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Synopsis

Technology can be a significant aide in understanding and appreciating geome-
try, beyond theoretical considerations. Both fiber art and technology have been
employed as a significant aide and an inspiring vessel in education to explore
geometry. The Japanese craft known as temari, or “hand-balls”, combines im-
portant artistic, spiritual, and familial values, and provides one such approach
to exploring geometry. Mathematically, the artwork of temari may be classified
based on whether they are inspired by polyhedra and discrete patterns or by
periodic functional curves. The resulting designs of these categories provide an
ancient vantage for displaying spherical patterns. We illustrate a technique that
combines the fiber art of temari with interactive computer visualizations. In ad-
dition, we provide guided activities to help promote a deeper understanding of
how functions and patterns arise on a spherical surface.

Keywords: temari, mathematics, parametric curves, polyhedra, fiber arts, com-
puter graphics.

1. Background

The Japanese temari ball can be described as an inner core, wrapped in
uniformly-colored thread, forming a sphere which acts as a mesh background
for anchoring elegant, hand-embroidered patterns. These patterns are highly
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geometric and mathematically interesting, as they tend to be repetitive and
periodic on the surface of the sphere. Due to their complex intricacy, mod-
ern temari are often given as gifts for special occasions, such as weddings,
births, or holidays [18]. Becoming recognized as a formal temari craftsper-
son requires years of training and official certification, further indicating the
amount of expertise that must be devoted to the craft (see (http://www.
temarikai.com/ResourcesPages/jtacertification.html) for more infor-
mation.)

The temari art form originated from the Asuka Period (538–710) in ancient
Japan [18]. It is believed that China introduced temari to Japan as a game
involving deerskin balls called kemari, or “kick ball”, from which the word
temari, or “hand ball”, was later derived [18, 1]. Initially, temari was a
craft practiced only by the upper class of Japan, whereby the silk of old
kimonos was used to construct a toy that was used in games played by
nobles [18, 1, 5, 19]. Steeped alongside Buddhust traditions (Figure 1) and
the Japanese philosophy of mottainai (“what a waste!”), many Japanese
fabric crafts, including temari, are some of the earliest documented cases of
fabric repurposing in art [18, 5].

Figure 1: A temari used by the Buddhist monk Ryokan (1758-1831) [10].

During the Edo Period (1603--1868), cotton was introduced to Japan, and it-

http://www.temarikai.com/ResourcesPages/jtacertification.html
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omari, or thread balls, became a craft practiced by the common class [18, 1, 5].
It was also during this period that temari transitioned from a flat, hardy ball
used as a toy, into a more decorative ball with deeper cultural significance; the
affordability and access to cotton fiber allowed the craft to spread through-
out Japan as an artform [18, 1, 5]. Methods for constructing the temari core
began to inherit regional significance, dependant on the abundance of natu-
ral resources available to the different regions across Japan. Cocoons, clam
shells, grass seeds, rice husks, and small stones, have all been documented
as being used as temari cores, depending on the region of origin [5]. With
the advent of rubber balls as toys, the temari craft became less about toys,
and more about art and tradition [18, 5]. Today, itomari are simply called
“temari” by Western culture [5]. In modern Eastern culture, temari are given
as gifts for life events and holidays. Digital media allowed this artform to
flourish, since what was a traditionally regional artform was allowed to spread
at a rapid pace. The internet has made it easier to exchange patterns over
geographical and linguistic barriers, with patterns often fragmenting away
from traditional designs into novel patterns embodying the unique signature
of the artist.

Fabric art has been used as a tool for exploring advanced mathematical con-
cepts, such as knitting to explore recursion [23], crochet to explore hyperbolic
geometries [11], quilting as a medium for symmetry samplers [9], and even
simpler concepts such as quilting to explore fractions [15]. Temari has re-
cently become of interest to mathematicians as an educational tool, due to
its connection with spherical geometries; for instance, temari has been used
to demonstrate all fourteen of the finite spherical symmetries, incorporating
both Frieze groups and Platonic solids in their construction [24, 25]. Temari
has also been used in discrete mathematics courses to describe permutations
for students [2]. The tactile nature of fabric art allows an individual to di-
rectly control how they receive and experience visual input. To this end,
individuals who may have an adverse mathematical or adverse artistic mind-
set benefit from fabric art immensely, as it bridges the gap between these
two disciplines.

The toy-like characteristic of a sphere has also been represented digitally in
a video game called Katamari Damacy [13]. The objective of this game is
to roll up pieces of the environment onto a sphere, making the ball as large
as possible, a process akin to wrapping a temari core before the embroidery
process begins. Lead game designer Keita Takahashi has stated that two
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major tenets of game design are that games need to be easily understood
and enjoyable [12]. Katamari Damacy was received favorably by most video
game critics and received many awards in 2004 [17]. The game also received
further prestige and validation as an artform when it was selected as an
installation in New York’s Museum of Modern Art in 2013 [21].

One significant bottleneck for fabric art as an educational tool is the amount
of time and training it may take to construct a specific pattern or design;
an advanced temari artist could conservatively spend over 8 hours working a
simple pattern, whereas advanced patterns could take over 40 hours. Another
bottleneck is that once constructed, the fabric art may only be on display or
in use for one location at a time. Takahashi’s tenants of fun and ease-of-use in
game design for Katamari Damacy are none too different than precepts often
embraced in mathematics education. Using technology to simulate temari
construction, we hope to mitigate the educational bottlenecks of fabric art,
making spherical mathematics fun and accessible for a wide spectrum of
people, from artists to mathematicians.

2. Mathematics

We hope to construct some basic connections between fabric art and digital
media in a manner that makes spherical functions easy to understand inspira-
tional. We will categorize, parameterize, and describe 5 groups of mathemat-
ical constructs as a model for patterns commonly found in temari artwork:
rings, bands, hypocycloids, Lissajous curves, and discrete patterns. We will
then provide guided exercises that we hope will inspire a deeper understand-
ing of mathematics, regardless of the reader’s mathematical background.

Without loss of generality, it should be noted that due to the nature of nor-
malized, spherical equations, that any of the x, y, or z(t), functions in the
following parameterized equations may be interchanged across the Cartesian
variable space, based on preference. We also will construct all parameteriza-
tions so that the virtual temari balls are centered at the origin, and have a
radius of 1.

2.1. Rings

Temari preparation is an intricate aspect of the craft, which requires pre-
cise measurement, as the preparation of the ball helps to determine what
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patterns will be observed on the final product. After wrapping a temari
ball in thread, the ball gets subdivided using what are referred to as Simple
and Combination divisions (Figure 2a,c). Simple divisions only have a north
and south pole with an equator. Combination divisions have multiple poles
equally spaced across the temari. These divisions are also classified based
on the number of vertices at the poles. The subdivision process in temari
preparation (see Figure 2, [18], [5], and [20] for further information on how
this process works) makes the pattern look as though there are thread rings
partitioning the ball either across longitudinal or latitudinal axes. Such rings
on a three-dimensional sphere may described using only two trigonometric
functions in Cartesian coordinates:

x(t) = cos(t),

y(t) = 0,

z(t) = sin(t),

0 ≤t ≤ 2π.

Figure 2: Typical temari divisions and virtual counterparts [20], used with permission, all
rights reserved.
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Figure 3: Illustration of the maki kagari technique. The central, green band on a temari
(left) is created using the maki kagari technique [20], used with permission, all rights
reserved, and simulated with a compressed helix (right).

2.2. Bands

A technique commonly practiced in temari construction is known as maki
kagari. The goal of this technique is to create a thick band of thread around
the center of the temari, splitting the ball into hemispheres (Figure 3). We
used the equations for a compressed helix to simulate this technique:

x(t) = cos(t)/N,

y(t) = (R/π)t/N,

z(t) = sin(t)/N,

−Aπ ≤ t ≤ Aπ

where
N =

√
1 + (R/π)2t2

is a normalization factor so that the bands of the helix hug the surface of the
sphere, R is a parameter determining the thickness of the thread, and A is an
even integer describing the total number of thread wraps circling the center
of the ball (A/2 threads on each side of the temari equator, respectively).
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2.3. Star patterns

Hypocycloids, or Spirograph curves, are generated by tracing a single point
on the circumference of a rolling, smaller circle within a larger circle (Fig-
ure 4, left). The results are designs that appear to be star-like patterns
(Table 1). Many temari patterns are the result of stitching straight lines of
thread between the poles and some predetermined nodes along the longitu-
dinal bands of the division threads (Figure 5). The result appears similar to
a hypocycloid projected onto a sphere. The following set of equations use
trigonometric functions to generate these patterns:

x(t) = (1 − A/B) cos(t) + A/B cos((1 −B/A)t),

y(t) = ±
√

(4(1 − A/B)(A/B)) · sin(B/(2A)t),

z(t) = (1 − A/B) sin(t) + A/B sin((1 −B/A)t),

R = A/B < 1,

where A and B are referred to as toy parameters. We choose to call these
parameters toy parameters due to their highly unconstrained nature, and the
fact that the user may feel free to adjust these parameters until they get a
pattern they find aesthetically pleasing. Hypocycloids have what is known
as the multiple-generation property; the reduced form of the ratio R = A/B
determines the uniqueness of the pattern observed on the spherical surface.
R must also follow the constraint R < 1 for real-curve results.

Figure 4: Hypocycloid versus Lissajous curves. Hypocycloids, or Spirograph curves, are
generated by tracing a single point on the circumference of a rolling, smaller circle within
a larger circle (left) [22], used under Creative Commons license. Similarly, Lissajous
curves are generated tracing a small circle bounded within a rectangle (right) [3], used
and modified under Creative Commons license.
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Table 1: Hypocycloid patterns in a circle. Some typical cycloid patterns generated when
the parameter A is fixed at 1, and B is allowed to vary over the integers from 3 to 18. In
this special case of the cycloid patterns, the parameter B corresponds to the number of
points on the cycloid.
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Figure 5: Illustration of star-like patterns on a temari. Star-like patterns (left) [20], used
with permission, all rights reserved, are simulated using cycloids (right).

2.4. Lissajous curves

Whereas hypocycloids are generated by bounding within a circle, Lissajous
curves, though theoretically similar, are instead, bounded by a rectangle
(Figure 4, right). These curves may then be projected onto the surface of a
sphere, resulting in another classification of curves commonly seen in temari
artwork:

x(t) = sin(At) cos(Bt)

y(t) = cos(At)

z(t) = cos(At) cos(Bt),

where A and B are, again, toy parameters. Some two-dimensional projections
of curves generated by the toy parameters are provided in Table 2.

An interesting note on all hypocycloid and Lissajous curves is that when
parameters are irrational, the resulting curves will never terminate at their
starting point. In this sense, the domain of the variable t may be allowed to
vary as little or as much as desired, causing curves to fill up the ball on an
infinite domain. Additionally, some instances of Lissajous curves (Table 2,
B = 2 through 16) are not patterns one would typically observe in temari
artwork. We plan to address both of these substantive points in future work.
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Table 2: Lissajous Patterns. Some two-dimensional projections of Lissajous patterns that
can arise when either A (right) or B (left) are fixed at 1, and the other parameter is
allowed to vary over the integers from 1 to 16.

Figure 6: Lissajous patterns on a temari. Some patterns observed in temari might be
perceived as petals (left) [20], used with permission, all rights reserved, and simulated
using Lissajous patterns (right).
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2.5. Discrete Patterns

Many complex divisions of temari begin with selecting a set of rotationally
symmetric points on the surface of a sphere and connecting the points to
partition the surface into congruent spherical polygons. Frequently, the loca-
tions of these points are chosen so that the resulting pattern will have a great
amount of rotational symmetry around many axes of the sphere, which leads
to arrangements such as the vertices of a Platonic, Archimedean, or Catalan
solid. Other arrangements of points which possess mainly rotational symme-
try around a single axis may correspond to vertex arrangements of polyhedra
such as bipyramids, trapezohedra, prisms, or antiprisms. See Figure 7.

Figure 7: Discrete patterns. Discrete patterns in temari are often the result of complex
division patterns (left) [20], used with permission, all rights reserved, and are simulated
by tiling polyhedra on a sphere (right).

3. Programming

Inspired by the beauty of temari and excited by the possibility of using math-
ematics to model and explore such patterns, we have created an interactive
application to visualize these curves. The application is called EMARI : Ex-
ploratory Mathematical and Artistic Rendering Interface. In order to be
maximally accessible in terms of technology, the application is web-based:
EMARI runs in any web browser and requires no downloads or installation.
The user interface has been thoughtfully designed in the hopes of being us-
able and of value to multiple audiences: artists and mathematicians, students
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and teachers, amateurs and professionals alike. We have strived to include a
balanced number of features, great enough to provide a wide range of artis-
tic freedom to customize the appearance of the temari, while small enough
to avoid overwhelming the user. With the current set of features, which
are described in detail later in this section, the application can be used to
experiment, create, educate, and inspire. The app, currently hosted at the
website https://stemkoski.github.io/EMARI/, is pictured in Figure 8 on the
next page, which illustrates a scenario where both a parametric curve and a
discrete pattern have been added.

At the top of the app is an interactive 3D viewer that illustrates all of the
curves and patterns that have been entered. Depending on whether the user
is using a mouse or a touchscreen, they may click/touch and drag to rotate
the scene, and use a mouse wheel or pinch gestures to zoom in and out.
Buttons below the image enable the user to change the size of the viewport,
save the current view to an image file, or add additional curves or patterns
to the scene. Underneath these buttons are various controls to customize
the overall appearance of the scene, including buttons that show/hide a grid
along the horizontal (XZ-)plane, XYZ-axes, and a unit sphere. The user may
also change the color or opacity of the unit sphere, change the background
color used for the scene itself, and enable or disable the lighting and shading
effects that are used to increase the 3D appearance of the scene.

When a new curve or pattern is added, a corresponding data entry area will
be added to the bottom of the application. Since this may result in a large
amount of content, this data appears in a scrolling region beneath the 3D
scene viewer, so that (at least on larger display screens) the user can scroll
any data area closer to the 3D viewer area so that they can more easily
view the effects of changing parameters in real time, without having to scroll
back and forth between these areas in the application. For both parametric
curves and discrete patterns, the user may choose among a variety of preset
configurations, and they may adjust the rotation of the graphs around the
X/Y/Z axes, the color and thickness (tubular radius) of the curves represent-
ing the thread, and the layer, which represents the distance from the unit
sphere to the graphs in multiples of each curve’s thickness. For parametric
curves, the user may enter equations for the x, y, and z coordinates in terms
of t and, if desired, in terms of the given parameters A, B, and C, and the
thickness parameter R. For discrete patterns, the user may enter vertex data
and edge data. Each vertex is represented as an array of coordinates [x, y, z],

https://stemkoski.github.io/EMARI/
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Figure 8: The EMARI Application. For more examples, and in particular for the parame-
ters used to generate the images in this article, see Appendix A. See Appendix B for some
sample questions to use EMARI in student investigations.



250 Virtual Temari: Artistically Inspired Mathematics

and the vertex data is an array of vertices, while each edge is represented as
an array of two vertex indices, and the edge data is an array of edges. The
vertex and edge data appear in text areas that can be scrolled or enlarged
if desired. Finally, individual curves and patterns may be removed from the
scene by pressing the delete button at the bottom of the corresponding data
entry area.

Users may interact with the application at a variety of levels, depending on
their background. We recommend new users begin by experimenting with
the different presets in both categories, and adjusting the values of the pa-
rameters and rotation about the axes. When adding multiple curves, we
recommend changing the graph colors, so that they are more easily dis-
tinguishable from each other, and also for the aesthetic joy of creating a
colorful composition. Advanced users may want to experiment with their
own sets of parametric equations or arrays of vertices and edges; it should
be noted that no normalization calculations take place behind the scenes to
force parametric curves to lie on the unit sphere, and thus this application
could theoretically be used to graph any desired curves. Additionally, due
to the inherently discrete nature of all computer graphics, the tubes repre-
senting the temari threads are in fact triangulated surfaces, and extremely
large ranges of t values could result in curves that appear more angular than
smooth; very large numbers of sample points are used when rendering each
curve in the hopes that such an unsightly curve will rarely be seen by most
users.

4. Temari as a Vehicle for Mathematical Creativity

Designs and patterns of geometry have long served a purpose of engaging
students who may otherwise be adverse towards mathematics, due to their
creative nature [3, 26]. More recently, there has been interest in the peda-
gogical benefits of interfacing mathematics, computer sciences, and artistic
expression, as a vehicle for cultural equity in the classroom [6, 14, 4]. Part of
this educational phenomenon stems from the affordability and accessibility
of personal computers, three-dimensional printers, and virtual reality devices
[16, 7]. EMARI taps into historical and modern creativity techniques implicit
in this pedagogical phenomenon to provide a concrete work of art that the
user can easily share with peers. EMARI provides a framework for mathe-
matically creative customization that might otherwise be impossible due to
the meticulous training and resources required by the temari fiber artform.
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The authors had to carefully consider a huge landscape of parametric equa-
tions normalized to align with the surface of the unit sphere and then compare
them to samples of temari patterns, in order to choose the classes of functions
included in the EMARI app, making every attempt to balance simplicity of
mathematical representation, alignment with temari patterns, and versatility
in producing aesthetically pleasing designs. The authors acknowledge that
the functions embedded in the EMARI app are merely a starting point for the
multitude of beautiful, virtual analogs, present in traditional temari patterns.
In addition, throughout the design process, the authors experimented with
factors such as the radius of the tubes rendered around parametric curves in
order to simulate thickness of thread, whether or not to include a unit sphere
and coordinate axes for reference, and whether to include realistic lighting
and shading effects to help provide a sense of depth. Ultimately, upon re-
flecting that each user will have their own aesthetic desires and purposes,
the decision was made to allow the user to enable or disable and customize
these aspects whenever possible. The EMARI interface encourages mathe-
matical discovery and creativity by allowing users to tweak everything from
mathematical parameters and functions to thread width, thread color, and
how these thread layers sit on the temari ball. The classes of curves outlined
in this paper are, by no means, exhaustive, and the authors encourage the
reader to research their own temari pattern-inspired mathematical designs,
to help further expand upon this body of work.

5. Future Work and Closing Remarks

Just as a good mathematical question inspires further questions and new
directions for research, the EMARI application has many avenues along which
development could be continued. Taking inspiration from temari, one could
introduce the ability to repeat a simple pattern (such as a small star) at a
given set of vertices, or streamline the process for adding multiple instances of
the same curve or pattern with an additional amount of rotation or scaling
applied to each new instance. Taking inspiration from mathematics, one
could introduce new categories of curves: procedurally generated curves,
fractal-like patterns, or Turing patterns. To increase the ability of EMARI
explorers to communicate and share their creations, it would be worthwhile
to add the ability to save and load the data underlying their creations as
a custom file type, or export their creations to a file type amenable to 3D
printing.
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The emphasis of this paper has been defining and modeling temari art with
functions and patterns. One advantage that digital media has over fabric
art is that some of the models in EMARI may be difficult or impossible to
construct with a needle and thread; irrational parameters used in the hypocy-
cloid and Lissajous curves would lead to patterns which traditional temari
patterns cannot capture. Additionally, the curves observed in the right-hand
panel of Table 2 would be very difficult to construct using the conventional di-
vision patterns observed in Figure 2. We believe that EMARI allows temari
artists to explore complicated patterns before they sink hours into defin-
ing the pattern and construction on their own accord. Finally, the flexibility
that EMARI provides with the placement of edges and vertices on the sphere
might help temari artists visualize asymmetric or unconventional tilings on
the sphere, which could lead to extraordinarily unique, albeit nontraditional,
temari patterns.

In closing, the reader may have noticed that the acronym EMARI is inspired
in turn by our original source of inspiration, temari, but we hope that deeper
similarities hold true. Just as the temari art form continues to evolve, we
hope that these investigations will continue to do so as well. In addition,
just as temari were once considered a toy, it is our hope that EMARI will
encourage active use, creative play, and experimentation. Finally, recalling
that temari are given as gifts, we like to think of EMARI as our gift to
the mathematical and artistic communities, and we hope that these efforts
further strengthen the beautiful bridges that connect these two communities.
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A. Supplemental Material: Parameters for Generating the Figures

Here, we list the settings used in the EMARI software to generate figures in
this paper.

• Figure 2b

– Thread 1: Preset: Ring, default

– Thread 2: Ring, Rotation X = 45

– Thread 3: Ring, Rotation X = 90

– Thread 4: Ring, Rotation X = 135

• Figure 2d

– Thread 1: Preset: Ring, default

– Thread 2: Ring, Rotation Z = 45

– Thread 3: Ring, Rotation Z = 90

– Thread 4: Ring, Rotation Z = 135

– Thread 5: Ring, Rotation X = 90, Y = 60

– Thread 6: Ring, Rotation X = 90, Y = 120
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– Thread 7: Ring, Rotation X = 90, Y = 60, Z = 90

– Thread 8: Ring, Rotation X = 90, Y = 120, Z = 90

• Figure 3

– Thread 1: Preset: Bands, A = 10

• Figure 4

– Thread 1: Preset: Stars, Parameter A = 5, B = 13

– Thread 2: Preset: Stars, Parameter A = 7, B = 13

– Thread 3: Preset: Bands, Parameter A = 20

• Figure 5

– Thread 1: Preset: Lissajous, Parameter A = 10, B = 3

– Thread 2: Preset: Bands, A = 10

• Figure 6

– Thread 1: Preset: Dodecahedron, default

B. Supplemental Material: Guiding Questions for Investigation
with EMARI

1. To produce the Simple division pattern previously described in Figure
2 in the EMARI application, you can begin by adding a new parametric
curve and changing the preset to Ring. Is there any difference between
changing the X rotation to 30 degrees versus changing the Z rotation
to 30 degrees? If instead you had changed the Y rotation to 30 degrees,
why does the curve not appear any different? To complete the Simple
division, how many additional parametric Ring curves do you need to
add, and by what amounts do you need to rotate them?

2. The formula for the distance from a point (x, y, z) to the origin is√
x2 + y2 + z2. Since EMARI models a temari ball as the surface of a

unit sphere, a point lies on the surface of the temari ball if and only if it
has distance 1 from the origin. So for example, the point P = (3, 4, 12)
does not lie on the temari ball, but if you scale (divide) the coordinates
of this point by its length (a process called normalization), the result
does lie on the temari ball. Here, the length of P is 13, and therefore
the point (3/13, 4/13, 12/13) is on the temari ball. As we will see in
the following exercise, a similar process helps us construct curves that
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lie on the surface of a sphere.

a. In the EMARI application, create a new parametric curve, and
enter the functions:
x = 2*t -1, y = 1, z = 1 and range 0 <= t <= 1
Click the Graph button and you will see this is the parameteri-
zation of a line that lies above the sphere. Write the formula for
the distance from the origin to each point on the curve (which
will be a function in terms of t). In the EMARI application, di-
vide each of the x, y, and z functions by this formula (you can
enter sqrt() to calculate square roots). When you graph this new
parameterization, how does the appearance of the curve change?

b. The process to model bands on the surface of a temari begins with
a parametric equation of a helix. In the EMARI application, enter
the equations:
x = cos(t), y = A*t, z = sin(t) and range -10*pi <= t <=
10*pi
Set the parameter A equal to 0.02 for now, and graph the func-
tion. Experiment with different values of A until the helix is ver-
tically compressed such that there are no visible “vertical gaps”
as the curve revolves around the y-axis. Next, divide each of the
x, y, and z functions by a distance function, as before, so that
the graph of the function lies on the surface of the temari ball
(simplification will be possible using a trigonometric identity!).

3. Angles have exciting and unexpected behaviors on the surface of the
sphere. In this exercise, we will draw two line segments in the EMARI
application with an angle between them. To do this, create a new
discrete pattern with Vertex Data: [0,0,1],[1,0,0],[0,1,0], and Edge
Data: [[0,1],[0,2]]. Observe that the angle between the two line seg-
ments is 90 degrees. Now, create a new discrete pattern with Vertex
Data: [[1,0,0],[0,1,0]], and Edge Data: [[0,1]]. Change the color of
this new line segment to red.

c. What is the measurement of the angles formed by the red line
segment and each of the two orange line segments?

d. What common shape appears to be on the surface of the sphere,
and what is the sum of the angles of this shape?


	Virtual Temari: Artistically Inspired Mathematics
	Recommended Citation

	Background
	Mathematics
	Rings
	Bands
	Star patterns
	Lissajous curves
	Discrete Patterns

	Programming
	Temari as a Vehicle for Mathematical Creativity
	Future Work and Closing Remarks
	Supplemental Material: Parameters for Generating the Figures
	Supplemental Material: Guiding Questions for Investigation with EMARI

