby approves the manuscript of

Afrooz Jahedi

as fulfilling the scope and quality requirements for meriting the degree of

Doctor of Philosophy

Juanjuan Fan, Chair
Department of Mathematics and Statistics, San Diego State University

Professor

Ralph-Axel Müller
Department of Psychology, San Diego State University

Professor

Barbara Bailey
Department of Mathematics and Statistics, San Diego State University

Associate Professor

John Angus
Institute of Mathematical Sciences, Claremont Graduate University

Professor

Allon Percus
Institute of Mathematical Sciences, Claremont Graduate University

Professor



ABSTRACT OF THE DISSERTATION

NOVEL RANDOM FOREST METHODS AND ALGORITHMS
FOR AUTISM SPECTRUM DISORDERS RESEARCH

by
AFROOZ JAHEDI

Doctor of Philosophy in Computational Science - Statistics
Claremont Graduate University and San Diego State University, 2020

Random Forest (RF) is a flexible, easy to use machine learning algorithm that was

proposed by Leo Breiman in 2001 for building a predictor ensemble with a set of decision

trees that grow in randomly selected subspaces of data. Its superior prediction accuracy has

made it the most used algorithms in the machine learning field. In this dissertation, we use the

random forest as the main building block for creating a proximity matrix for multivariate

matching and diagnostic classification problems that are used for autism research (as an

exemplary application).

In observational studies, matching is used to optimize balance between treatment

groups. Although many matching algorithms can achieve this goal, in some fields, matching

could face its own challenges. Datasets with small sample sizes and limited control reservoirs

are prone to this issue. This problem may apply to many ongoing research fields, such as

autism spectrum disorder (ASD). We are interested in eliminating the effect of undesirable

variables using two types of algorithms, 1:k nearest matching, and full matching. Therefore,

we first introduced three different types of 1:k nearest matching algorithms and two full

matching based methods to compare group-wise matching vs. pairwise matching for creating

an optimal balance and sample size. These proposed methods were applied to a data set from

the Brain Development Imaging Lab (BDIL) at San Diego State University. Next, we

introduce the iterMatch R package. This package finds a 1:1 matched subsample of the data

that is balanced on all matching variables while incorporating missing values in an iterative

manner. Missing variables in dataset need to be imputed or only complete cases can be



considered in matching. Losing data because of the limitations in a matching algorithm can

decrease the power of the study as well as omit important information. Other than introducing

the iterMatch package, tuning the input parameters of this package is discussed, using

medium and large datasets from the Autism Brain Imaging Data Exchange (ABIDE).

We then propose two mixed-effects random forest-based classification algorithms

applicable to multi-site (clustered data) using resting-state fMRI (rs-fMRI) and structural MRI

(sMRI). These algorithms control the random effects of the confounding factor of the site and

fixed effect of phenotype variable of age internally while building the prediction model. On

top of controlling the effects of confounding variables, these algorithms take away the

necessity of utilizing a separate dimension reduction algorithm for high dimensional data such

as functional connectivity in a non-linear fashion. We show the proposed algorithms can

achieve prediction accuracy over 80 percent using test data.
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CHAPTER 1

INTRODUCTION

1.1 GROUP-WISE VS. PAIR-WISE MATCHING

Autism spectrum disorder (ASD), as the name suggests, include a range of highly

heterogeneous disorder diagnosed based on behavioral criteria. Despite consensus on the

neurobiological nature of ASD, brain biomarkers remain unknown. To decipher the imaging

data from functional connectivity MRI (fcMRI) scans, for example, one must first eliminate

the undesirable effect of important background variables before any pattern recognition

procedures are performed. Head motion in the MRI scanner is considered as one of the most

important contamination sources in the resting-state fcMRI. Head motion systematically

alters correlations in resting-state functional connectivity MRI [50]. Therefore, it is crucial to

eliminate the effect of head motion before proceeding with any further analysis. Age and

non-verbal IQ (NVIQ) are considered two other main variables that could affect autism.

Bishop et al. observed a declining trend of NVIQ in individuals with ASD between

toddler-hood and young adulthood [6].

One of the existing solutions for controlling the effect of confounding variable is

matching. Matching ensures that the two exposure groups have similar distributions with

respect to confounding and other risk factors, both of which we will refer to as covariates. In

an observational study, treated participants are often matched to control participants with

similar values of covariates in an effort to form treatment groups that are comparable [16].

While matching is generally used to estimate causal effects, it is also used for non-causal

questions. For example, matching was used to investigate non-causal questions regarding

racial disparities [60]. Though there are many matching algorithms that could be used to

select treated and control groups that are comparable in terms of covariates, to the best of our
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knowledge, none of these could readily address the situation where the size of the control

group is not much bigger than that of the treatment group, and both samples are small or

modest. To obtain good matching results, most matching algorithms require a large number of

control participants or a ”control reservoir”. Therefore, matching algorithm that can handle

dataset with limited control reservoir is desired.

Random forest (RF) [8] has been shown to have excellent predictive accuracy

compared to many statistical and machine learning methods, including logistic regression,

boosting, support vector machine, and artificial neural network, for example, [14]; [63]; [13]

and [12].

The random forest can also be used to readily produce a proximity matrix among participants

using categorical covariates with more than two categories without any difficulties, while the

Mahalanobis distance used by traditional matching algorithms is well defined only for

continuous variables and categorical variables with only two categories. Since RF is a model

ensemble tool that is non-parametric in nature, it can be used to provide a more accurate and

less model-dependent estimate for the propensity score. In particular, random forest provides

automatic variable selection, can handle complicated relationships without the need to

manually include non-linear transformations or high-order interactions among input variables.

Though not faced in our specific application, random forest can also deal with missing data

via surrogate splits without the need for data imputation beforehand [68]. For these reasons,

the propensity score and distance measures for the proposed matching algorithms will be

calculated based on random forest.

In Chapter 2, Section 2.2 and Section 2.3 will summarize random forest as relevant to

this chapter and describe the calculation of propensity score and proximity matrix based on

random forest. Sections 2.4.1 to Section 2.4.5 will describe the proposed three matching

methods, including three group matching and two iterative matching algorithms. Section 2.5.1

will present an autism data set collected by the Brain Development Imaging Lab (BDIL) at
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the San Diego State University (SDSU). Section 2.5.2 will present the matching results of the

BDIL data using the proposed matching methods.

1.2 ITERMATCH R PACKAGE

After introducing different matching algorithms and evaluating the performance of

each one in Chapter 3, iterMatch is chosen as the best performing algorithms for R package

implementation with some new features. The detail is discussed in Chapter 3 with an

introduction given below.

Observational studies require matching to eliminate the effect of undesirable variables

to achieve randomized design. The design for observational studies is based on the

comparison between two groups of participants. Matching is an effective tool to create a

balance among multiple confounding variables, and has been used for many different research

fields such as Psychology, Social Science, Medicine, Economics, and Political science.

Although many matching algorithms can fulfill the purpose of balancing confounding

variables, many research studies continue to rely on manual matching [48], [46], and [15].

Several problems are associated with using manual matching such as leading to suboptimal

subjective and non-reproducible results. Although manually matching is not complicated on

small numbers of variables, it rapidly becomes a complicated, time-consuming problem as the

number of variables increases. Therefore,it is necessary to have matching algorithm when

more matching variables are involved.

In recent years some research groups started to use the existing matching algorithms

and some groups started to create their customized matching algorithm to create a

well-balanced sample in terms of reducing the effect of confounding variables. For example,

riddle et al. [52] matched each participant on age and sex within each brain site, using the

Case-control matching feature on SPSS. Both Uddin et al. [65] and Supekar[64] used a

customized group matching algorithm to match each ASD and Typically Developing (TD)

participant on three variables. Although the proposed algorithms could address

reproducibility, complexity, and time consuming issues of the manual matching, the challenge
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of including participants with a partial missing values remains unsolved. Moreover, the

customized algorithms might not be publicly available for other research groups to use.

As we stated earlier, one of the main challenges to most matching algorithms is

dealing with missing values. The recommended way of dealing with missing values in

datasets is either to remove observations with more than one missing instance entirely or

impute those missing values with one of various methods. For example, Iacus et al. [35]

proposed a matching algorithm that can only input a complete dataset. However, the issue

with using only complete data is that it may result in the loss of crucial information and

decreasing the statistical power of the study.

Choosing the appropriate imputation method is a challenging problem. Missing value

imputation requires user’s knowledge of several imputation techniques and understanding of

finding the appropriate method. Furthermore, there are variables that can not be imputed, such

as ethnicity or gender, cycling back to the removal of an observation.

To overcome these problems, we adjusted the IterMatch algorithm introduce in

Chapter 2 to iterative matching with missing values. The IterMatch algorithm uses the

OPTMATCH package [31] to find a one-to-one match where a distance matrix is fitted as an

input object. The main goal of Chapter 3 is to introduce a publicly available R package,

iterMatch, as a one of the matching methods for observational data that can handle missing

values internally without using a separate imputation technique. We further discussed the

main factors that could affect finding matched samples such that for the desirable matching

threshold, the maximum number of retained samples from both groups can be retained.

In Chapter 3, we will first introduce the building blocks of this package — random

forest — in the Section 3.2. Following this, the iterMatch algorithm that has the capability of

handling missing values will be explained in Section 3.3. Section 3.4 will introduce two

methods of calculating balance measure or Standardized Mean Difference (SMD). Methods

for handling missing values will be explained in Section 3.5. Next, in section 3.6.1, two

datasets with medium and large sample sizes will be selected from the Autism Brain Imaging
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Data Exchange (ABIDE-I & ABIDE-II) on five matching variables. Finally, results from

tuning input parameters from the IterMatch algorithm will be provided in Section 3.7.

The package is ready to be uploaded at Comprehensive R archive Network (CRAN)

[51].

1.3 MIXED-EFFECTS RANDOM FOREST-BASED
CLASSIFICATION ALGORITHMS FOR CLUSTERED DATA

Autism Spectrum Disorder (ASD) includes an array of neurodevelopmental disorders

that are characterized by social and communicative deficits and repetitive behavior [3]. The

prevalence of autism is increasing as it has been reported to affect approximately 1:68 of the

population [4].

In recent years, there has been a growing trend in designing neuroimaging-based

prognostic/diagnostic tools. As a result, there have been many efforts using neuroimaging

tools to discriminate patients with brain disorders from healthy control automatically [40].

Many of these studies have reported promising models that claim a robust, accurate, and rapid

diagnostic prediction in an automatic fashion. Despite the promising results on specific

research datasets, these tools have yet to be integrated into the clinical realm. We believe

multiple issues should be addressed before any further progress can be made.

The first issue is controlling the variation between imaging sites, specifically when

observations within each imaging site have their own data acquisition protocol such as

scanner parameter acquisition and MRI scanner type. Differences in data acquisition protocol

can increase the heterogeneity of the sources between imaging sites. Moreover, it is necessary

to increase the data sample in which observations are nested within imaging sites or clusters.

For example, multi-site databases such as Autism Brain Imaging Data Exchange (ABIDE) are

considered clustered data which is frequently used for many autism research studies.

Clustered data are often obtained by multistage sampling with observations nested within

higher-level units (clusters). These data may include two types of covariates,

observation-level and cluster-level covariates, and involve two sources of variation, within and
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between clusters. The within-cluster variation is controlled by a fixed or population-averaged

component of the model, and between-cluster is handled by the random part. Usually,

observations that belong to the same cluster tend to be more similar to each other than

observations from different clusters. Therefore, it is crucial to control the induced source of

variation from the different imaging sites in ABIDE dataset.

A common way to handle the clustered nature of multi-site data and the correlation

between imaging sites is to use Linear Mixed-Effects (LME)[42] models. Although utilizing

mixed models is one of the possible solutions to handle the correlation between imaging sites,

the non-linear and high-dimensional nature of imaging data eliminates the applicability of

such models. Using tree-based models could address the non-linear and high-dimensional

nature of complex data such as neuroimaging data.

In recent years, tree-based models have been very successful in handling the

non-linear models. Tree-based models are a set of algorithms that empower predictive models

with high accuracy, stability, and ease of interpretation. Several methods have been proposed

to modify decision tree and random forest models for longitudinal and clustered continuous

outcomes [1], [19],[44], [45], [61], [62], [67]. Abdolell et al. first proposed the idea of

combining the tree-based model and mixed-effects model in 2002 by proposing longitudinal

recursive partitioning [1], which permits a non-linear mixed-effects model, in addition to a

linear mixed-effects model in each node. In 2009, [38], and in 2011, [2] two methods were

proposed in which the sampling method for clustering was adjusted, but random effects in the

predictions were not incorporated. In 2012, Sela et al. [62], proposed REEM trees where a

single tree incorporated with mixed-effects was proposed for a Gaussian outcome. They also

released an R package called REEMtree. Later Hajjem et al. [28] proposed a similar tree

approach to handle cluster-level predictors and individual-level predictors simultaneously.

These methods incorporated mixed-effects within the tree framework to account for only

clustering effects, using an iteration between the fixed part and the random part to estimate the

parameters through an Expectation-Maximization (EM) algorithm, analogous to
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expectation-maximization described by Wu and Zhang [66]. Hajjem [29] extended the

decision tree method to the random forest setting for clustered and longitudinal continuous

outcomes referred to as Mixed Effects Random Forest (MERF). In 2018, Calhoun [?]

proposed the repeated measures random forest (RMRF) algorithm that extends the standard

random forest implementation to handle longitudinal designs. In 2019, Capitaine [11] added a

stochastic component to MERF model, which could be used for high-dimensional and

longitudinal data. Given the provided rich history of semi-parametric mixed-effects models,

we extend the tree-based models by proposing two new algorithms that can handle the

heterogeneity of clustered data uniquely which will be explained in later sections.

In addition to the aforementioned issues, extended sample and controlling the

variability between imaging sites, research with a feature-rich data requires utilizing one form

of dimension reduction algorithm separately before building a classification model. Including

multiple modalities in a dataset increases the coherence of the brain picture. Reducing the

dimensionality internally without losing information in a consistent way becomes more

critical when multiple modalities contain different numbers of variables in building a model.

In our study, we included two MRI modalities, Structural MRI (sMRI) and functional MRI

(fMRI). MRI related techniques such as sMRI and fMRI have the benefit of providing

localized spatial information about brain structure and functional connectivity, respectively.

Including both of these modalities is important because resting-state functional Magnetic

Resonance Imaging (rs-fMRI) holds the promise to reveal functional biomarkers of ASD by

measuring the brain activity using blood oxygenation changes [21];[47]. fMRI makes it

possible to study functional regions and networks of the brain as well as temporal associations

among them. On the other hand, sMRI, as a high-resolution image of the brain, has made it

possible to detect physical abnormalities, lesions, and damage. Hence, it is important to deal

with the issue of dimension reduction of multi-modal data in a less complex and

time-consuming way that can preserve important variables from thousands of variables in the

brain.



8

Therefore, in Chapter 4, the two mentioned shortcomings will be addressed by

proposing two binary classification algorithms for unbalanced clustered structure data. These

algorithms internally handle the undesirable effect of covariates using a mixed-effects random

forest-based dissimilarity matrix. While all other similar existing algorithms for clustered data

only use random effect and the splitting node at each non-terminal node, we will separately

control the impact of confounding phenotypic variables such as age at each splitting node

internally. Moreover, this algorithm has the capability of handling high-dimensional data

without using any dimension reduction algorithm. In Section 4.2, we will provide an overview

of data and imaging modalities. Section 4.3 will focus on providing two binary classification

algorithms. Result Section 4.4 will illustrate the use of this algorithm using empirical data

from ABIDE.

All existing and proposed algorithms have been implemented in an R package called

RFMEClass which will be available to be uploaded to the CRAN [51].
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CHAPTER 2

MATCHING METHODS FOR

OBSERVATIONAL DATA WITH SMALL

GROUP SIZES

2.1 OVERVIEW

In the observational studies, matching is used to optimize balance and sample size.

Although many matching algorithms can achieve this goal, in some fields, matching could

face its own challenges. Datasets with small sample sizes and limited numbers of control

reservoirs are prone to this issue. This problem may apply to many ongoing research fields

such as autism spectrum disorder (ASD). In this study, we are interested in eliminating the

effect of undesirable variables using two types of algorithms, 1:k nearest matching and full

matching. Three different types of 1:3 nearest matching algorithms were implemented and

tested to check whether group-wise matching could potentially create an optimal balance and

sample size. Moreover, two other full matching based methods were proposed: Iteration

optimal matching (IterMatch) and iterative optimal coarsened exact matching

(iterMatchCEM). Both methods incorporate an optimal matching algorithm OPTMATCH that

was iteratively based on network flow theory [31]. This algorithm has the flexibility of

feeding the proximity matrix as the main input. The main input is an RF-based proximity

matrix which is then defined and calculated to find a well-matched sample. IterMatchCEM

mixed the idea of both optimal matching and coarsened exact matching [35]. These proposed

methods were applied to a data set of 47 ASD and 57 typically developing (TD) participants

from San Diego State Brain Development Imaging Lab (BDIL). In this sample, there were not

enough TD participants to be matched with ASD. Among all methods, an iterative optimal

matching algorithm (IterMatch) performed the best in terms of preserving more participants
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and creating balance on all variables eliminating ASD participants individually.

IterMatchCEM algorithm achieved similar results with a smaller sample size.

2.2 RANDOM FOREST

Random forest (RF) is an ensemble method based on decision (classification or

regression) trees. The main principle behind the ensemble approach is to average many weak

learners to form a strong learner. To “decorrelate” the trees, each split in RF is chosen based

on only a randomly selected subset of covariates while optimizing a target function. The

result of recursive partitioning is that the nodes become increasingly pure (in terms of

outcome) as data move from the root node to terminal nodes. Individual trees in an RF are

typically grown until some loose stopping criteria are met without pruning. Though each tree

in the standard random forest [8] is constructed using a bootstrap sample (drawn with

replacement from the training data), we use all of the data to build each tree so that propensity

score and proximity measure can be calculated for each observation and between any pair of

observations respectively, based on each tree.

2.3 CALCULATION OF PROPENSITY SCORE AND PROXIMITY
MATRIX BASED ON RF

In our application of the RF, three variables were randomly selected to choose each

split. This value remains fixed during forest construction. If a selected covariate is a

continuous variable, every possible cutpoint is considered. For each proposed split, a 2× 2

table is formed based on the split (left versus right child nodes) and the treatment indicator

(ASD versus TD in our application), and the best split is chosen based on the smallest p-value

from the chi-square test for the 2× 2 table. Splitting continues until either the tree reaches its

maximum depth of 10, the node size becomes less than 20 participants or minimum number

of 7 participants at a terminal node. We have explored various numbers of trees in the random

forest and found that the matching results become stable after 1,000 trees. Therefore, all the

results reported in this chapter are based on random forest of 1,000 trees.
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The propensity score is defined as the conditional probability of treatment given

covariates, or

P (Z = 1|X) = E(Z|X) (2.1)

where Z is the treatment indicator (or the ASD status in our application) and X denotes all

covariates excluding the treatment indicator. The propensity score provides a scalar summary

of all the covariates: under the assumption of strong ignoreability, the distribution of X given

the propensity score is balanced between the treated and control groups [56]. This is the basis

for propensity score based matching. Thanks to random forest’s outstanding predictive

performance and ease of implementation, there is a growing literature on using tree-based

methods to calculate the propensity score, see, e.g., [14] and [43]. As described below, both

the propensity score and the proximity matrix can be easily calculated once a random forest is

constructed.

Given we use all the data for constructing each tree, all participants can be tracked

down in a terminal node of the tree. For each tree, all participants in a terminal node are

assigned the proportion of the treated participants in that terminal node as their propensity

score. Note that the proportion itself, not the majority vote, is saved for each tree for better

predictive performance (cite). To calculate the distance between two terminal nodes, form a

2× 2 contingency table based on the treatment indicator and terminal node membership,

calculate the chi-square p-value of the contingency table, and assign the distance of 1 –

(chi-square p-value) to all the pairs of participants belonging to different terminal nodes. The

distance between two participants within the same terminal node is zero. The propensity score

and distance from the RF is the average propensity score and average distance over all the tree

in the forest. Algorithm 1 presents these steps.
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1 Initialize: set Si = 0 and Dij = 0 for i,j = 1,. . . ,n.

2 for b = 1,. . . ,B, do

3 Using all data, grow a binary tree with the treated and control labels as the

outcome and use all other covariates as input.

4 At each split, search over m randomly selected inputs. No pruning.

5 Repeat for all terminal nodes of the tree to obtain a proportion si, i = 1, . . . , n

for all participant.

6 Update: Si = Si + si

7 Proximity matrix calculation: For each pair of terminal nodes of the tree, form

a 2× 2 table based on the treatment indicator and terminal node membership

(i.e., which node of the pair a participant is from), and calculate a p-value for

the 2× 2 table based on the chi-square test.

8 Repeat for all pairs of terminal nodes of the tree.

9 Assign dij to be 0 if the ith and j-th participants belong to the same terminal

node of the tree, and 1- (p-value) otherwise.

10 Update: Dij = Dij + dij for i, j = 1, . . . , n.

11 Average: Si = Si

n
and Dij =

Dij

n
for i,j = 1,. . . ,n.

12 end

Algorithm 1: Algorithm for calculating propensity score and proximity matrix
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2.4 GROUP MATCHING

Given that we have only 47 ASD (treated) and 52 TD (control) participants, the goal

of this matching project is to keep as many control participants as possible in the matched

samples. In addition, we do not need the two groups to be of the same sample size, as long as

the distributions of the ASD and TD groups are balanced with respect to the five background

covariates. With these goals in mind, the first method we propose is group matching. Since

we do not have a “control reservoir”, we will keep matched control participants still in the

pool to be possibly matched by other participants. In order to find good matches while

keeping bad ones out, we use a nonexclusive 1:3 match based on propensity score only,

proximity measure only, and proximity measure within calipers defined by the propensity

score. These methods are similar to those in D’Agostino (1998)[17]. In order to facilitate the

comparison among all the methods proposed in this chapter, the treated group is randomized

once and then the order stays the same for all matching methods.

2.4.1 Group matching based on propensity score

For each treated participant, three control participants were selected based on the

closest propensity score with the treated participant. That is, the three selected control

participants were the ones with the smallest absolute difference in propensity score with the

treated participant. The matched control participants were left in the pool as possible matches

for other treated participants. This process was repeated for all treated participants. The final

matched samples include all the treated participants and only those control participants who

were selected at least once.

2.4.2 Group matching based on distance

For each treated participant, three control participants with the smallest proximity

measure to the treated participant were selected. The matched control participants were left in

the pool as possible matches for other treated participants. This process was repeated for all
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treated participants. Subsequently, the matched samples consisted of all treated participants

and only those control participants who were selected at least once.

2.4.3 Group matching based on distance within calipers defined
by the propensity score

For each treated participant, only those control participants whose logit transformed

propensity scores were within a small range, i.e. 3
4

standard deviation of the logit propensity

scores of all participants, were examined further. Within this small set of control participants,

the three participants with the smallest distance from the treated participant were selected.

The matched control participants were left in the pool as possible matches for other treated

participants. This process was repeated for all treated participants. Subsequently, the matched

samples consisted of all treated participants and only those control participants who were

selected at least once.

2.4.4 Iterative matching without missing value handling

One problem with not having a large control reservoir is that not all treated subjects

may be able to find a good match from the limited control pool. To this end, we propose an

iterative matching algorithm such that the treated participant that has the poorest match with a

control may be excluded from the sample. We will use the traditional 1:1 matching and

remove only one treated participant at a time. With limited control participants to choose

from, it becomes imperative that, within each iteration, the algorithm has the ability to release

matched control participants if they can become better matches for other treated participants.

Unlike the nearest matching method where the order of treated participants can change the

quality of matching, in the optimal matching [31], the overall set of matches minimize the

global distance measure [55]. We implement the optimal matching, borrowing the syntax of

OPTMATCH, an add-on package to R while using the proximity matrix as our distance

measure.

Iterative matching is a multi-step matching algorithm that aims for matched samples
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of desired quality while keeping as many participants in the matched samples as possible. In

the first iteration, optimal one-to-one matches are obtained for all the treated participants

based on the proximity matrix. Further iterations aim to improve the quality of matched

samples, for example Standardized Mean Difference (SMD) of the matched samples. To do

so, in each iteration the treated participant with the farthest distance to its matched control is

chosen for exclusion. The exclusion process continues until a certain threshold on the quality

of matching is reached. Note that in each iteration the proximity matrix is reduced to

correspond to all control participants and only those treated participants who have not been

excluded due to the SMD criteria. The threshold used for the SMD criteria is that its absolute

value is less than 0.10. All steps are provided in Algorithm 2.
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Denote the sample sizes for the treated and control groups by n1 and n2, respectively.

Without the loss of generality, assume n1 < n2.

1 Start with all n1 treated participants.

2 Building the binary random forest.

3 Building the proximity matrix.

4 Find a 1:1 optimal matches from the n2 controls based on the proximity

matrix Dijn1×n2
.

5 if SMD threshold for all matching vars < SMD thresholds then

6 Return SMD, p-values for all matching variables and matched sample data

frame.

7 else

8 while SMD threshold is not satisfied do

9 Retrieve the distance between the matched treated vs. control participants.

10 Find the farthest distance and exclude the corresponding treated

participant.

11 Take subset of distance matrix using all control and remaining treated

participants.

12 Find 1:1 optimal matches from the n2 controls based on the current

proximity matrix.

13 Creates matched data frame in iteration-i using the retrieved distance

matrix.

14 Check the balance between matched samples.

15 end

16 end

Algorithm 2: Iterative matching algorithm without missing data handling
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2.4.5 Iterative matching incorporating coarsened exact
matching

While exact matching provides a perfect balance between two samples, it typically

produces few matches because of curse-of-dimensionality issues [7]. The idea of coarsened

exact matching (CEM) is to temporarily coarsen each variable into substantively meaningful

groups, exact match on these coarsened data, and then retain only the original (uncoarsened)

values of the matched data. Though this method is fast, easy to understand, requires fewer

assumptions, and possesses more attractive statistical properties for many applications than

the existing matching methods [7], “meaningful groups” is subjective and could alter the

resulting matched samples. In particular, “binning” in CEM requires user-defined cut points,

with the shortcoming that neighboring values of a covariate may end up being grouped into

different bins. On the other hand, a distance based threshold can avoid such undesirable

scenarios and hence lead to more valid groups. Since the proximity matrix is defined for each

pair of treated and control participants, it is possible to determine whether any pair of

participants are close based on their values for a given covariate directly.

To begin, a distance threshold needs to be set for each covariate so that participants

with absolute difference below the threshold are considered having the coarsened exact value

for the covariate. Two participants are considered coarsened exact matches of each other if

they have coarsened exact values for all covariates. This is used to modify the proximity

matrix from Section 2.3 such that the proximity between a pair of treated and control

participants would remain the same if they are coarsened exact matches, otherwise it would be

set to a large number (for example, the value of 1 is sufficiently large). Finally, the iterative

matching described in Section 2.4.4 is performed based on the modified proximity matrix to

obtain matched samples. These steps are provided in Algorithm 3.

For our application, we set distance thresholds to be 4 years for age, 0.05 mm for

motion, and 20 units for NVIQ. This part may be automated by using thresholds that are

multiples of standard deviations for each covariate, for example, half or one standard
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deviation. Note that how generous the thresholds can be depends on the sample sizes

(especially the size of the control sample) as well as the desired sample sizes of the matched

samples. Very large thresholds will return the same results as from iterative matching

Section 2.4.4, while small thresholds may result in many unmatched treated participants.

1 Defining being chosen:

Define what constitutes “being close” for each covariate. We use the absolute

difference and set a threshold for each covariate.

Modifying proximity matrix:

if If all covariate values for two participants are “close”, then

keep its distance;

else

set the distance to a large number (for example, the value of 1)

end

Applying iterative matching:

Perform iterative matching based on the modified proximity matrix.

Algorithm 3: Algorithm for iterative matching incorporating coarsened exact

matching
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2.5 SIMULATION EXAMPLE

2.5.1 Data

The sample consisted of an SDSU Brain Development Imaging Lab in-house dataset

with 98 children and adolescents with ASD and 80 TD peers. Many participants were

excluded from the study due to a variety of reasons, including excessive head motion, low

Autism Diagnostic Observation Schedule (ADOS) score for ASD participants, misdiagnosis,

known genetic (e.g., Fragile-X or Rett syndrome) and neurological (e.g., epilepsy) conditions

associated with ASD, or a personal or family history of ASD for TD participants. These

exclusion criteria resulted in a final sample of 47 ASD and 52 TD participants. Informed

consent was obtained from all participants and their caregivers in accordance with the

University of California, San Diego, and San Diego State University Institutional Review

Boards.

Since the purpose of matching is to obtain balanced ASD and TD groups for the study

of functional connectivity patterns in search for autism brain markers, the treatment variable

in our matching study is the ASD indicator defined as having autism spectrum disorder (1)

and typically developing (0). Available background covariates include three continuous

variables: motion, age, and non-verbal IQ (NVIQ); as well as two categorical variables:

gender and handedness (left- or right-handed). As can be seen from Table 2.1, there are 9 girls

among 47 ASD participants and 10 girls among 52 TD participants. The age of the combined

ASD and TD groups ranges from 8 to 18 years with a mean of 13. For the retained samples

after inclusion criteria are applied, the range of motion is from 0.02 mm to 0.17 mm. The

non-verbal IQ ranges from about 62 to 140, with the ASD group having a slightly lower

average NVIQ with a mean of 102.4, compared to a mean of 107.3 for the TD group. There

are 9 and 7 left-handed participants in the ASD and TD groups, respectively.
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Table 2.1. Participants characteristics and summary statistics before matching.

Full sample
ASD, M ±SD
[range]

TD, M ±SD
[range]

p-value (2-sample
t-test/Chi-square)

Standardized Mean
Difference (SMD)*

N (Female) 47 (9) 52 (10) 1 <0.01

Age (years)
13.82 ±2.46
[9.2-18.0]

13.44 ±2.72
[8.1-17.6] 0.47 0.14

Motion (mm)
0.07 ±0.03
[0.02-0.15]

0.63 ±0.35
[0.02-0.17] 0.36 0.18

Non-Verbal IQ
102.36 ±17.46
[67-140]

107.34 ±13.07
[62-137] 0.11 0.32

Handedness (Left) 47 (9) 52 (7) 0.62 0.15

*The standardized difference is given by | X̄T − X̄C |/
√

(S2
T + S2

C)/2, where and denote sample mean for
treated and control and sample variance respectively.

One of the key steps in evaluating matching methods is to assess the balance of the

resulting matched samples, or similarity of the empirical distributions for all covariates in the

matched treated and control groups. The most common measures used in the literature are

two-sample t-test p-values for continuous variables and chi-square p-values for categorical

variables. However, Imai et al. [36] show that p-values that incorporate information on the

sample size should not be used as a measure of balance. In this dissertation, standardized

mean difference (SMD), defined as Standardized Mean Difference

(SMD) =
| X̄T − X̄C |√

S2
T+S2

C

2

(2.2)

, where X and s2 denote sample mean and sample variance respectively, is used as the main

yardstick to gauge matching quality, though p-values are also presented alongside SMD’s.

Note that a large p-value and a small SMD indicate better matching results. Since p-values are

sample size dependent, we will use an SMD of below 0.10 as a rough guideline for good

matching performance [36]. In Table 2.1, participants’ characteristics and summary statistics

before matching is presented. SMD values for all matching variables except for sex are above

0.1.

2.5.2 Results
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2.5.3 Group matching results

Group matching algorithms were applied to SDSU Brain Development Imaging Lab

in-house dataset with 47 ASD and 52 TD participants. A random forest of 1000 trees was

built to estimate the propensity score and proximity matrix. Matching results from 1:3

matching based on all three methods, namely group matching using propensity score alone,

distance alone, and distance within calipers defined by the propensity score, are summarized

in Table 2.2. Though the sample sizes of the matched samples from the three methods are not

the same, the performance of the matching method based on propensity score alone is

relatively poor compared to the other two methods. Recall that head motion is considered the

most important variable in this matching project and the matching performance based on

propensity score alone is the worst for head motion.

The matching methods based on distance alone and on distance within calipers defined

by the propensity score lead to matched samples with similar sample sizes for the ASD and

TD groups, with the method based on distance alone producing slightly better overall

matching results. Though both of these algorithms performed OK with respect to head

motion, age, handedness and gender, the SMD’s for NVIQ are much larger than 0.10.

Although all ASD participants were retained by these methods, close to 20 TD participants

were discarded by each method.

In summary, the three group matching methods neither can provide a balance between

the number of ASD and TD participants, nor does retain enough TD participants. This is not

desirable since the power of the subsequent study of brain imaging data will suffer as a result.

Moreover, matching results for NVIQ are poor for all three group matching methods.

2.5.4 1:1 Iterative matching results

Based on relative strong performance of the matching method using distance alone

(see Table 2.2) as well as its easy implementation, the two iterative algorithms are based on
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Table 2.2. Group comparisons after matching using Summary statistics after match-
ing using 1:3 nearest matching based on propensity score, distance and distance within
calipers defined by propensity score.

Covariates Propensity score Distance
Distance within calipers
of propensity score

Balance Measures p-values Std diff p-values Std diff p-values Std diff
Gender 1 0.04 0.82 0.12 1 0.05
Age 0.49 0.14 0.85 0.04 0.86 0.04
Motion 0.39 0.18 0.69 0.09 0.61 0.12
Non-Verbal IQ 0.14 0.31 0.26 0.25 0.22 0.28
Handedness 0.6 0.16 0.82 0.12 0.87 0.1

ASD TD ASD TD ASD TD
N (female) 47 (9) 46 (8) 47 (8) 34 (9) 47 (9) 33 (7)

proximity matrices only.

Table 2.3 presents summaries and matching results from the iterative matching. Since

absolute standardized mean differences (SMD’s) of 0.10 or below was used as the algorithm

stopping criteria, we expect that the SMD’s for all five background covariates would be below

10 percent. Table 2.3 shows that the iterative routine is able to preserve high number of

participants, 43 ASD and 43 TD participants in the matched samples, while meeting the

desired level of matching in SMD. These are successful matching results both in terms of

retained sample sizes and matching quality as measured by SMD.

Note in Table 2.3 that, though the covariate distributions in the matched samples are

balanced as judged by high p-values and small SMDs, the matched samples are not matched

exactly, as obvious for gender and handedness. In the matched samples, there are 8 female

participants among 43 ASD participants as compared to 7 female participants among 43 TD

participants. Similarly, there are 8 (7) left-handed participants among 43 ASD (TD)

participants.

Table 2.4 presents summaries and matching results from the iterative matching method

incorporating coarsened exact matching. Again absolute standardized mean differences

(SMD’s) of 0.10 or below was used as the stopping criteria. The algorithm stopped after seven

iterations resulting in 40 ASD participants and 40 TD participants in the matched samples.
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Table 2.3. Summary statistics after matching using iterative matching.

Full sample
ASD, M ±SD

[range ]
TD, M ±SD
[range ]

p-value (2-sample
t-test/Chi-square)

Standardized Mean
Difference (SMD)

N (Female) 43 (8) 43 (7) 1 0.06

Age (years)
13.64 ±2.43
[9.2-17.8]

13.81 ±2.53
[8.6-17.6] 0.75 0.07

Motion (mm)
0.07 ±0.04
[0.017-0.15]

0.07 ±0.04
[0.02-0.168] 0.85 0.04

Non-Verbal IQ
104.81 ±16.06
[67-140]

106.09 ±13.67
[62-137] 0.69 0.09

Handedness (Left) 43 (8) 43 (7) 1 0.06

Table 2.4. Summary statistics after matching using Iterative matching incorporating
Coarsened exact matching.

Full sample ASD, M ±SD
[ range ]

TD, M ±SD
[ range ]

p-value (2-sample
t-test/Chi-square)

Standardized Mean
Difference (SMD)

Gender (Female) 40 (6) 40 (6) 1 0

Age (years)
13.83 ±2.44
[9.2-17.8]

13.97 ±2.46
[8.1-17.6] 0.81 0.05

Motion (mm)
0.07 ±0.03
[0.02-0.15]

0.07 ±0.04
[0.02-0.17] 0.89 0.03

Non-Verbal IQ (NVIQ)
105.18 ±15.06
[70-140]

106.43 ±13.41
[62-129] 0.7 0.09

Handedness (Left) 40 (5) 40 (5) 1 0

This algorithm outperformed all the other ones in terms of both p-value and SMD. However,

the total number of participants in the final matched samples was reduced to a total of 80

participants, or 40 participants in each group. Note that the ASD and TD participants in Table

Table 2.4 are exact matches in a coarsened sense, by design.

The quality of matching may also be assessed by the distributions of propensity scores

in the two groups, given by propensity score is a scalar summary of all the covariates. To this

end, the logit transformed propensity scores of the ASD and TD groups are plotted in Figure

2.1 before matching, Figure 2.2 after iterative matching, and Figure 2.3 for after iterative

coarsened exact matching. As can be seen from these figures, there is much more overlap

between the propensity score distributions for the two groups after the two iterative matching

algorithms. Note that the matching quality here may not be compared to other matching
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studies since we have limited sample size and the goal is to retain as many participants as

possible for the subsequent study of brain imaging data.

Figure 2.1. Logit propensity score of all participants before matching.
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Figure 2.2. Logit propensity score of all participants after using IterMatch matching
algorithm.
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Figure 2.3. Logit propensity score of all participants after using IterMatchCEM matching
algorithm.
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CHAPTER 3

ITERATIVE MULTIVARIATE MATCHING PACKAGE

FOR SAMPLE WITH MISSING DATA: THE

ITERMATCH PACKAGE FOR R

3.1 OVERVIEW

Matching two groups on multiple confounding variables is one of the primary steps in

conducting observational studies. All existing matching algorithms can function only with a

complete dataset, while none can function with missing data. Datasets with these problems

must impute or only complete cases can be considered in matching.

Losing data because of the limitations in a matching algorithm can decrease the power

of the study as well as omit important information. In this chapter, we introduce the R

package iterMatch that tackles these shortcomings. This package finds a one-to-one

subsample of the data that is balanced on all matching variables while incorporating missing

values in an iterative manner. Random forest is used as a crucial tool to handle missing values

when constructing a distance matrix to be fitted to an optimal matching algorithm proposed by

[31]. We measure the robustness of the matching results by injecting levels of missing values

across two medium and large datasets for comparison. More detail is provided in this chapter.

3.2 RANDOM FOREST

This section, describes the Random Forest as the main building blocks of the

iterMatch package. Although general framework and parameter tuning of the Random forest

(RF) was described in Section 2.2, additional features were added to the package version of

the iterMatch algorithm. These features included handling missing values and handling

categorical confounding variables with more than two categories.
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Missing data handling is described in more details in Section 3.5. Hence, only a summary of

features and the RF parameters are provided as follow.

A binary classification RF model was created using the following steps. First, all

participants were sent down the root node to form two child nodes. At each child node, a

randomly selected subset of covariates were selected to decorelate the trees. In our

application, we selected three covariates. A greedy search based cutpoints selection was

performed on all selected covariates. The Gini index was utilized to select the best covariate

and its corresponding cutpoint at each node. Based on the mentioned criteria, participants

were splitted into further child nodes until some loose stopping criteria was met. For example,

child nodes splitting stopped if a child node had less than 20 participants or tree size exceeded

the length of 10 or less than five participants remained in a terminal node.

3.3 ITERATIVE MATCHING ALGORITHM WITH MISSING
DATA HANDLING

To handle missing data, we propose an iterative matching algorithm that can handle

missing values such that participants with partial missing values will be used in creating a

matched sample. We used the traditional 1:1 matching and remove only one treated

participant at a time. Within each iteration, the algorithm has the ability to release matched

control participants if they can become a better match for other treated participants. Unlike

the nearest matching method where the order of treated participants can change the quality of

matching, in the optimal matching [31], the overall set of matches minimizes the global

distance measure [54]. We borrowed the syntax of OPTMATCH, an add-on package to R. We

used the proximity matrix as our distance measure in OPTMATCH to create optimal matched

samples.

Iterative matching is a multi-step matching algorithm that aims for matched samples

of a desired quality while keeping as many participants in the matched samples as possible. In

this chapter, data-1 and data-2 have more control participants than treated participants. Hence

a subset of control participants has to be selected in an iterative manner to reach the desired
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matching quality by excluding one treated participant at a time. In the iteration-0,

OPTMATCH creates a one-to-one matched sample for all the treated participants based on the

proximity matrix. Further iterations aim to improve the quality of matched samples or the

SMD values of the matched samples. However, with the presence of missing values, the SMD

calculation changes the retained matched sample. Therefore, at each iteration, different SMD

calculation methods can be used which were discussed in more details in section 3.4.

The following framework is the general framework of iterative matching when there

are missing values involved.
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1 Inputs: data, formula, nTree, distance, minsplit, rfmtry, methodSMD, thresholds

2 Outputs: A list contains of SMD values and p-values for all matching covariates

and final matched sample

3 Data: A data frame consists of a Binary response variable and participant ID and

matching variables

4 Data preparation: Check data prerequisites for the matching with n1 and n2

sample from treated and control group

5 Building the random forest implemented with surrogate splits

6 Building the proximity matrix

7 Find a 1:1 optimal matched sample from the n2 controls based on the

proximity matrix in iteration-0

8 if SMD threshold for all matching vars < SMD threshold then

9 Return SMD, p-values for all Matching Variables and Matched Sample Data

Frame

10 else

11 while SMD threshold is not satisfied do

12 Retrieve the distance between the matched treated vs. control participants

13 Create a data frame paired participant ID and the corresponding distance

14 Find the max distance bet

15 Exclude the farthest participant among the participants with smaller group

size

16 Retrieve the distance matrix with remaining smaller participant group and

all participants from larger group

17 Creates matched data frame in iteration-i using the retrieved distance

matrix

Result: Calculate SMD excluding only participant from smaller group

which had farthest distance
18 end

19 end

Algorithm 4: The IterMatch algorithm with missing data handling
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3.4 METHODS OF CALCULATING SMD

Calculating SMD at the presence of missing values could affect matched sub-samples.

Multiple factors could play a role in creating a matched sample with the most retained

participants in the presence of missing data. An obvious factor is the method of calculating

SMD for a matched sample.

For iterMatch R package purposes, only two options are available for calculating SMD

values, method-1 and method-2. These methods are explained in Section 3.4.1 and

Section 3.4.2. However, for empirical purposes and to better compare results from these two

methods, another method of calculating SMD is introduced which we refer to as ”Gold

Standard”.

In calculating SMD values using the Gold standard method, we started with a dataset

that had no missing values, then a certain amount of ”NA” values were randomly inserted into

the dataset. After creating a data frame with artificial missing values, IterMatch algorithm was

run using the created data frame. Then using the Gold standard method, original values were

retrieved from the original dataset before assigning NA values in calculating SMD. We

expected that results from this analysis would match results from the analysis of data before

injecting missing values.

3.4.1 Method-1

In this method, for SMD calculation, we considered all non-missing values and

omitted cases that had ”NA” values. Therefore, participants with a missing variable were

omitted in the calculation of standardized mean difference. This method is referred to as

method-1 in the iterMatch package. It is obvious that the number of non-missing values for

variables that contain missing values in each group is different. The unbalanced number of

participants for variables with missing values could potentially create bias in calculating

SMD. This problem is addressed in the following section with method-2.
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3.4.2 Method-2

In method-1, the SMD is calculated based on an unequal number of non-missing

variable values from treated and control groups. To address this problem, we consider only

treated or control matched participants for whom all variables are available. This means that,

if a treated participant’s variable value is non-missing but its corresponding control pair

variable value is missing, both the treated and control participant will be discarded for SMD

calculation. Meaning that in each iteration, only pairs of participants whose treated

participants are selected for matching and have no missing values, will be considered for

SMD calculation. In other words, if one of the pairs have any missing values, both pairs will

be discarded for the SMD calculation. This exclusion criteria of this participant will help

SMD to be unbiased. Note that this exclusion will affect the SMD calculation, not the current

matching participants in that iteration.

3.5 DEALING WITH MISSING VALUES

Dealing with missing data is always challenging. This challenge becomes more

important if a large portion of the sample is crucial to the study. In matching observational

studies, besides creating a well-balanced sample, one would like to maximize the number of

participants. In this section, we investigate the effect of missing values in medium (data-1)

and large (data-2) samples.

Most of the literature on matching and propensity scores assumes fully observed

covariates so that models such as logistic regression can be utilized to estimate the propensity

scores. However, there are often missing values in the covariates, which complicates matching

and propensity score estimation. A key consideration when thinking about missing covariate

values is that the pattern of missing covariates can be prognostically important, and in such

cases, the methods should be based on the observed values of the covariates and on the

observed missing-data indicators. In 2004, Hill [34] finds that methods using multiple

imputation work better than complete-data or complete-variable methods (which use either

only units with complete data, or variables with complete data).
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3.5.1 Surrogate Split

Surrogate splits [9] are a technique where we find good replacements to the primary

split at any given node in a classification/regression tree; in this case we use it over multiple

trees in a RF. This technique is advantageous because when an observation has a missing

value on the primary split, we can delineate to a list of surrogate splits to act as a replacement

rule wherever missing data is present.

When specified in iterMatch, surrogate splits are evaluated at each node based on the

agreement with the primary split during the RF construction. To be able to compare the

primary split to a given surrogate split, we define a rule that ensures we are comparing nodes

correctly. Therefore, we use the CART standard of computing the proportion of treated in

each child node to the parent node and then placing the split sample with the least treated

proportion in the left node. Conversely, the right node receives the split data with the highest

proportion of treated. In this way, agreement is calculated by counting up the proportions of

treated in the children nodes of the primary split, and comparing these proportions to a

candidate surrogate split that also enforces the aforementioned rule. We effectively find how

close the surrogate split mimics the primary split. We then maximize this agreement to find

the best split for a particular surrogate variable.

In evaluating the effectiveness of the surrogate split, we compute the adjusted

correlation to a simple majority rule [9] in handling missing data. If this value is greater than

zero, we are better than majority rule and therefore keep the candidate surrogate split.

Depending on the number of mtry in constructing the RF, we create a list of up to five

surrogate splits, by default. When applied to RF, the literature shows we can maintain similar

results with increasing levels of missingness and over different methods of imputation [53]

and [32]. In our analysis, surrogate splits come at the cost of an increase in computation time,

but we gain a lot more being able to naturally match while handling missing data.
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3.6 EMPIRICAL EXAMPLE

3.6.1 Data

The data considered for this analysis is selected from Autism Imaging Data

Exchange-I (ABIDE-I)[23] and Autism Imaging Data Exchange-II (ABIDE-II) [22] and

SDSU’s proprietary data. This dataset is publicly available at

http://fcon_1000.projects.nitrc.org/indi/abide/. The dataset combining two

versions of the Autism Brain Imaging Exchange include 1276 total participants from ABIDE

I and 996 participants from ABIDE II from 20 international research institutes with over 70

variables. Since ABIDE-I and ABIDE-II contain SDSU data, we excluded them from these

two datsets and include them with more participants later. Therefore, these statistics exclude

participants from SDSU’s site. A full cohort of proprietary data consists of 241 participants

added to the pool of data. For the purpose of this chapter, we choose a subset of data consist

of only 5 variables of head motion, age, Performance IQ (PIQ)/Full Scale IQ (FIQ),

handedness scores, and sex. Two different sets of criteria are utilized to examine the effects of

sample size with the proposed algorithm. The first sample has stricter criteria to ensure high

quality data for producing more accurate neuroimaging results. Criteria for the first sample

are: head motion during scanning (RMSD) less than 0.20 mm, percent good time points

greater than 0.80, and the age is between 6 to 18 years and open eyes while scanning. These

criteria were applied to only sites that have at least 20 ASD and 20 TD from both versions of

ABIDE. For example, participants that are labeled as ABIDEII-NYU-2 are discarded due to

small sample of ASD (11) and TD (0).

Our second dataset uses a less conservative criteria which aims to increase the sample

size. The criteria for the second data are: head motion (RMSD) less than 0.27 mm, percent

good time points greater than 0.65 time points, and the age is between 5 to 65 years. Theses

two datasets are available in the package as toy data named data-1 and data-2.

After applying exclusion criteria, the remaining participants for the first dataset
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consisted of 327 ASD and 437 TD participants and in the second dataset 463 ASD and 554

TD. For these two datasets, the number of ASD is greater than TD participants. Therefore, the

goal of our 1:1 matching algorithm is to subset of TD participants whose standardized mean

difference for all 5 matching variables is below a specific threshold compared to ASD

participants. Note that both data sets have missing values in PIQ and handedness scores. The

summary statistics for the following variables is shown in Table 3.1 Table 3.2. Variables used

for data-1 and data-2 are defined as follow:

• SITE-ID. Site abbreviation

• SUB-ID. ABIDE unique ID number

• RMSD. Root Square Mean Sliding Difference or head motion in the scanner (mm)

• GOOD-TP. Number of good time points acquired from scanning

• PERCENT-GOODTP. Percent of good time points acquired from scanning

• DX-GROUP. Diagnostic Group, 1=Autism, 0=Control

• AGE-AT-SCAN. Age at time of scan (years)

• SEX. Gender, 1 = male; 2 = female

• HANDEDNESS-SCORES. Handedness Scores, right-handed: scores ≥ 50,
left-handed:scores ≤ −50, mixed handed: scores between -50 and 50

• PIQ. Performance IQ Standard Score (data-1)- FIQ. Full IQ Standard Score (data-2)

• EYE-STATUS-AT-SCAN. Eye Status During Rest Scan, 1 = open, 2 = closed
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Table 3.1. Participants characteristics and summary statistics before matching for data-1.
data-1 ASD, M±SD

[range]-[missing]
TD, M±SD
[range]-[missing]

p-value
(2-sample t-test/chi-square)

Standardized Mean
Difference∗(SMD)

N (Female) 327 (87) 437 (168) 0.00 0.25
Motion (mm) 0.08± 0.17

[0.01-0.26]-[327]
0.07± 0.14
[0.01-0.22]-[437]

0.01 0.19

Age (years) 11.32 ± 2.53
[6.16 - 17]-[327]

11.08 ± 2.19
[6.36 - 17]-[437]

0.16 0.10

Performance IQ (PIQ) 104.94 ± 15.14
[53 - 149]-[64]

110.48 ± 13.57
[62 - 147]-[29]

0.00 0.35

Handedness Scores 55.36 ±50.41
[-100 - 100]-[154]

70.33 ±40.02
[-100 - 100]-[156]

0.00 0.32

*The standardized difference is given by | X̄ASD − X̄TD |/
√

(S2
ASD + S2

TD)/2, where and denote sample
mean for treated and control and sample variance respectively.

Table 3.2. Participants characteristics and summary statistics before matching for data-2.

data-2 ASD, M±SD
[range]-[missing]

TD, M±SD
[range]-[missing]

p-value
(2-sample t-test/chi-square)

Standardized Mean
Difference∗(SMD)

N (Female) 463 (120) 554 (203) 0.00 0.23
Motion (mm) 0.08 ± 0.17

[0.00 - 0.26]-[463]
0.08 ± 0.17
[0.00 - 0.26]-[554]

0.03 0.13

Age (years) 13.02 ± 7.30
[5.12 - 62]-[463]

12.71 ± 6.08
[5.88 - 64]-[554]

0.47 0.04

Full Scale IQ (FIQ) 105.26 ± 17.46
[59 - 149]-[25]

113.61 ± 12.73
[79 - 149]-[12]

0.00 0.55

Handedness Scores 57.58 ± 47.9
[-100 - 100]-[224]

70.59 ± 38.14
[-100- 100]-[203]

0.00 0.30

*The standardized difference is given by | X̄ASD − X̄TD |/
√

(S2
ASD + S2

TD)/2, where and denote sample
mean for treated and control and sample variance respectively.

The following R command is an example of input parameters for iterMatch function,

R> form <-DX_GROUP ~ RMSD + AGE_AT_SCAN + PIQ + SEX + HANDEDNESS_SCORES

R> iterMatch (data = data-1, formula = form, nTree,distance = "p-value",

+ ID = "SUB_ID", thresh = c(0.15, 0.15, 0.15, 0.15, 0.51),

+ methodSMD , surrogates, rfmtry, match.tol = 0.001, iseed = 1,

+ outputfile = "output")

iterMatch parameters are defined as follow:
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• data Dataframe of participants and variables

• formula Formula which defines the response and matched variables. Matching
variables have to be separated by ”+”, and response variable is separated by” ”.

• nTree An integer number of trees in the random forest.

• distance Calculating distance between two participants i and j. Possible values is ”0-1”
where distance of participants in the same terminal nodes are set to be zero, one,
otherwise.

• ID Unique participant ID.

• thresh A vector of real values defining in SMD threshold for matching variables in the
order that they appear in formula.

• methodSMD Two methods are proposed to calculate SMD, ”method-1” and
”method-2”.

• surrogates Creates surrogate splits if set to T, otherwise the default is F. FALSE option,
assign observations with missing values randomly to a child node.

• rfmtry Number of random variables to split at each node.

• match.tol Specifies the extent to which fullmatch’s output is permitted to differ from an
optimal solution to the original problem. This parameter is taken from fullmatch.

• outputfile An output file containing results from all iteration and their balance
measures.

3.7 RESULTS

3.7.1 Effect of Number of Trees on Matched Sample

In this section, we illustrate the ability of the iterMatch package to optimally pick a

matched sub-sample of treated versus control participants. For this purpose, some of the input

variables were picked to illustrate the effects on the final matched sub-sample. For example,

Table 3.3 indicates the balance measures for all five matching variables when the number of

trees was changing between 100, 250, 500, 750, and 1000 trees while other input parameters

were fixed. These parameters included methodSMD with ”method-1” as an arbitrary option,

thresh = 0.1 for all five matching variables, surrogates = T, and distance equal to ”p-value”.
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Table 3.3. Effect of number of trees in data-1.
Experiment
Balance measure

Sex RMSD Age
(Years)

PIQ Handedness
Scores

N (Treated)
N (Control)

Number of trees = 100
SMD 0.07 0.07 0.01 0.04 0.08 291

p-value 0.41 0.39 0.89 0.62 0.44 291
Number of trees = 250

SMD 0.09 0.09 0.00 0.06 0.09 295
p-value 0.28 0.25 0.90 0.48 0.39 295

Number of trees = 500
SMD 0.09 0.05 0.02 0.07 0.09 297

p-value 0.32 0.51 0.73 0.43 0.40 297
Number of trees = 750

SMD 0.03 0.01 0.01 0.05 0.09 263
p-value 0.77 0.84 0.83 0.57 0.42 263

Number of trees = 1000
SMD 0.08 0.09 0.05 0.09 0.06 284

p-value 0.36 0.24 0.56 0.33 0.60 284

Even though, the number of trees in random forest is determined based on the stability

of classification, in our application, to retain more participants from the matched sample, it is

recommended to change number of trees to ensure retaining more participants on top of

results stability. For example, results become stable for data-1 after creating 250 trees. But if

a user chooses 1000 trees, 284 participants can be retained while a matched sample can retain

295 participants per group when using 250 trees. As we see in Table 3.4 results for data-2

become stable after 250 trees as well. Therefore, for the rest of this chapter, we used 250 trees

for both data-1 and data-2.

3.7.2 Effect of SMD Methods on Matched Sample

When a dataset contains missing values, depending on the amount of missing, we may

need to use different SMD methods to ensure the desired balance and maximum number of

retained participants per group. Table 3.5 and Table 3.6 demonstrates the effects of applying

different SMD methods using data-1 and data-2. All analysis used 0.15 as the SMD threshold

for all variables with 250 trees, and surrogates set to T.
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Table 3.4. Effect of number of trees in data-2.
Experiment
Balance measure

Sex RMSD Age
(Years)

FIQ Handedness
Scores

N (Treated)
N (Control)

Number of trees = 100
SMD 0.07 0.01 0.03 0.09 0.01 365

P-value 0.33 0.79 0.60 0.19 0.87 365
Number of trees = 250

SMD 0.09 0.02 0.01 0.05 0.07 362
P-value 0.22 0.77 0.80 0.43 0.47 362

Number of trees = 500
SMD 0.09 0.05 0.08 0.09 0.01 307

P-value 0.28 0.65 0.53 0.48 0.92 307
Number of trees = 7500

SMD 0.09 0.01 0.05 0.02 0.06 348
P-value 0.24 0.79 0.49 0.74 0.55 348

Number of trees = 1000
SMD 0.09 0.05 0.09 0.03 0.02 323

P-value 0.26 0.50 0.24 0.67 0.84 323

For the analysis of these tables, we started from the complete cases of data-1/data-2

(n=343/n=585). Then similar to missingness patterns in data-1 and data-2, missing values

were injected to the complete data. In other words, we randomly injected 0.15/0.003,

0.37/0.39, and 0.03/0.03 NA’s to PIQ/FIQ and handedness, and both variables to complete

cases of data-1/data-2. Then, a matched sample based on data with artificially created

missing values was created. That is, data set of 343/585 participants with artificially generated

missing values was fed into iterMatch algorithm.

Results in both Table 3.5 and Table 3.6 represent SMD values before matching and

after matching using different SMD methods for both data-1 and data-2 at iteration-0 and

final iteration. In iteration-0, after feeding the proximity matrix to OPTMATCH, a 1:1

matched sub-sample of data was selected that had an equal number of treated and control

participants. For the comparison purposes of SMD methods, three SMD methods were

calculated: method-1 , method-2, and Gold Standard.

For Gold Standard method, SMD was calculated for data with no missing values. In

other words, we re-injected the actual values for the artificially missing values. As explained
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in Section 3.4.1, Method-1 is calculated based on all the values regardless of having missing

values or not. Whereas for method-2, SMD is calculated based on only the pairs of treated and

control participants were used when both participants had non-missing values for the variable

under evaluation. In other words, for method-2, the actual number of pairs used were different

from variable to variable.

The first row of results from Table 3.5 shows the status of SMD and p-values of the

explained data above with simulated artificial missing variables before matching. The second,

third, and fourth rows indicate the performance of Gold Standard, method-1 and method-2 in

iteration-0, respectively. In this iteration, comparing SMD values from method-1 and

method-2 versus Gold Standard, similar performance was observed. However, an obvious

superiority of method-1 was observed in terms of retaining maximum number of participants

given 0.15 SMD value threshold in the last iteration. Therefore, for the next two sections, we

fixed the methodSMD to method-1 for data-1.

This comparison however, is different for data-2 with a larger sample and fewer

missing values. Meaning that in iteration-0 and the final iteration, the number of reattained

participants and SMD results are very similar for both method-1 and method-2 with slight

superiority of SMD values for method-2 for all matching covariates. Therefore, method-2 is

selected as the preferred SMD method for data-2 for the next two sections.
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Table 3.5. Effect of SMD methods on data-1.
Experiment
Balance measure

Sex RMSD Age
(Years)

PIQ Handedness
Scores

N (Treated)
N (Control)

Before matching
SMD 0.41 0.00 0.21 0.41 0.56 129

p-value 0.00 0.38 0.07 0.00 0.00 214
Gold standard, iteration-0

SMD 0.28 0.21 0.24 0.23 0.30 129
p-value 0.04 0.10 0.05 0.06 0.01 129

method-1, iteration-0
SMD 0.28 0.21 0.24 0.26 0.31 129

p-value 0.04 0.10 0.05 0.06 0.05 129
method-2, iteration-0

SMD 0.28 0.23 0.04 0.20 0.38 129
p-value 0.04 0.32 0.85 0.39 0.10 129

Gold Standard, Last-iteration
SMD 0.15 0.11 0.09 0.10 0.13 106

p-value 0.37 0.44 0.49 0.48 0.34 106
method-1, Last-iteration

SMD 0.15 0.11 0.08 0.09 0.03 106
p-value 0.37 0.44 0.56 0.54 0.88 106

method-2, Last-iteration
SMD 0.00 0.28 0.07 0.12 0.21 4

p-value 1.00 0.80 0.70 0.91 0.85 4
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Table 3.6. Effect of SMD methods on data-2.
Experiment
Balance measure

Sex RMSD Age
(Years)

FIQ Handedness
Scores

N (Treated)
N (Control)

Before matching
SMD 0.38 0.29 0.06 0.63 0.29 234

p-value < 0 0.00 0.42 < 0 0.01 351
Gold Standard, iteration-0

SMD 0.31 0.15 0.15 0.49 0.23 234
p-value 0.00 0.09 0.10 < 0 0.01 234

method-1, iteration-0
SMD 0.31 0.15 0.15 0.47 0.18 234

p-value 0.00 0.09 0.10 < 0 0.14 234
method-2, iteration-0

SMD 0.31 0.06 0.15 0.40 0.11 234
p-value 0.00 0.66 0.27 0.00 0.42 234

Gold Standard, Last-iteration
SMD 0.09 0.07 0.08 0.01 0.13 114

p-value 0.61 0.60 0.54 0.96 0.34 114
method-1, Last-iteration

SMD 0.14 0.04 0.03 0.07 0.11 159
p-value 0.27 0.72 0.77 0.52 0.46 159

method-2, Last-iteration
SMD 0.14 0.01 0.09 0.14 0.04 159

p-value 0.27 0.96 0.58 0.37 0.80 159
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3.7.3 Effect of Missing Values

To evaluate the performance of surrogates argument in the iterMatch package, We

fixed all input variables and changed the surrogates to T and F, respectively for data-1 and

data-2. As it is illustrated in Table 3.7, given the SMD threshold of 0.15, twelve more

participants were retained total using surrogates as T versus F option. Note that the percent

missing values in data-1 was 55% and setting surrogates = T shows better performance of RF

surrogate versus random node assignment option for the surrogates argument.

This scenario is opposite for data-2 with 42% missing values. Setting surrogates = F

retained more participants compare to T option for data-2. Setting surrogates to F, implies

random assignment of participants with NA values to a random child node when sending the

data down the tree.

To evaluate the performance of surrogates argument for handling the amount of

missing data, we repeated the same experiment as mentioned in Section 3.7.2 and changing

the amount of NA’s injected to completed data. For example, 50% missing means multiplying

the proportion of missing values for all missing variables, handedness, PIQ/FIQ, and both

variables, by 0.5. In other words, we decrease the number of missing values by half for all

variables with missing values. Note that to evaluate the effect of amount of missing values on

data-1 and data-2, we set surrogates equal to F and T, respectively.

As results in the first four rows indicate in Table 3.8, as the number of missing values

increases, given the fixed number of participants per group, SMD values improved for all

matching variables. This implies the importance of surrogate option in the iterMatch package

despite the increasing amount of missing values. To preserve SMD threshold of 0.15 in the

last iteration, it is expected to retained more participants as the number of missing values

decreases.

For data-2, changing the missing values of 15%, 50%, and 100%, yielded a similar

pattern as in data-1. As the amount of missing value increases, given the fixed number of

participants in the iteration-0, improved SMD values were observed (see Table 3.9). This
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Table 3.7. Effect of surrogates argument on data-1 and data-2.
Experiment
Balance measure

Sex RMSD Age
(Years)

PIQ Handedness
Scores

N (Treated)
N (Control)

data-1, surrogates = T, method-1
SMD 0.10 0.11 0.01 0.15 0.08 308

p-value 0.25 0.17 0.93 0.10 0.46 308
data-1, surrogates = F, method-1

SMD 0.10 0.07 0.02 0.05 0.14 302
p-value 0.25 0.33 0.81 0.56 0.20 302

data-2, surrogates = T, method-2
SMD 0.15 0.05 0.21 0.15 0.01 398

p-value 0.04 0.61 0.84 0.15 0.92 398
data-2, surrogates = F, method-2

SMD 0.15 0.01 0.06 0.07 0.08 430
p-value 0.04 0.93 0.59 0.57 0.52 430

implies the efficiency of surrogates option of F for data-2 in terms of utilizing data with

partial missing values in the final matched sample.
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Table 3.8. Effect of amount of missing value on data-1 with surrogates = F.
Experiment
Balance measure

Sex RMSD Age
(Years)

PIQ Handedness
Scores

N (Treated)
N (Control)

Gold Standard, iteration-0
SMD 0.20 0.21 0.14 0.22 0.23 129

p-value 0.14 0.09 0.26 0.08 0.07 129
15%, method-1, iter-0, surr = F

SMD 0.20 0.19 0.15 0.18 0.18 129
p-value 0.14 0.13 0.23 0.15 0.17 129

50%, method-1, iter-0, surr = F
SMD 0.22 0.17 0.21 0.13 0.17 129

p-value 0.11 0.16 0.09 0.33 0.23 129
100%, method-1, iter-0, surr = F

SMD 0.28 0.03 0.06 0.07 0.12 129
p-value 0.04 0.78 0.66 0.58 0.43 129

Gold Standard, last-iter, surr = F
SMD 0.06 0.02 0.02 0.03 0.13 94

p-value 0.84 0.89 0.89 0.83 0.34 94
15%, method-1, Last-iter, surr = F

SMD 0.14 0.13 0.09 0.00 0.10 118
p-value 0.38 0.30 0.46 0.95 0.46 118

50%, method-1, Last-iter, surr = F
SMD 0.28 0.03 0.06 0.07 0.12 107

p-value 0.04 0.78 0.66 0.58 0.43 107
100%, method-1, Last-iter, surr = F

SMD 0.15 0.11 0.08 0.09 0.03 106
p-value 0.37 0.44 0.56 0.54 0.88 106
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Table 3.9. Effect of amount of missing value on data-2 with surrogates = T.
Experiment
Balance measure

Sex RMSD Age
(Years)

PIQ Handedness
Scores

N (Treated)
N (Control)

Gold Standard, iteration-0
SMD 0.31 0.15 0.15 0.49 0.23 234

p-value 0.00 0.09 0.10 < 0 0.01 234
15%, method-2, iteration-0

SMD 0.26 0.10 0.12 0.48 0.21 234
p-value 0.01 0.29 0.22 < 0 0.03 234

50%, method-2, iteration-0
SMD 0.25 0.13 0.12 0.51 0.17 234

p-value 0.01 0.17 0.21 < 0 0.12 234
100%, method-2, iteration-0

SMD 0.31 0.06 0.15 0.40 0.11 234
p-value 0.00 0.66 0.27 0.00 0.42 234

Gold Standard, method-2, Last-iteration
SMD 0.09 0.07 0.08 0.01 0.13 114

p-value 0.61 0.60 0.54 0.96 0.34 114
15%, method-2, Last-iteration

SMD 0.14 0.03 0.06 0.12 0.03 183
p-value 0.23 0.80 0.60 0.29 0.79 183

50%, method-2, Last-iteration
SMD 0.14 0.02 0.05 0.02 0.04 164

p-value 0.27 0.87 0.62 0.87 0.76 164
100%, method-2, Last-iteration

SMD 0.14 0.01 0.09 0.14 0.04 159
p-value 0.27 0.96 0.58 0.37 0.80 159
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CHAPTER 4

MIXED-EFFECTS RANDOM FOREST-BASED

CLASSIFICATION ALGORITHMS FOR

CLUSTERED DATA

4.1 OVERVIEW

To date, a variety of classification schemes have been proposed, and the accuracy of

classification has reached as high as 95 percent for many disorders, including Autism

Spectrum Disorder (ASD). However, to build a reliable and robust classification model for

ASD, it is necessary to incorporate a large dataset which is often obtained from multi-site

imaging data. In addition to the extended sample size, including multiple MRI modalities can

increase the coherency of the brain picture.

However, two challenges are associated with an extended sample size and multi-modal

dataset. The first issue is controlling the source of variation that is imposed by multiple

imaging sites. Second, it is necessary to use a dimensional reduction algorithm to cope with

the computational complexity of multi-modal data. Controlling the multi-site variability is

particularly important as it can be mixed with the heterogeneous nature of ASD to build a

robust and accurate classification model.

We addressed both concerns by proposing two mixed-effects random forest-based

classification algorithms, applicable to multi-site (clustered) data using rs-fMRI and structural

MRI (sMRI) modalities. These algorithms control the random effects of the confounding

factor of the imaging site. Additionally, the algorithms internally control the fixed effect of the

phenotypic variables such as age while building classification model. Moreover, they

eliminate the necessity of utilizing a separate dimension reduction algorithm for

high-dimensional data such as functional connectivity in a non-linear fashion.
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In our empirical data study, we used an unseen external validation set including

resting-state fMRI and sMRI from the ABIDE dataset. The RFME-based classification

algorithms showed an accuracy of over 80 percent to distinguish ASD participants from

typically developing (TD) participants. We concluded that the RFME-based classification

model is a promising tool to build a more reliable and efficient diagnostic model for multi-site

and multi-modal datasets.

4.2 DATA

The data for this analysis were selected from two versions of Autism Imaging Data

Exchange, (ABIDE-I) [23] and (ABIDE-II) [22], and SDSU’s proprietary data. ABIDE

dataset is publicly available at http : //fcon1000.projects.nitrc.org/indi/abide/. The

dataset contains 70 variables from 1276 total participants from ABIDE-I and 996 participants

from ABIDE-II across 41 international research institutes. Since ABIDE-I and ABIDE-II

contain limited SDSU data, we excluded SDSU data from these two datasets and included

them with more participants in the final dataset. Therefore, these statistics exclude

participants from the SDSU site. Additional 236 participants from the proprietary data were

added to the pool of data. Therefore, the initial sample from ABIDE and SDSU added up to

2508 participants.

However, to include high-quality anatomical data with Local Gyrification Index (lGI)

features, the data sample was limited to 95 ASD and 95 typically developing (TD)

participants that was selected from a study by Kohli et al. [41]. The selected sample was

comprised of three imaging sites, SDSU, NYU-1-ABIDE-II, and NYU-ABIDE-I. However,

among these selected participants, 47 participants were excluded due to low fMRI data

quality. Therefore, a total of 143 participants consisting of 72 ASD and 71 TD participants

were picked for further analysis.

In Table 4.1, we labeled data from the NYU-1-ABIDE-II sample as NYU-II and

NYU-ABIDE-I as NYU-I. A summary of demographic data and matching status between the
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Table 4.1. Demographic summary of data per imaging sites.
Dataset: SDSU

ASD, M ±V ar
[range]

TD, M ±V ar
[range]

N (Female) 41 (8) 41 (7)

Motion (mm)
0.07±0.00
[0.02-0.15]

0.07±0.00
[0.01-0.15]

Age (years)
14.18±5.4
[9.2-17.8]

13.7±7.24
[6.90-17.6]

Handedness (Left/Right) (6/35) (6/35)
Dataset: NYU-II

ASD, M ±V ar
[range]

TD, M ±V ar
[range]

N (Female) 10 (0) 7 (0)

Motion (mm)
0.09±0.02
[0.04-0.18]

0.07±0.00
[0.04-0.12]

Age (years)
10.8±8.7
[7.2-17.9]

10.2±1.1
[9.03-11.3]

Handedness (Left/Right) (4/6) (4/6)
Dataset: NYU-I

ASD, M ±V ar
[range]

TD, M ±V ar
[range]

N (Female) 21 (0) 23 (0)

Motion (mm)
0.09±0.00
[0.03-0.17]

0.05±0.00
[0.02-0.12]

Age (years)
11.8±7.9
[7.2-18.6]

12.3±7.4
[9.03-11.3]

Handedness (Left/Right) All missing All missing

ASD group vs. the TD group per site is provided in Table 4.1.
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4.2.1 Structural MRI (sMRI)

High resolution T1-weighted MRI sequences were obtained on a Siemens Allegra MR

2004a scanner (repetition time = 2530 ms, echo time = 3.25 ms, flip angle = 7
◦ , 171 slices,

1.0× 1.0× 1.0 mm3 resolution). FreeSurfer version 5.3.0 was employed to perform

semi-automated cortical reconstruction on data from both study samples [18]. All FreeSurfer

output was examined on a slice-by-slice basis to identify any inaccuracies in surface

placement. Inaccuracies were corrected with white matter control points as needed, and then

reassessed for accuracy. Scans that still showed inaccuracies were excluded. Scans with major

artifacts, such as ghosting or ringing or inaccuracies deemed unlikely to be ameliorated by

manual edits (based on past experience), were excluded. Cortical Surface Area (CSA) and

Cortical Thickness (CT) were automatically measured at each FreeSurfer surface vertex, and

Local Gyrification Index (lGI) was measured using an added flag to the FreeSurfer

reconstruction processing stream [59]. lGI is a 3D surface-based method for calculating the

ratio of cortical surface area within the sulcal folds (pialsurface) relative to the amount of

cortex on the outer visible cortex (cortical hull). This calculation was made within a sphere

with a 25 mm radius around the pial surface vertex. This automated reconstruction feature has

been validated as a reliable measure of gyrification against manual measurement [58]. After

anatomical pre-processing, we extracted 34 ROIs per hemisphere with 3 measurements of

cortical surface area, cortical thickness, and local gyrification index plus 2 mean cortical

thickness measures. Therefore, a total of 206 anatomical variables were extracted to be used

toward building a classification model.

4.2.2 Functional Connectivity MRI (fcMRI)

The pipeline followed to process and analyze the fMRI data was similar to Jahedi et

al. [37], using AFNI and FSL software. The first 5-time points from each scan were discarded

to allow for T1 equilibrium. The remaining 180-time points underwent pre-processing steps

such as motion, slice-time, and field-map correction. Functional data was aligned to
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anatomical data using FLIRT (six degrees of freedom), resampled to 3.0 mm isotropic voxels

(sinc interpolation), and standardized to the MNI-152 template (FSLs nonlinear registration

tool), all in a single transformation step. Data was spatially smoothed with an isotropic 6 mm

full-width at half-maximum Gaussian filter. Residual time-series of the resting-state images

were then band-pass filtered (0.008 < f < 0.08Hz) using a second-order Butterworth filter

[58]; [57].

Head displacements in scanners for each brain volume were computed as the Root

Mean Square Deviation (RMSD), calculated from 3 translational and 3 rotational motion

parameters. Signal averaged over white matter and ventricles (from FreeSurfer segmentation),

as well as their first derivatives, were removed by regression of nuisance variables. The

nuisance regressors were bandpass filtered using the same procedure as for BOLD time series

[30]. The time points with head motion > 0.5 mm, and the 2 successive time points were

censored. If censoring occurred twice within 10-time points, all the time points between them

were removed.

Due to known impacts of even minuscule amounts of head motion on BOLD

fluctuations [50], strict inclusion criteria were set regarding motion and only participants with

at least 80 % of volumes were retained after censoring volumes with too much head-motion

(defined at > 0.5 mm) were included, as were in the final analyses. Additionally, individuals

with root-mean-square displacement (RMSD, a summary measure of head motion throughout

the scan) > 0.2 mm were also excluded. After careful quality control for functional data, the

participants that had both modalities was selected.

ROIs considered for this analysis were obtained from Harvard Oxford [20] and from

Jülich [24]. Initially, a brain coverage mask is generated which has a BOLD signal in 80% of

participants. ROIs were excluded if they had less than 80% of the volume inside the brain

mask. The final analysis included 342 ROIs obtained from 313 cortical, 14 subcortical, and 15

cerebellar regions (Table 4.2). The data was organized in a diagonally symmetrical 342× 342

feature matrix with each cell in the matrix representing a Fisher z-transformed correlation
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Table 4.2. Summary table for Regions of Interests (ROIs).
Number
of ROIs

Surface area
(mm2)

Number
of Voxels

Cortex
313

(92%)
273.3±255.0

[15.96-1935.34]
52.7±45.18

[4-336]

Subcortex
14

(4.1%)
13.4±5.95

[5-21] NA

Cerebellum
15

(4.4%)
10.6±7.09

[2-27] NA

between two ROIs. Consequently, there were 58311 (342×341
2

) unique features for each

participant.

4.3 METHODS

In this section, we propose two binary classification models using Mixed-Effects

Random Forest (RFME). Recall that we are interested in building a classification model such

that the confounding effects of variables can be handled internally for high-dimensional

clustered data without using any external dimension reduction algorithm. Note that it is

essential to validate the results of this method using a new sample.

4.3.1 Random Forest Using Mixed-Effects for Clustered Data

Random Forest using Mixed-Effects (RFME) algorithm derived its origin from

combining the concept of linear mixed-effects modeling with random forest. Similar to

tree-based methods like Classification and Regression Trees (CART) [9], RFME ensembles

many weak learners, as in Mixed-Effects Regression Trees (MERT) [28], to build a stronger

learner. The basic idea behind MERT is to dissociate the fixed effects from the random effects

in clustered data. This disassociation is particularly vital in clustered-structure data due to the

similarity of participants that belong to the same cluster, as opposed to those from different

clusters. In MERT, a standard regression tree [28] is used to model the fixed effects with a

node-invariant linear structure at each terminal node. In our proposed RFME model, not only
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are observations split within clusters, but the confounding effect of a phenotypic variable can

be controlled at each splitting child node.

The basis of this chapter is an extension of a random forest-based dissimilarity matrix

proposed in Chapter 2. This incorporates mixed models to build more reliable classification

models. To this end, our proposed algorithm has the following steps:

First step is to handle the high-dimensionality of datasets. For the high-dimensional

clustered data (multi-site data), only a random subset of variables participate in building the

tree. This means that the user can choose to pick any arbitrary number of variables less than

or equal to the number of variables in the dataset. This parameter is referred to as SelVar in

the algorithm. To avoid bias in building the classification model using a random set of

variables, the selected number of variables are randomly picked with replacement for each

tree. Note that for low-dimensional data, this parameter should be equal to the number of

variables in the dataset.

Unlike standard random forest [8] in which a bootstrap sample (drawn with

replacement from the training data) constructs each tree, we use all of the data to build each

tree. This distinction is necessary to build a proximity matrix for all pairs of observations in

the proposed algorithm which are introduced as in Algorithm 5 and Algorithm 6.

After reducing the dimensionality, at each splitting node,
√

SelVar are picked to

”decorrelate” the trees for further splitting. For all randomly selected variables, a random

selected cutpoint from all possible cut point values, which is referred to as Extremely

Randomized trees (ER)[26], is chosen. The rationale behind choosing ER for cutpoint

selection is to reduce the computational complexity of picking the cutpoint procedure. Also, it

has been shown that ER has the best overall accuracy and performance for classification

problems [10]. It not only has the lowest misclassification rates, but it also reduces or

eliminates the variable selection bias, and is the fastest algorithm.

Next, for the selected variables along their cutpoints, an evaluation is conducted at
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each child node using a mixed-effects model as follows:

p(Yij = 1|X) = β0 + β1Pij + ηi + β2I(Xi ≤ C) (4.1)

In this equation, the random component of the mixed model is denoted by ηi, that

controls the cluster effect and a separate fixed effect component of Pi for phenotype variable.

I(Xi ≤ C), which controls the population-averaged tree (forest), consists of imaging

modality variables. The random intercept part, ηi, is still assumed to be linear. The goal of

using mixed-effects is to predict the response for a new observation j that belongs to a cluster

i. As previously mentioned, the advantage of having a phenotype variable as a separate

fixed-effect is to partition the variable space controlling for the fixed effect of phenotype at

each splitting node. Note that clusters do not need to be balanced, i.e., each cluster can have a

different number of observations.

To estimate the parameters of the mixture model, lme4 package was used. The lme4

package separates the efficient computational linear algebra required to compute profiled

likelihoods and deviances for a given value of θ from the nonlinear optimization algorithms,

which use general-purpose nonlinear optimizers [5]. We incorporated two built-in

optimization choices of the Nelder-Mead simplex algorithm [39] and a wrapper for Powell’s

BOBYQA algorithm [49] with ten points per axis. This one was done to evaluate the adaptive

Gauss-Hermite approximation to the log-likelihood or nAGQ = 10.

Variables with a small p-value are selected for node splitting. In estimating the LME

model, sometimes parameters cannot converge; therefore, models face a convergence

problem. For these cases, a logistic model is used, which includes the splitting variable along

with cluster and phenotype variables. As data split into further child nodes or get closer to

terminal nodes, the clustering variable as a factor variable can become purer with only one

level. For these cases, we continued by excluding the problematic variable (in our case cluster

variable) in the logistic model. Individual trees in RFME are typically grown until some loose

stopping criteria are met without pruning. These criteria include the maximum depth of the

tree, the minimum number of participants to split a node, or the minimum number of
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participants at a terminal node.

In this algorithm, before constructing each tree, only complete data were considered,

i.e., observations with missing values were discarded from the cohort. To ensure the stability

of the results, various number of trees were explored. To calculate the classification accuracy

of the proposed RFME model, a validation data sample was sent down through the built

RFME model. Consequently, a two by two confusion matrix of actual diagnostic labels was

compared with the predicted terminal nodes for each observation. The algorithm for the

classification RFME model is as follows:
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1 Inputs: data, formula, nTree, distance, randEf, fixedEf, selVar, minsplit, rfmtry ,

iSeed

2 Output: RFME classification accuracy

Data: Training data

3 Dimension reduction

4 for i in 1:nTree do

5 Binary labels use binary labels of the data to train the model

6 while Splitting criteria do

7 Variable selection

8 Cutpoint selection

9 Child node splitting evaluation Use mixed effect model

p(Yij = 1|X) = β0 + β1Pij + ηi + β2I(Xi ≤ C)

10 Fit training data to the built model

11 end

12 end

13 Terminal node prediction for test data

14 Calc classification accuracy of the RFME classification using a 2x2 confusion

matrix

Result: Classification accuracy using RFME Model
Algorithm 5: RFME classification algorithm
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4.3.2 RFME-Based Dissimilarity Matrix Algorithm

This method borrows its basis from the RFME model presented in Section 4.3.1 and

adds a couple of additional steps to improve the classification accuracy using the two most

common clustering methods and a defined RFME-based proximity matrix. To the best of our

knowledge, none of the existing binary classification algorithms used clustering techniques to

enhance the classification accuracy controlling for the effect of confounding variables

internally. In this algorithm, the importance of the RFME model is to define a proximity

matrix to be fed in clustering methods. As stated in Section 4.3.1, unlike typical random

forest, in which bootstrap sample of data would be selected to participate in building each

tree, for the proposed RFME model, all data were selected to participate in building the

model. After building the RFME model using a trained sample, we used unseen data referred

to as an external validation set to predict the terminal node for each participant based on the

mean propensity score. The propensity score is defined as the conditional probability of

treatment given covariates, where treatment is considered as treated participants, or ASD,

while X denotes all covariates, excluding the treatment indicator.

P (Z = 1|X) = E(Z|X)

Our defined proximity matrix assigned a distance of zero if any pair of participants are

in same terminal node, and one, if participant pairs are predicted in different terminal nodes.

Thus,

dij =

 0, In the same terminal node

1, Otherwise

The proximity matrix for each tree is then averaged across all trees. After this step, the

proximity matrix is fed into agglomerative Hierarchical Clustering (HC) and K-means [33]

with two predefined cluster groups. A two by two confusion matrix consists of predicted

group membership for the external validation set, and actual binary labels are formed to

calculate the binary classification accuracy using RFME-based proximity matrix created by
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K-means and hierarchical clustering algorithms. We referred to them as RFME-KC and

RFME-HC, respectively. The algorithm 6 explains the major steps of this classification

method.

1 Inputs: data, formula, nTree, distance, randEf, fixedEf, selVar, minsplit, rfmtry ,

iSeed

2 Outputs: RFME classification accuracy from RFME-based proximity matrix

Data: Training data

3 Dimension reduction

4 Building RFME model

5 Predict test data using the built RFME model

6 if participants i and j are in the same node then

7 dij=0

8 end

9 else

10 dij=1

11 end

12 Feed-in distance matrix to HC and K-means clustering for 2 clusters

13 Cluster membership prediction for external validation set for both K-means

and HC clustering

14 Calc cluster accuracy using confusion matrix for 2 clusters using HC and

K-means clustering

Result: Classification accuracy using RFME-based dissimilarity matrix

15

Algorithm 6: RFME-based dissimilarity matrix classification algorithm (RFME-

KC and RFME-HC)
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4.4 RESULTS

In creating RFME, multiple parameters had to be tuned. These parameters are the

number of trees that we referred to as nTree and three stopping criteria. Three stopping

criteria were chosen to prevent further splitting the data in a tree. These include the minimum

number of observations for further splitting, set to 20 (defined as minsplit), the minimum

number of observations in each terminal node to stop tree building, set to 5 (minbucket), and

the maximum depth of the tree, set to 10 (maxdepth).

For tree-based models, various numbers of trees have to be explored to assure the

stability of results. In our experiments, stable results started to emerge with 2000 trees (see

Figure 4.1.) Therefore, an nTree of 2000 was used for all empirical experiments.

In this chapter, three empirical experiments were designed to answer the following

questions. How does the proposed Algorithm 5 perform vs. Algorithm 6 in terms of accuracy?

Also, how is the accuracy performance for these algorithms when using clustered data?

Figure 4.1. Number of trees vs. test classification accuracy.
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To answer these questions, we created three different data samples extracted from data

in Section 4.2. In one, we included training data from SDSU and NYU-I and left NYU-II for

external validation sample shown as Train:SDSU+NYU-I in Table 4.3. In the second dataset,

to increase the number of samples in the validation set, SDSU and NYU-II were combined for

training, and NYU-I was used for validating the models, which was referred to as

Train:SDSU+NYU-II in Table 4.3. In the third sample, however, to increase variability within

sites in both train and validation samples, we used stratification sampling. Thus, 2/3 of

participants from each site were randomly picked to be used for training, and the 1/3

remaining data per site was utilized for the validation sample. We call this sample

Train:2/3StratFromAllSites.

As we mentioned in both proposed algorithms, to avoid computational complexity and

to provide the possibility of including all features without external dimension reduction, we

randomly selected variables with replacements before building any tree. In our algorithms,

this value was referred to as selVar. Depending on the type of modality, the selVar value was

15000 or 206. For example, in the analysis provided in Section 4.4.2, 15000 random variables

were selected if FC modality was chosen.

One of the other interesting questions that has been recently addressed by Eill et al.

[25] is which imaging modality is more informative to detect the classification label for

autism. Empirical results to answer this question are provided in Section 4.4.2. To investigate

the informativeness of anatomical modality, all 206 anatomical variables were used for

parameter selVar, whereas selVar was 15000 for combined modality or separate functional

modality.

4.4.1 Impact of Mixed-Effects Modeling

In this section, we seek to answer which proposed algorithms can achieve higher

classification accuracy and how including the mixed-effects modeling in each terminal node

affects diagnostic classification accuracy. To this end, we experimented with six different

combinations where age as a fixed effect and site as a random effect were either included or
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not included for model fitting at each splitting node. For example, in the first row of Table 4.3

an experiment was conducted named siteRandomAgeFixed, which means the site was in the

random effect component of LME and age took part in the fixed effect. The second column of

the same table indicates the type of model that was used for node splitting. Possible models,

as stated in the algorithm, were mixed LME and logistic models.

The next column determines if the site was used in the random component or not. A

column with RFME indicates the accuracy of the RFME model from Algorithm 5. The

following columns represent the accuracy of Algorithm 6. To ensure the validity of results

three datasets were tested, Train:SDSU+NYU-I, Train: SDSU+NYU-II, and Train:

2/3StratFromAllSites.

Although results for the external validation set of Train:SDSU+NYU-I were promising

and were close to 100% for both algorithms, a relatively small validation set could potentially

explain the overestimated accuracy from these models.

In the second experiment, with a relatively larger sample of 44 participants from

Train:SDSU+NYU-II from one site, two points are noticeable. First, the consistent higher

prediction accuracy of the RFME-KC and the RFME-HC algorithms compared to the RFME

algorithm was found. Second, the accuracy differences between the Algorithm 6 vs.

Algorithm 5 reached their maximum of 15% for various models, such as siteFixedAgeFixed,

siteNotincludedAgeFixed, siteNotincludedAgeFixed, and siteNotIncludedAgeNotIncluded.

However, in the third dataset, TrainedData:2/3StratfromAllSites, the maximum accuracy

differences of 13% between models appeared for the siteRandomAgeNotIncluded experiment

which only had imaging site as the random effect. This indicates the role of including the

random effect component when building the model for the clustered data. Thus, as the

variation in the training and the external validation sample increased, RFME-KC

outperformed the RFME and RFME-HC algorithms.

The last column of this table under ”Conv Rate,” referred to as the convergence rate

for the LME parameter estimation when the random effect was included in the model.
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Although there were some instances in which the LME parameter estimation had a

convergence problem, over 98% of the time no convergence problem had occurred.

We concluded accuracy results from the Algorithm 6 outperformed the accuracy

results of the Algorithm 5 for all three datasets. Moreover, the RFME-KC algorithm provided

a higher-performance classification accuracy compared to the RFME and the RFME-HC

algorithms using the multi-site dataset, ABIDE. Therefore, our proposed algorithm has the

capability of increasing clustering accuracy for the clustered data. Regardless of which

clustering method was used, RFME-based dissimilarity matrix classification algorithms could

improve the accuracy results of a classification model compared to the RFME model.
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Table 4.3. Effect of Fixed and Random Effects on two samples using functional and
anatomical modality.

Experiment Model Age Site RFME HC K-means Conv
TrainedData: SDSU+NYU-I
siteRandomAgeFixed Mixed Fixed Random 1 0.94 0.88 0.99

Logistic Fixed Fixed
siteFixedAgeFixed Mixed Fixed Fixed 1 0.94 0.94 Irr

siteNotIncludedAgeFixed Mixed Fixed - 1 0.94 0.94 Irr

siteRandomAgeNotIncluded Mixed - Random 0.94 0.94 1 0.99
Logistic - Fixed

siteFixedAgeNotIncluded Mixed - Fixed 1 0.94 0.94 Irr

siteNotIncludedAgeNotIncluded Mixed - - 1 0.94 0.94 Irr
Logistic - -

TrainedData: SDSU+NYU-II
siteRandomAgeFixed Mixed Fixed Random 0.69 0.78 0.8 0.98

Logistic Fixed Fixed
siteFixedAgeFixed Mixed Fixed Fixed 0.67 0.78 0.82 Irr

siteNotincludedAgeFixed Mixed Fixed - 0.67 0.78 0.82 Irr

siteRandomAgeNotIncluded Mixed - Random 0.69 0.82 0.78 0.99
Logistic - Fixed

siteFixedAgeNotIncluded Mixed - Fixed 0.67 0.67 0.82 Irr
Logistic - Fixed

siteNotIncludedAgeNotIncluded Mixed - - 0.67 0.78 0.82 Irr
Logistic - -

TrainedData: 2/3StratfromAllSites
siteRandomAgeFixed Mixed Fixed Random 0.75 0.79 0.79 0.99

Logistic Fixed Fixed
siteFixedAgeFixed Mixed Fixed Fixed 0.79 0.79 0.83 Irr

siteNotIncludedAgeFixed Mixed Fixed - 0.79 0.79 0.83 Irr

siteRandomAgeNotIncluded Mixed - Random 0.64 0.75 0.77 1
Logistic - Fixed

siteFixedAgeNotIncluded Mixed - Fixed 0.79 0.79 0.83 Irr

siteNotIncludedAgeNotIncluded Mixed - - 0.79 0.79 0.83 Irr
Logistic - -
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4.4.2 Effect of Imaging Modalities

The empirical analysis in this section aimed to investigate what imaging modality is

more informative to detect classification labels for autism. As described in Section 4.4, three

datasets were tested using only anatomical, only functional, and combined functional and

anatomical modalities. The accuracy fluctuation of including these modalities may contribute

to feature-richness and informativeness of the modality.

In the Train:SDSU+NYU-I with a small validation set, the RFME model with an

accuracy of 1 is slightly higher than 94% accuracy for the combined modality or 88%

accuracy for only the functional modality. However, this result cannot be trusted as the

validation sample is very small. Regardless of the data experiment, including only anatomical

modality did not provide a high classification accuracy whereas including only functional or

combined modalities could achieve a high classification accuracy.

Another point to mention from Table 4.4 is the overall higher accuracy of the

RFME-KC algorithm compared to the RFME and the RFME-HC algorithms. Comparing

results from Train:SDSU+NYU-II and the Train:2/3StratFromAllSites, which provided a

higher range of variability within sites, we observed a similar classification accuracy when

both modalities were included. Overall, results from this section show the informativeness of

combined modalities for predicting the diagnostic status of ASD.

Table 4.4 shows more information on this comparison when different modalities are

presented.

4.4.3 Computational Complexity

All computations were conducted on CPU clusters at the Computational Science

Research Center (CSRC) at San Diego State University. The code was designed to use

multiple processes in parallel, which employed the power of 16 nodes of 48GB of RAM with

two quad-core processors per node. All the analysis was performed in the R language and
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Table 4.4. Effects of imaging modalities on new sample test accuracy with age as fixed
effect and site as random effect.

Data Experiment
RFME
ACC

HC
ACC

K-means
ACC

Converge
Rate

Train:SDSU+NYU-I FC+Anat 1 0.94 0.88 0.99
Anat 0.85 1 1 0
FC 1 0.88 0.88 0.99

Train:SDSU+NYU-II FC+Anat 0.69 0.78 0.8 0.98
Anat 0.53 0.51 0.55 0.97
FC 0.6 0.84 0.77 0.98

Train:2/3StratFromAllSites FC+Anat 0.75 0.79 0.79 0.99
Anat 0.58 0.62 0.62 0.99
FC 0.73 0.73 0.72 0.99

environment for statistical computing. A significant limitation of constructing RFME was the

computational intensity. The major time-consuming part of the analysis was related to

building the random forest part. Factors that affected computation speed in building RFME

were: number of trees in building the forest, fitting a mixed-effects model at each node, the

number of categorical and continuous predictors, and the minimum node size to continue

splitting the branch.

To assess computation time, we recorded time in seconds varying the number of trees using

stratification sampling data explained in the results section with a minsplit = 20, and

minbucket of 5. While running the analysis did not utilize more efficient software programs

such as C++ or Fortran, most of the computation time was devoted to calculating the splitting

statistic. Even though we restricted the number of cut points for a limited number of variables,

the high-dimensionality of our data increased the computation time.
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CHAPTER 5

CONCLUSION

5.1 SUMMARY AND FUTURE WORK

In this dissertation, multiple algorithms and methods were proposed to improve

sample matching and the classification modeling. The main building blocks that was used in

both methods was random Forest (RF). Although these RF-based methods and algorithms can

be used for different fields of research, the specific focus of dissertation was to apply these

methods to autism research.

In Chapter 2, multivariate matching was discussed. Matching is a nonparametric

method of controlling for the influence of confounding variables in observational studies. In

other words, observations from the data are pruned so that the remaining data has a better

balance between the treated and control groups. This means that the empirical distributions of

the covariates (X) in the groups are more similar.

Five different matching algorithms were proposed that incorporated the idea of 1: k

nearest matching and full matching algorithms. The performance of all these algorithms was

evaluated using a small sample of BDIL data, which had a limited number of control

individuals to be used for matching with treated participants. Among all, the 1:3 nearest

method did not perform well due to a sparse proximity matrix. This is aligned with the

previous finding from Gu et al.[27]. These researchers showed nearest neighbor matching

performs poorly when there is intense competition for control participants. However, it

performs well when there is little competition.

However, full matching algorithms performed well for creating a balance between the

number of matched participants in both groups and the distribution of covariates. One reason

is that the participant sequence order in which the treated participants are matched is not
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important. Instead, optimal matching takes individual matches and minimizes their global

distance measure [55].

Comparing SMD results from IterMatch and IterMatchCEM algorithms, the latter

slightly outperformed the former method; however, the IterMatch algorithm preserved more

participants for the matching set. Preserving participants is more important when the sample

size is small. One shortcoming associated with IterMatchCEM that worked against small

sample sizes was arbitrary bin user-defined cutpoint. User-defined cutpoint which was

addressed by using a distance-based bin, could decrease the sample in each group. Therefore,

IterMatchCEM might not be a suitable algorithm when a limited sample is available for

matching. Both algorithms had flexibility of choosing a tighter threshold that might affect the

analysis more severely compared to other covariates. For example, in our study, we could be

more interested in a tighter match on head motion, and a less restrictive match on NVIQ.

Besides the mentioned characteristics, one of the main shortcomings associated with

the presented IterMatch and IterMatchCEM algorithms was incapability of handling missing

values. Given the strong RF background on handling missing data, this issue was addressed in

the implementation phase of this algorithm in Chapter 3.

Researchers in applied fields often have to deal with observations with missing data,

and thus this motivated us to address matching challenges. IterMatch algorithm was chosen

over other proposed algorithms introduced in Chapter 3 due to superior performance and

flexibility of choosing the desired threshold while maintaining the maximum number of

possible participants from both groups.

To the best of our knowledge, iterMatch is the only available package in R to match

two groups of data with missing values internally. The package is easy-to-use and its key

feature is setting a user-based threshold for finding a matched sample. It allows users to

control the desired matching balance threshold for variables separately. The output file

provides insightful information about the role of each participant in finding an optimally

matched sample. This means, in each iteration, a list of matched participants’ IDs, along with
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the excluded participant’s ID, is provided for the user to decide if any input variable can be

altered to obtain a better-matched sample.

Having the option of a surrogate as one of the input parameters allows the user to

handle missing values within the process of matching without the necessity of using any

imputation techniques. This is particularly important for a matching package as all other

existing matching packages can provide matched samples with complete cases. This implies

that the user does not have to look for the missing values that need to be imputed separately.

In addition, the matching package can handle data with a large number of predictors with

mixed types (continuous, ordinal, and categorical with two or more levels) without the need

for variable transformation, dummy variable creation, or variable selection. Users should note

that this package only works for matching two groups. In other words, the response variable

should be binary.

To retain more participants and desired balance in a sample, a user should tune the

input parameters. To this end, we conducted multiple empirical simulations as a way to

illustrate how to tune variables for different datasets and scenarios. For example, users should

vary the number of trees to make sure results are stable. After checking the stability of results,

it is recommended to try a similar number of trees around the stability value to retain more

participants per group.

Depending on the number of missing values, users are given two choices for SMD

methods to calculate the balance of the matched sample. In the empirical study, we showed

that method-1 and method-2 could be selected depending on the available number of

participants from both groups and the number of missing values.

One of the expected outcomes from a matched data with missing values is that as the

proportion of missing values increases, the number of retained participants per group

decreases. However, usage of the surrogates option in iterMatch enables retaining more

subjects as the number of missing values increases. In our empirical study, we showed that for

data with fewer missing values, setting the surrogates to T could maintain more subjects per
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group. Conversely, data with fewer missing values could retain more subjects with surrogates

= F while maintaining the same SMD thresholds.

The building blocks from the iterMatch algorithm were then borrowed to build a

binary classification method for high-dimensional clustered data in Chapter 4. In other words,

the idea of random forest and mixed-effects models were combined to handle the effects of

correlated variables within clustered data, which we referred to as Random Forest using

Mixed-Effects (RFME). In this chapter, we proposed three classification algorithms such as

RFME, RFME-HC, and RFME-KC.

All algorithms can tolerate high-dimensional data such as fMRI without the necessity

of externally using a dimension reduction algorithm. The undesirable effects of confounding

variables are controlled internally in the model using the Linear Mixed-Effects (LME) models

at each node per tree. Proposed algorithms can allow observations from the same cluster to be

separated during the splitting process, both for random and fixed effects with an unbalanced

number of observations in each cluster.

The new contribution of Chapter 4 was to design an RFME-based proximity matrix to

be fed into a common clustering algorithms, which provided a higher classification accuracy.

Results from our proposed algorithms showed over 80% prediction accuracy for an unseen

sample. The prediction accuracy result was particularly important because, in most

high-accuracy classification models, validation is done using k-fold cross-validation or

Out-Of-Bag (OOB) error rate, where the test sample was already used to train the model.

Utilizing external validation data based on RFME-KC indicates the model successfully

managed the variation between imaging sites.

Moreover, we confirmed the greater informativeness of combined functional and

sMRI modalities using the three proposed algorithms. Results indicate the informativeness of

fMRI modality compared to sMRI modality for diagnostic classification of ASD vs. TD

participants. Our results are consistent with the existing literature by Eill et al. [25].

One possible pitfall of our study in Chapter 4 was the inclusion of high-functioning
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participants whose fMRI scans had low head motion. However, to capture the full picture of

ASD, lower functioning participants with ASD should be included as well. Thus, findings

may not generalize to the entire functional spectrum of ASD.

As previously mentioned, missing values for the given participant may result in the

loss of that participant from the analysis. In other words, to analyze datasets with missing

values, the recommended way of dealing with missing values is either to remove observations

with more than one missing instance entirely or impute those missing values with one of

various methods. In the current implementation of the algorithms in Chapter 4, we ignored

cases with missing values. However, handling the missing values can easily be incorporated

into the future R package implementation.

Another limitation was to choose a small sample from only three imaging sites which

potentially decrease the actual variability between sites. Thus, increasing samples from

multiple sites can contribute to build a robust and accurate prediction model for ASD in the

future.
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Table 1. Effect of amount of missing value on data-1 with surrogates = T.
Experiment
Balance measure

Sex RMSD Age
(Years)

PIQ Handedness
Scores

N (Treated)
N (Control)

Gold standard, iteration-0
SMD 0.28 0.21 0.24 0.23 0.30 129

p-value 0.04 0.10 0.05 0.06 0.01 129
15%, method-1, iter-0, surr = T

SMD 0.30 0.22 0.18 0.12 0.17 129
p-value 0.03 0.08 0.15 0.34 0.17 129

50%, method-1, iter-0, surr = T
SMD 0.40 0.22 0.15 0.18 0.18 129

p-value 0.00 0.08 0.24 0.17 0.20 129
100%, method-1, iter-0, surr = T

SMD 0.28 0.21 0.24 0.26 0.31 129
p-value 0.04 0.10 0.05 0.06 0.05 129

Gold Standard, last-iter, surr = T
SMD 0.15 0.11 0.09 0.10 0.13 106

p-value 0.37 0.44 0.49 0.48 0.34 106
15%, method-1, last-iter, surr = T

SMD 0.13 0.12 0.14 0.11 0.00 40
p-value 0.77 0.59 0.52 0.62 0.99 40

50%, method-1, last-iter, surr = T
SMD 0.14 0.00 0.15 0.02 0.05 77

p-value 0.53 1.00 0.36 0.88 0.76 77
100%, method-1, last-iter, surr = T

SMD 0.15 0.11 0.08 0.09 0.03 106
p-value 0.37 0.44 0.56 0.54 0.88 106
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