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Abstract

On symmetric operator ideals and s-numbers

By

Daniel Akech

Claremont Graduate University: 2023

Motivated by the well-known theorem of Schauder, we study the relationship be-
tween various s-numbers of an operator T and its adjoint T ∗ between Banach spaces.
For non-compact operator T ∈ L(X, Y ), we do not have a lot of information about
the relationship between n-th s-number, sn(T ), with sn(T ∗), however, in chapter 2,
by considering X and Y , with lifting and extension properties, respectively, we were
able to obtain a relationship between sn(T ) with sn(T ∗) for certain s-numbers. Us-
ing a certain characterization of compactness together with the Principle of Local
Reflexivity, we give a different simpler proof of Hutton’s theorem. In chapter 3, by
considering operators which are not compact but compact with respect to certain
approximation schemes Q, which we call Q-compact, we proved Hutton’s Theorem
for Q-compact operator T and symmetrized approximation numbers, which answers
the question of comparing the degree of compactness for T and its adjoint T ∗ for non-
compact T . Chapter 4 defines the K-functional via rearrangement-invariant function
spaces, studies its effect on interpolation spaces, applies interpolation theory to some
linear and non-linear partial differential equations, and also gives some criteria for
the boundedness of the norms of operators arising from PDEs in some concrete Ba-
nach spaces. Under natural conditions regarding Bernstein and Jackson inequalities,
interpolation spaces can be realized as approximation spaces. Consequently, the final
chapter 5 defines approximation spaces for compact H-operators using the sequences
of their eigenvalues and establishes relations among these spaces using interpolation
theory, and presents an inclusion theorem and a representation theorem.



Acknowledgments

First of all, I wish to express sincere gratitude to my advisor, Professor Asuman G.

Aksoy, for her vision and direction. Her priceless gift to me was skills, knowledge, and

unwavering moral support through every stage of my doctoral studies. Her teachings

and encouragement will continue to instruct and inspire me long beyond my years

as a graduate student. I would also like to thank my committee members for their

support and encouragement. Professor Chugunova advised me well after I passed

my preliminary exams and her Advanced Matrix Analysis, which I took as a student

and TA, sparked my interest in functional analysis. Professor Rumbos’ courses in

optimizations and his advice helped me greatly. I sincerely thank Dr. Yunied Puig

de Dios, Dr. Qidi Peng, and Belgacem Al-Azem whose excellent exchanges helped

the current project in more ways than one. I am very grateful to the CGU’s Institute

of Mathematical Sciences’ academic support.

Finally, I thank my fiancée, Abuk Awer Dau Diing for her patience and encour-

agement during the writing of this dissertation, and my daughter and son, Angeth

and Thiong, who inspire me to wake up each day to continue the journey. I thank

my entire family and friends, who have been supportive throughout the process, of

whom Dr. Majak D’ Agoot’s encouragement has been uplifting.

This dissertation is dedicated to the memory of my beloved Uncle Ezekiel Diing

Gak Thiong Diing, who was the first in our family to enter university. Diing inspired

generations of Thiong to excel in education. While he was a high school student in

Renk, Uncle Diing graduated from high school at the top of his class and he studied

geology at the University of Juba, a program which he terminated to join a rebel

iii



movement in 1983. His life was cut short in 1993.

iv



Contents

Acknowledgments iii

1 Compact operators 1

1.1 Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Dyadic entropy numbers and compact operators . . . . . . . . . . . . 8

1.3 Relatively p-compact sets . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Factorization of compact operators . . . . . . . . . . . . . . . . . . . 14

2 Schauder’s theorem and s-numbers 17

2.1 Symmetric operator ideals . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Hutton’s Theorem Revisited . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Comparing various approximation quantities . . . . . . . . . . . . . . 24

3 Approximation schemes and Q-compact operators 28

3.1 Q-compact sets and maps . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Schauder’s type theorem for Q-compact maps . . . . . . . . . . . . . 31

4 Applications of interpolation techniques to PDEs 33

4.1 Rearrangement-invariant function spaces . . . . . . . . . . . . . . . . 34

4.2 Real interpolation spaces . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



4.3 An Application of the interpolation theory to the heat equation . . . 41

4.4 Theorems on boundedness of linear operators on concrete Banach Spaces 44

4.5 Application of interpolation theory to a non-linear Schrödinger equation 47

5 Compact H-Operators 51

5.1 Defining H-Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Approximation spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Realizing approximation spaces as interpolation spaces . . . . . . . . 60

5.4 Inclusion and Representation Theorems for Approximation Spaces . . 63

5.5 Connection to Bernstein’s Lethargy Theorem . . . . . . . . . . . . . . 67

vi



Chapter 1

Compact operators

When one is given an operator on a Banach space, one may be interested in whether it

is linear, bounded, or compact among other desirable features. For a smooth operator

associated with a given differential equation, boundedness, for example, makes it

possible to find critical points, which are solutions to the given differential equation.

In other settings, the existence of a solution to a given differential equation amounts

to the existence of fixed points for an associated operator, which requires such an

operator to be compact. While this dissertation is not about solving PDEs, we give

concrete examples to illustrate the importance of boundedness and compactness.

First, for a bounded domain Ω ⊂ Rn, we consider the following problem of search-

ing for a solution u to the following equation:

−∆u = f(x, u), x ∈ Ω. (1.1)

The corresponding functional is defined by G(u) = 1
2
‖∇u‖2−

∫
Ω

∫ u(x)

0
f(x, s)dsdx,

where the norm is that of L2. Any u for which G′(u) = 0 (a critical point) solves

(1.1). Global extreme can exist if the functional G is bounded from either below or

from above. When G is not bounded, it is unclear how to look for critical points.
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Second, suppose that V is a continuously differentiable function such that

|V (u)| 6M |u|,

and consider the non-linear elliptic boundary value problem:{
−u′′(t) = V (u(t))

u(0) = 0 = u(1).
(1.2)

Are there any solutions of (1.2)? A solution of (1.2) would be a fixed point for a

suitable linear operator T : C([0, 1]) → C([0, 1]). There are many theorems on the

existence of fixed points for this type of situation, which require T to be compact.

In [21], I. Fredholm created the determinant theory of integral operators in 1903,

which would give rise to the abstract theory of Hilbert Spaces. In [52], F. Riesz

proved in 1918 that compact operators have at most countable set of eigenvalues,

which arranged in a sequence, tend to zero. At this point, the question of the rate of

convergence to zero of the sequence of eigenvalues did not come into the picture. What

are the conditions on T s.t (λn(T )) ∈ `q? To answer this question in approximation

theory, in 1966, A.S. Markus defined H -operators and in 1987, A. Pietsch developed

s-numbers (closely related to singular values). More broadly, interpolation theory has

been used to answer questions in approximation theory.

Interpolation theory was originally discovered by I. Schur, M. Riesz, G.O. Thorin,

J. Marcinkiewicz, and A. Zygmund while J. - L. Lions, J. Peetre, A. P. Calderon, E.

Stein, and E. Gagliardo made major contributions (see, [7], p. 117). The possibility

of applying interpolation techniques to approximation theory was initiated by Jaak

Peetre in 1963. The main realization starts with recognizing that every approximation

space is a real interpolation space. This means that the K-method becomes available

2



as a tool in approximation theory, which can then be used to obtain, for example,

Bernstein and Jackson’s theorems concerning the best approximation of functions in

Lp(Rn) by entire functions of exponential type, approximation of compact operators

by operators of finite rank, approximation of differential operators by difference op-

erators (see, e.g. [6]). Interpolation techniques, such as the Trace Theorem and the

parameter theorem (K-functional), were developed originally to solve partial differ-

ential equations (see, e.g., [38]). In mathematics, when one is given an object, say

a group, a ring, a vector space, or the space of all continuous linear mapping from

one space to another, the natural question to ask is what are some of the most in-

teresting subspaces. Compact operators form an interesting subspace of the space of

continuous linear operators from one Banach space to another. We present a charac-

terization of compact operators results discovered in 1965 by Pietsch [46] and in 1972

by Terzioğlu [58] (and also independently in 1987 by Stephani [56] ). These charac-

terizations are the starting points for the definitions of the Kolmogorov and Gelfand

numbers, respectively. It turns out that the monotonously decreasing sequences of

Kolmogorov and Gelfand numbers live in certain spaces called Lorentz spaces, which

can be realized as approximation spaces, which are, in turn, real interpolation spaces.

The other approximation quantities related to Kolmogorov and Gelfand numbers are

entropy numbers [12], and approximation numbers [31], with the entropy numbers

being motivated by the definition of a compact operator. In contrast, the approxima-

tion numbers express the degree of approximability of an operator by the finite rank

operator.

The dissertation consists of five chapters. Chapter 1 gives an introduction to com-
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pactness and properties. In Chapter 2, by imposing certain natural conditions on X

and Y , we were able to obtain a relationship between sn(T ) with sn(T ∗) for certain

s-numbers. Using a certain characterization of compactness together with the Prin-

ciple of Local Reflexivity, we give a different simpler proof of Hutton’s theorem. In

chapter 3, by considering operators which are not compact but compact with respect

to certain approximation schemes Q, which we call Q-compact, we proved Hutton’s

Theorem for Q-compact operator T and symmetrized approximation numbers, which

answers the question of comparing the degree of compactness for T and its adjoint T ∗

for non-compact T . Chapter 4 defines the K-functional via rearrangement-invariant

function spaces, studies its effect on interpolation spaces, applies interpolation the-

ory to some linear and non-linear partial differential equations, and also gives some

criteria for the boundedness of the norms of operators arising from PDEs in some

concrete Banach spaces. Under certain conditions regarding Bernstein and Jackson

inequalities, interpolation spaces can be realized as approximation spaces. Conse-

quently, the final chapter 5 defines approximation spaces for compact H-operators

using the sequences of their eigenvalues and establishes relations among these spaces

using interpolation theory, and presents an inclusion theorem and a representation

theorem.

1.1 Basic Notions

Let X and Y be Banach spaces and T : X → Y be an operator. We denote the closed

unit ball of X by BX = {x ∈ X : ||x|| 6 1} and L(X, Y ) denotes the normed vector

space of all bounded operators from X to Y and L(X) stands for L(X,X). We will

use K(X, Y ) for the collection of all compact operators from X to Y . It is also well
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known that K(X) is a two-sided ideal in L(X).

Definition 1.1. Let Y be a Banach space and F ⊂ Y . We say that F is relatively

compact if one of the two following equivalent properties holds:

(i) ∀ε > 0, there is a finite number N ∈ N∗ of points y1, · · · , yN ∈ Y such that

F ⊂
N⋃
i=1

B(yi, ε);

(ii) for any sequence (un)n∈N with values in F , there exists a subsequence (uφ(n))n∈N

which converges in Y .

We will be able to restate the following fundamental theorem on compactness as

an approximation result.

Theorem 1.2 (Arzelà-Ascoli). Let K be a compact metric space and let F be a

bounded subset of C(K) whereby C(K) we mean the space of continuous functions

over K with values in R or C. Assume that

∀ε > 0 ∃δ > 0 : d(x, y) < δ =⇒ |f(x)− f(y)| < ε ∀f ∈ F .

Then F is a relatively compact subset of C(K).

Definition 1.3. Let X be a normed vector space and Y be a Banach space. A linear

operator T : X → Y is compact if T (BX) is relatively compact in Y .

Compact operators are natural generalizations of finite rank operators, and thus,

dealing with compact operators provides us with the closest analogy to the usual the-

orems of finite-dimensional spaces. In particular, the spectral properties of compact

operators resemble those of square matrices.
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Proposition 1.4. (1) Every compact operator is bounded; however, the identity

operator on an infinite-dimensional space is bounded, but not compact.

(2) Every bounded linear operator with a finite-dimensional range is compact. If Y

is a Hilbert space, then any close map T : X → Y is a limit of a sequence of

finite rank operators.

(3) A theorem due to Schauder says that a bounded linear operator T : X → Y

between Banach spaces is compact if and only if its adjoint T ∗ : Y ∗ → X∗ is

compact.

We can use (1) and (3) in the preceding proposition to find a non-trivial example

of a bounded but not compact operator.

Example 1.5. Let S be a shift operator defined by: S : `2 → `2 : S(x0, x1, x2, · · · ) =

(0, x0, x1, x2, · · · ). Then the adjoint of the shift S is the backward shift given by

S∗(f0, f1, f3, · · · ) = (f1, f2, f3, · · · ). It follows that S∗S = I. By (3), S and S∗ must

be compact together or not. If they were compact together, their composition would

be compact, contradicting (1). Hence, the shift S is an example of a non-compact

operator.

Compact operators play a significant role in studying differential and integral equa-

tions.

Example 1.6. Let I = [0, 1] and suppose that k : I × I → C is continuous on I × I;

define (Kx)(s) =
∫ 1

0
k(s, t)x(t)dt for all s ∈ I and for all x in the Banach space C(I)

of all continuous complex-valued functions on I with the norm

‖x‖ = max{|x(s)| : s ∈ I}.
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Then K : C(I)→ C(I) is compact operator.

The standard proof shows that K(BC(I)) is bounded, closed, and equicontinu-

ous and invokes the Arzelà-Ascoli Theorem to conclude that K(BC(I)) is relatively

compact so that K is compact (cf. [17], p. 2).

Remark 1.7. The notions of relatively compact and compact coincide in a complete

metric space (for example, in a Banach space) because a set is totally bounded if and

only if its closure is compact.

In the setting where X and Y are Banach spaces, we have the following definition,

which is the motivation for introducing the dyadic entropy numbers.

Definition 1.8. T ∈ L(X, Y ) is compact if and only if for every ε > 0, there exists

elements y1, y2, · · · , yn ∈ Y such that

T (BX) ⊂
n⋃
k=1

{yk + εBY }.

The set of all compact operators, denoted by K(X, Y ), is an example of operator

ideals of Banach spaces defined below.

Definition 1.9. An operator ideal U := {U(X, Y ), where X and Y are Banach spaces }

is a subclass of L(X, Y ) such that its components U(X, Y ) := U ∩ L(X, Y ) satisfy

the following conditions:

(i) IK ∈ U , where K indicates a one-dimensional Banach space.

(ii) If S1, S2 ∈ U(X, Y ) then λ1S1 + λ2S2 ∈ U(X, Y ) for any scalars λ1, λ2.

(iii) If T ∈ L(X0, X), S ∈ U(X, Y ) and R ∈ L(Y, Y0), then RST ∈ U(X0, Y0).

7



1.2 Dyadic entropy numbers and compact opera-

tors

Looking for the smallest ε for which the image of the unit ball under T is covered in

the fashion of the preceding definition 1.8 has led to the following definition of entropy

numbers, which quantify the degree of compactness of an operator T ∈ L(X, Y ) (cf.

[12], pp. 7 - 12).

Definition 1.10. Let M be a bounded subset of X. Then for n ∈ N define the nth

entropy number of M as follows:

εn(M) = inf{ε > 0 : there exists q 6 n points x1, x2, · · · , xq in X such that M ⊂
q⋃
i=1

B(xi, ε)}

and the corresponding nth entropy number for T ∈ L(X, Y ):

εn(T ) := inf{ε > 0 : T (BX) ⊂
q⋃
j=1

(yj + εBY )}

for all ε > 0 and for some yj ∈ Y .

Definition 1.11. A bounded subset M ⊂ X is relatively compact if and only if

lim
n→∞

εn(M) = 0

and correspondingly, T ∈ L(X, Y ) is compact if and only if

lim
n→∞

εn(T ) = 0

This definition provides a concise way to write a shorter proof for the compactness

of a closed interval of real numbers.

Example 1.12. Let X = R. Then X is complete and so a relatively compact subset

of X is compact. Let M = [a, b]. Then εn([a, b]) = b−a
2n

. Thus εn([a, b]) → 0 as

n→∞. Hence, [a, b] is relatively compact and hence it is compact.
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The sequence {εn(M)} is monotonously decreasing, and the rate of decrease may

be regarded as a measure of the degree of pre-compactness of the set M .

Further properties of the entropy numbers εn(T ) (cf. [12], pp. 7 - 12):

1. εn(T ) > εn+1(T ) with ε1(T ) = ||T ||

2. εkn(T + S) 6 εk(T ) + εn(S) for T, S ∈ L(X, Y )

3. εkn(TS) 6 εk(T )εn(S) for T ∈ L(X, Y ) and S ∈ L(Z,W ).

Remark 1.13. The well-known fact that K(X) is a two-sided ideal in L(X) follows

from property (3) of entropy numbers. Indeed, if T or S is relatively compact, then

TS is relatively compact since

lim
n→∞

εn(TS) = 0

Definition 1.14. Let f(x) be defined on a compact set K. For arbitrary δ > 0, the

function

ω(f, δ) = sup
x,y∈K:d(x,y)6δ

|f(x)− f(y)|

is called the modulus of continuity of f on K.

Remark 1.15. i) An equicontinuous family, F , as required in the classical Arzelà-

Ascoli, can be seen as a set of functions sharing the same modulus of continuity.

For example, the M-Lipschitz functions all have ω(f, δ) 6 Mδ. The equiconti-

nuity condition is equivalent to

lim
δ→0+

sup
f∈F

ω(f, δ) = 0.

9



ii) The boundedness of the family of functions that also appears in the classical

Arzelà-Ascoli allows us to define the nth entropy number of that set.

From remark 1.14, we may now restate the classical Arzelà-Ascoli as an approxi-

mation theorem:

Theorem 1.16 (refined Arzelà-Ascoli). Let K be a compact metric space and let F

be a bounded subset of C(K). Then

lim
δ→0+

ω(f, δ) = 0 for all f ∈ F =⇒ lim
n→∞

εn(F) = 0.

As a corollary, we can characterize the compactness of the operator T : E → C(X)

in terms of its modulus of continuity defined as ω(T, δ) = sup||x||<1 ω(Tx, δ) and taking

F = T (BE) in the theorem.

Corollary 1.17 ([12], Prop. 5.5.1). An operator T : E → C(X) mapping an arbitrary

Banach space E into the space C(X) of continuous functions on a compact metric

space (X, d) is compact if and only if

lim
δ→0+

ω(T, δ) = 0.

Example 1.18. Consider the homogenous linear ordinary differential equation:

f ′ = f, where f ∈ C1([0, 1]).

Define T : C([0, 1]) → C([0, 1]) by Tf(x) =
∫ x

0
f(t)dt. Then u is a solution of the

differential equation if and only if u is a fixed point of T . It turns out that T is

compact. We will first show that T is bounded. Set k(x, t) = χ[0,x](t). We have:

||Tf ||2L2 = 〈Tf, Tf〉 =
∫ 1

0

[∫ 1

0
k(x, t)f(t)dt

]2

dx =
∫ 1

0

[∫ 1

0
|k(x, t)||f(t)|dt

]2

dx

10



6
∫ 1

0

[(∫ 1

0
|k(x, t)|2dt

) 1
2 ·
(∫ 1

0
|f(t)|2dt

) 1
2

]2

dx =
∫ 1

0

∫ 1

0
|k(x, t)|2dtdx · ||f ||2L2 =

1
2
||f ||2L2 .

We get ||Tf ||L2 6
√

1
2
||f ||L2 . Since T is linear, our calculation shows that T is

Lipschitz with Lipschitz constant M =
√

1
2
. It follows that ω(T, δ) 6

√
1
2
δ so that

limδ→0+ ω(T, δ) = 0. By Corollary 1.17, T must be compact.

1.3 Relatively p-compact sets

In 1955, Grothendieck [28] characterized the compact subsets of a Banach space as

those sets sitting inside the closed convex hull of a norm null sequence: A subset K

of a Banach space X is relatively compact if and only if there exists a sequence {xn}

with

lim
n→∞

||xn|| → 0 : K ⊂
{∑

n

αnxn :
∑
n

|αn| 6 1
}

It turned out that Grothendieck’s characterization holds for more general sequences

in `p for 1 6 p 6∞ as the following definition of relatively p-compact sets shows.

Definition 1.19. (1) A subset K of a Banach space X is called relatively p-

compact if there exists a sequence (xn) in X such that

K ⊂
{ ∞∑
n=1

αnxn :
∞∑
n=1

|αn|q 6 1
}
,

where 1
p

+ 1
q

= 1, and

∞∑
n=1

||xn||p <∞,

which makes sense for 1 < p <∞.

11



(2) In the case where p = 1, we replace the characterization with

K ⊂
{ ∞∑
n=1

αnxn : |αn| 6 1
}

and
∞∑
n=1

||xn|| <∞

(3) In the case where p =∞, we replace the characterization with

K ⊂
{ ∞∑
n=1

αnxn :
∞∑
n=1

|αn| 6 1
}

and

lim
n→∞

||xn|| = 0

Propositions 1.20 and 1.24 have known proofs, but we give new proofs using the

entropy numbers.

Proposition 1.20. [22], Ch.3, p.77

Suppose {TN} is a sequence of relatively compact operators in L(X, Y ). If TN →

T ∈ L(X, Y ), then T is relatively compact.

Here, we give a different proof from the usual ε
3

argument:

Proof. It suffices to show that

lim
n→∞

εn(T ) = 0.

Let δ > 0. Then by the hypothesis, there exists M such that ||T −TM || < δ
2
. We also

know that εn(TM) → 0 as n → ∞ implies that there exists K such that εn(TM) < δ
2

for all n > K. Take k = 1 in this inequality: εkn(T + S) 6 εk(T ) + εn(S) for

T, S ∈ L(X, Y ), we get

εn(T ) = εn(T−TM+TM) 6 ε1(T−TM)+εn(TM) = ||T−TM ||+εn(TM) <
δ

2
+εn(TM)

12



It follows that εn(T ) < δ for all n > K. Hence,

lim
n→∞

εn(T ) = 0, as it was promised .

The preceding proposition does not hold if we replace the notion of relatively

compact with compact unless we also demand that Y be complete. We give an

application of the proposition.

Example 1.21. Let I = [0, 1] and let 1 < p, q < ∞ , with p′ and q′ conjugate to p

and q, respectively. Suppose k(s, t) is in Lr(I × I), where r is the larger of p′ and

q. Then the linear operator K defined by (Kx)(t) =
∫ 1

0
k(s, t)x(s)ds is compact as a

map from Lp(I)→ Lq(I).

By the density of continuous functions with compact support in Lr, one extracts

a sequence of continuous functions {kn(s, t)} on I × I that converges to k(s, t) and

then the sequence (Knx)(t) =
∫ 1

0
kn(s, t)x(s)ds is a sequence of compact (relatively

compact) operators that converges to K and by the preceding proposition, K must

be relatively compact (hence compact since Lq(I) is complete) (cf. [22], p. 79).

Proposition 1.22. [ [22], Ch.3, p. 82]

A bounded linear operator is relatively compact if its conjugate is compact.

Remark 1.23. If the conjugate of a bounded linear operator is compact, it does not

necessarily follow that the operator is compact (cf. [22], example III.1.7)

However, for Hilbert spaces, we provide new proof for the following result.

Proposition 1.24. Suppose X and Y are arbitrary Hilbert spaces. Then T ∈ L(X, Y )

is relatively compact if and only if its conjugate is compact.
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Proof. First observe that if H is a Hilbert space, we consider the isometry EH ∈

L(X,X ′) defined by EH(x) = x′, where x′z = 〈z, x〉, z ∈ H.

With this notation, the adjoint T ∗ of T may be defined as T ∗ = E−1
X T ′EY .

Now we have

εn(T ∗) 6 ε1(E−1
X )εn(T ′)ε1(EY ) = ||E−1

X ||εn(T ′)||EY || = εn(T ′).

Thus, if the conjugate T ′ is compact, then T ∗ is relatively compact and hence also

compact since the underlying spaces are complete, and by Schauder’s Theorem, it

follows that T is compact.

Conversely, T ′ = EXT
∗E−1

Y . Now, if T is relatively compact and hence compact

as the underlying spaces are complete, then by Schauder’s Theorem T ∗ is compact,

and by applying the multiplicativity of the entropy numbers, it follows that T ′ is

relatively compact and hence compact.

1.4 Factorization of compact operators

The range of an operator T ∈ L(X, Y ) denoted R(T ) is a linear subspace of Y which

is not necessarily closed. Let Y0 = R(T ) and consider the operator induced by T,

T0 ∈ L(X, Y0), which is given by T0x = Tx for x ∈ X and the natural embedding

IY0 ∈ L(Y0, Y ). Then we get a canonical factorization T = IY0T0

X Y0

Y

T0

T
IY0

Remark 1.25.

i Question: Under what conditions on X, Y, T can we have R(T ) ∈ {c0, `p}?

14



ii If IY0 or T0 is compact, then T would be compact.

iii A Banach space X is compactly embedded in Y if X ⊂ Y and the inclusion

i : X → Y is compact. So in particular, since Y0 = R(T ) ⊂ Y . If IY0 is compact,

then we have compact embedding.

Analogously, the kerT of an operator T ∈ L(X, Y ) is a closed linear subspace of

X. We can factor T through the quotient space X/ kerT . Consider the operator

QkerT ∈ L(X,X/ kerT ) defined as QkerT (x) = x+ kerT and the T0 ∈ L(X/ kerT, Y )

defined by T0(x+ kerT ) = Tx. Then we get a canonical factorization T = T0QkerT

X X/ kerT

Y

QkerT

T
T0

In the 1970s, Terzioğlu [58] gave a factorization of compact maps through a closed

subspace of c0.

Theorem 1.26 ([58]). Let T ∈ L(X, Y ) be a bounded linear operator between Banach

spaces X and Y . Then the following are equivalent:

1. T ∈ K(X, Y ),

2. There exists a norm-null sequence (x∗n) in X∗ such that

||Tx|| 6 sup
n
|〈x, x∗n〉| ∀x ∈ X,

3. For some closed subspace Z of c0 there are compact operators P ∈ K(X,Z) and

Q ∈ K(Z, Y ) such that T = Q ◦ P .

The following characterization of compact operators due to Pietsch, which ap-

peared in 1965, is closely connected with the definition of the so-called Gelfand num-

bers.
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Theorem 1.27 ([12], Prop. 2.3.1). An operator T ∈ L(X, Y ) between arbitrary

Banach spaces X and Y is compact if and only if for ε > 0 there are finitely many

functionals ai ∈ X∗, 1 6 i 6 nε, such that

||Tx|| 6 sup
16i6nε

|〈x, ai〉|+ ε||x|| for all x ∈ X.

Definition 1.28. The nth Gelfand number cn(T ) is defined as:

cn(T ) = inf{ε > 0 : ||Tx|| 6 sup
16i6k

|〈x, ai〉|+ε||x||,where ai ∈ X
′
, 1 6 i 6 k with k < n}

By Theorem 1.27 an operator T is compact if and only if cn(T )→ 0 as n→∞.

Analogous results to Terzioğlu’s theorem have been obtained, which factor a com-

pact operator through `p spaces, (1 6 p < ∞) using p-compact operators. These

operators and their properties as well as injective hulls of p-compact operators are

also studied in [19] and [20], [1] studied Q-compact operators which are a generaliza-

tion of compact operators, in particular, they are compact with respect to a given

approximation scheme Q on Y .

16



Chapter 2

Schauder’s theorem and s-numbers

This chapter investigates an extension of Schauder’s theorem by studying the rela-

tionship between various s-numbers of an operator T and its adjoint T ∗. There are

two main results. First, we present new proof that the approximation number of T

and T ∗ are equal for compact operators. Second, for non-compact, bounded linear

operators from X to Y, we obtain a relationship between certain s-numbers of T and

T ∗ under natural conditions on X and Y .

Recall that L(X, Y ) denotes the normed vector space of all continuous operators

from X to Y , X∗ is the dual space of X, and K(X, Y ) denotes the collection of all

compact operators from X to Y . Denote by T ∗ ∈ L(Y ∗, X∗) the adjoint operator of

T ∈ L(X, Y ). The well known theorem of Schauder states that T ∈ K(X, Y ) ⇐⇒

T ∗ ∈ K(Y ∗, X∗). The proof of Schauder’s theorem that uses Arzelà-Ascoli Theorem

is presented in most textbooks on functional analysis (see, e.g. [54]). A new and

simple proof, which does not depend on Arzelà-Ascoli can be found in [53].

Define rank-1 operator a⊗ y ∈ L(X, Y ) as (a⊗ y)(x) := a(x)y where

a ∈ X∗, y ∈ Y.

An operator T ∈ L(X, Y ) has finite rank if rank(T ) := dim{Tx : x ∈ X} is

finite.
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Such an operator can be represented by

T =
n∑
k=1

ak ⊗ yk with a1, . . . , an ∈ X∗ and y1, . . . , yn ∈ Y.

For two arbitrary normed spaces X and Y , let

Fn(X, Y ) := {A ∈ L(X, Y ) : rank(A) 6 n− 1},

and define the collection of the finite-rank operators as follows:

F := F(X, Y ) =
∞⋃
n=1

Fn(X, Y ),

which forms the smallest operator ideal.

The concept of s-numbers sn(T ) is introduced axiomatically in [47], and there are

several possibilities of assigning to every operator T : X → Y a certain sequence of

numbers {sn(T )} such that

s1(T ) > s2(T ) > · · · > 0

which characterizes its degree of approximability or compactness of T . The main ex-

amples of s-numbers are approximation numbers, Gelfand numbers, and Kolmogorov

numbers, which we define below.

Definition 2.1. The nth approximation number

an(T ) = inf{||T − A|| : A ∈ Fn(X, Y )}, n = 0, 1, . . .

αn(T ) provides a measure of how well T can be approximated by finite mappings

whose range is at most n-dimensional. Approximation numbers of an operator have

the following properties [47]:
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1. a0(T ) = ||T ||

2. an(T ) > an+1(T ) for all n

3. an(S + T ) 6 ak(S) + aj(T ) where k + j = n

4. an(λT ) = |λ|an(T ) for all n and scalars λ

5. |an(S)− an(T )| 6 ||S − T || for all n

Definition 2.2. We say that T ∈ L(X, Y ) is of type lp where 0 < p < ∞ if

(an(T )) ∈ `p or (an(T )) ∈ c0 in case p =∞. For 0 < p <∞ in case
∞∑
n

(an(T ))p <∞

and we denote such collection by `p(X, Y ), which is again a linear subspace of L(X, Y )

and it is the space of all linear operators of type `p.

s-numbers are used to define quasi-Banach operator ideals

L(ρ)
w := {T ∈ L(X, Y ) : (nρ−1/wsn(T )) ∈ `w}

and their properties and the relationship between s-numbers and the eigenvalue dis-

tribution are studied by many. See for example [47] and [45] and the references

therein.

2.1 Symmetric operator ideals

Definition 2.3. A class of operators A(X, Y ) ⊂ L(X, Y ) is called symmetric if T ∈

A(X, Y ) =⇒ T ∗ ∈ A(Y ∗, X∗). To be able to compare the degree of non-compactness

of T ∈ A(X, Y ) with that of T ∗ ∈ A(Y ∗, X∗) requires A to be a symmetric operator

ideal.
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The class K(X, Y ) of compact operators between arbitrary Banach spaces X and

Y is an example of a symmetric ideal of operators in L(X, Y ).

Using the Principle of Local Reflexivity, Hutton ([31] , Theorem 2.1) proved that

T ∈ K(X, Y ) implies that an(T ) = an(T ∗) for all n. However for non-compact

operators an(T ) 6= an(T ∗) as shown in the following example:

Example 2.4. [31] Consider T = I : `1 → c0 canonical injection and T ∗ : `1 → `∞

natural injection. Then, one has an(T ) = 1 for each n and an(T ∗) = 1
2
.

For non-compact operator T ∈ L(X, Y ), we do not have a lot of information about

the relationship between sn(T ) with sn(T ∗), however by imposing certain natural

conditions on X and Y we were able to obtain a relationship between sn(T ) with

sn(T ∗) for certain s-numbers.

The following theorem follows as a consequence of Hutton’s above-mentioned the-

orem.

Theorem 2.5. The operator ideal F is symmetric.

Pietsch has shown that the space of finite-rank linear operators is a dense subset

of the space of all linear operators of type `p between Banach spaces (see, [49], Prop.

8.2.5). This can be used to prove that every operator of type `p is relatively compact

(see, [49], Prop. 8.2.6) and hence compact since the notions coincide for Banach

spaces.

As a corollary, we have:

Corollary 2.6. If T ∈ F(X, Y ) = `p(X, Y ), then an(T ) = an(T ∗) for all n.
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The corollary implies that for 0 < p 6 ∞, T ∈ `p(X, Y ) ⇐⇒ T ∗ ∈ `p(Y ∗, X∗),

which shows that `p(X, Y ) is an example of a symmetric ideal of operators in L(X, Y ).

2.2 Hutton’s Theorem Revisited

In this section, we re-state a version of Hutton’s theorem and give a different proof

that uses the fundamental theorems of functional analysis and the Principle of Local

Reflexivity. Lindenstrass and Rosenthal [37] discovered a principle that shows that

all Banach spaces are “locally reflexive” or, said in another way every bidual X∗∗ is

finitely representable in the original space X. The following is a stronger version of

this property called Principle of Local Reflexivity (PLR) due to Johson, Rosental,

and Zippin [32]:

Definition 2.7. Let X be a Banach space regarded as a subspace of X∗∗, let E and

F be finite dimensional subspaces of X∗∗ and X∗ respectively and let ε > 0. Then

there exist a one-to-one operator T : E → X such that

1. T (x) = x for all x ∈ X ∩ E

2. f(Te) = e(f) for all e ∈ E and f ∈ F

3. ||T ||||T−1|| < 1 + ε.

PLR is an effective tool in Banach space theory. More recently, Oja and Silja in

[42] investigated versions of the principle of local reflexivity for nets of subspaces of

a Banach space and gave some applications to some duality and lifting theorems.

Next, we define Kolmogorov diameter of T ∈ L(X) and observe an alternate way of

characterizing compact operators using the Kolmogorov diameter of T .
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Definition 2.8 ([12], Prop. 2.2.2). The nth -Kolmogorov diameter of T ∈ L(X) is

defined by

δn(T ) = inf{||QGT || : dimG 6 n}

where the infimum is over all subspaces G ⊂ X and QG denotes the canonical quotient

map QG : X → X/G.

Lemma 2.9 (Lemma 1 in [53]). Let X be a Banach space and let T ∈ L(X). Then

T ∈ K(X) if and only if, for each ε > 0, there is a finite-dimensional subspace Fε of

X such that ||QFεT || < ε, where QFε : X → X/Fε.

In the following, we restate Hutton’s theorem and give a different proof that uses

the basic theorems of functional analysis, together with PLR.

Theorem 2.10. Let T ∈ K(X). Then an(T ) = an(T ∗).

Proof. Since one always has an(T ∗) 6 an(T ), if we have an(T ) 6 an(T ∗∗), then

an(T ∗∗) 6 an(T ∗) would imply an(T ) 6 an(T ∗). Thus we must verify an(T ) 6

an(T ∗∗). To this end, suppose T ∈ K(X), by Schauder’s theorem, T ∗ and T ∗∗ are

compact. Let ε > 0, then by definition, there exists A ∈ Fn(X∗∗) such that ||T ∗∗ −

A|| < an(T ∗∗) + ε.

By Lemma 3.3, there are finite-dimensional subspaces Eε of X∗∗ and Fε of X∗

such that ||QEεT
∗∗|| < ε, where QEε : X∗∗ → X∗∗/Eε and ||QFεT

∗|| < ε, where

QFε : X∗ → X∗/Fε.

By the Principle of Local Reflexivity (PLR), there exists a one-to-one linear op-

erator S : Eε → X such that ||S||||S−1|| < 1 + ε, y∗(Sx∗∗) = x∗∗(y∗) for all x∗∗ ∈ Eε

and all y∗ ∈ Fε, and S|Eε∩X = I.
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Let J : X → X∗∗ be the canonical map. By the Hahn-Banach theorem, since Eε

is a subspace of X∗∗, S : Eε → X can be extended to a linear operator S : X∗∗ → X.

We now have T ∈ L(X) and SAJ ∈ L(X) and rank (SAJ) = rank(A) < n, and

therefore

an(T ) 6 ||T − SAJ ||.

To get an upper bound for ||T − SAJ || we estimate ||Tx − SAJ(x)|| for x ∈ BX

using an appropriate element zj of the covering of the set T (BX).

Indeed, the compactness of T implies that T (BX) is relatively compact so that

one can extract a finite-dimensional subset Yε ⊂ T (BX) ⊂ X and let zj = Txj be the

n elements forming a basis.

Let x ∈ BX . Then we have

an(T ) 6 |Tx− SAJ(x)|| 6 ||Tx− zj||+ ||zj − SAJ(x)||

6 ε+||zj−SAJ(x)|| = ε+||Szj−SAJ(x)|| 6 ε+(1+ε)||zj−AJ(x)|| < ε+(1+ε)(an(T ∗)+ε),

since

||zj−AJ(x)|| = ||Jzj−AJ(x)|| 6 ||Jzj−JTx||+ ||JTx−AJ(x)|| 6 ε+ ||JTx−AJx||

= ε+ ||T ∗∗Jx− AJx|| 6 ||T ∗∗ − A|| < αn(T ∗) + ε.

It follows that an(T ) 6 an(T ∗∗), as promised.

Remark 2.11. Since a nuclear operator is compact for which a trace may be defined

(nuclear operators on Hilbert spaces are called trace-class operators), it is natural to
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ask how nuclearity of T and T ∗ are related. Recall that if T ∈ L(X, Y ) is a nuclear

operator with the nuclear representation of T =
∞∑
n=1

φn ⊗ yn then its adjoint defined

as T ∗(ψ) =
∞∑
n=1

ψ(yn)φn and its nuclear norm defined as :

||T ||N = inf

{
∞∑
n=1

||φn||||yn|| : T (x) =
∞∑
n=1

φn(x)yn

}

where the infimum is taken over all representations of T of the form T (x) =
∞∑
n=1

φn(x)yn

and (φn) and (yn) are bounded sequences inX∗ and Y respectively satisfying
∞∑
n=1

||φn||||yn|| <

∞. It is known that in case X∗ has the approximation property and if the operator

T ∈ L(X, Y ) has a nuclear adjoint, then T is nuclear as well and ||T ||N = ||T ∗||N

(see Proposition 4.10 in [55]).

2.3 Comparing various approximation quantities

Recall the definition of the nth entropy number for T ∈ L(X, Y ):

en(T ) := inf{ε > 0 : T (BX) ⊂
n⋃
j=1

B(yj, ε)}

for all ε > 0 and for some yj ∈ Y . A variant of the nth entropy number is defined as

follows (known as the Kuratowski measure of non-compactness):

γ(T ) := inf{ε > 0 : T (BX) ⊂
n⋃
k=1

Ak, diam (Ak) < ε}.

Remark 2.12. a) Since the diameter of B(yj, ε) is at most 2ε, it follows that

γ(T ) 6 en(T ) 6 2γ(T ).

b) While γ is invariant under isometry, en is not.

It is possible to compare various s-numbers such as an(T ), δn(T ), cn(T ) if one im-

poses some mild restrictions on X and Y .
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Definition 2.13. We say that a Banach space X has the lifting property if for every

T ∈ L(X, Y/F ) and every ε > 0 there exists an operator S ∈ L(X, Y ) such that

||S|| 6 (1 + ε)||T || and T = QFS, where F is a closed subspace of the Banach space

Y and QF : Y → Y/F denotes the canonical projection.

Definition 2.14. A Banach space Y is said to have the extension property if for

each T ∈ L(M,Y ) there exists an operator S ∈ L(X, Y ) such that T = SJM and

||T || = ||S||, where M is a closed subspace of an arbitrary Banach space X and

JM : M → Y the canonical injection.

Next, we need to consider two universally important Banach spaces.

The Banach space `1(Γ) of summable number families {λγ}γ∈Γ over an arbitrary

index set Γ, whose elements {λγ∈Γ} are characterized by
∑

γ∈Γ |λγ| < ∞, has the

metric lifting property.

If T is any map from a Banach space with metric lifting property to an arbitrary

Banach space, then an(T ) = δn(T ) (cf. [12], Prop. 2.2.3). It is known that every

Banach space X appears as a quotient space of an appropriate space `1(Γ) (for proof

of this, see [12], p. 52).

The Banach space `∞(Γ) of bounded number families {λγ}γ∈Γ over an arbitrary

index set Γ has the metric extension property.

If T is any map from an arbitrary Banach space into a Banach space with metric

extension property, then an(T ) = cn(T ) (cf. [12], Prop. 2.3.3). It is known that every

Banach space Y can be regarded as a subspace of an appropriate space `∞(Γ) (for

proof of this, see [12], p. 60).

Remark 2.15. If T ∈ L(X, Y ), where X and Y are arbitrary Banach spaces with
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metric lifting and extension property, respectively, then δn(T ) = an(T ) = cn(T ). It is

also known that if T ∈ L(X, Y ), where X and Y are arbitrary Banach spaces, then

δn(T ∗) = cn(T ) (cf. [12], Prop. 2.5.5). Hence, δn(T ∗) = cn(T ) = an(T ) = δn(T ),

which we summarize as a theorem below.

Theorem 2.16. If T ∈ L(X, Y ), where X and Y are arbitrary Banach spaces with

metric lifting and extension property, respectively, then δn(T ∗) = δn(T ) for all n.

Definition 2.17. Let A be an operator ideal, X a Banach space, and D ⊂ X

bounded. Then γA, the A - variation, is defined by

γA(D) := inf{ε > 0 : D ⊂ T (BY ) + εBX , T ∈ A(X, Y )}.

As usual, γA(T ) = γA(T (BX)) and set ||T ||A = inf{||T − S|| : S ∈ A(X, Y )}.

Theorem 2.18 ([5], Theorem 5.3). Suppose A is a symmetric operator ideal and

T ∈ L(X, Y ). If Y has the extension property and X has the lifting property, then

γA(T ∗) = ||T ∗||A = ||T ||A = γA(T ).

This theorem holds true for the ideals of `p type, compact, and nuclear operators

since they are all symmetric ideals of operators.

Remark 2.19. In a particular case where A = K, Astala in [5] proved that if T ∈

L(X, Y ), where X and Y are arbitrary Banach spaces with metric lifting and extension

property, respectively, then γ(T ) = γ(T ∗), where γ(T ) denotes the measure of non-

compactness of T . In [1], it is shown that limn→∞ δn(T ) = γ(T ). This relationship

between Kolmogorov diameters and the measure of non-compactness together with

theorem 2.16 provide an alternative proof for theorem 2.18
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If T ∈ K(X, Y ), then it is known that δn(T ) = cn(T ∗) (cf. [12], Prop. 2.5.6). If

X and Y are Banach spaces with metric lifting and extension property, respectively,

then we have δn(T ) = an(T ) = cn(T ). Thus, we have the following theorem.

Theorem 2.20. If T ∈ K(X, Y ), where X and Y are arbitrary Banach spaces with

metric lifting and extension property, respectively, then cn(T ∗) = cn(T ) for all n.

Remark 2.21 ([30]). It is known that if X has the lifting property, then X∗ has the

extension property. However, if Y has the extension property, then Y ∗ has the lifting

property if and only if Y is finite-dimensional.

Remark 2.22. If X has the lifting property and Y is finite-dimensional with the

extension property, then by remark 2.20, Y ∗ has the lifting property and X∗ has the

extension property, so that we have δn(T ∗) = an(T ∗) = cn(T ∗).

For our needs in the next chapter, we choose the closed unit ball BZ of the Banach

space Z as an index set Γ. Our proof of Schauder’s theorem for Q-compact operators

in the next section will depend on the fact that `1(BZ) has the lifting property and

`∞(BZ) has the extension property.
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Chapter 3

Approximation schemes and
Q-compact operators

In this chapter, we consider operators which are not compact but compact with

respect to certain approximation schemes, we call such operators Q-compact and

prove a version of Schauder’s theorem for Q-compact operators. In the case of non-

compact operators, this answers the question of comparing the degree of compactness

for T and its adjoint T ∗.

Approximation schemes were introduced in Banach space theory by Butzer and

Scherer in 1968 [11] and independently by Y. Brudnyi and N. Kruglyak under the

name of “approximation families” in 1978 [9]. They were popularized by Pietsch in

his 1981 paper [48], for later developments we refer the reader to [1, 2, 4].

The following theorem may be viewed as a motivation for the definition of the

Kolmogorov diameters.

Definition 3.1 (Generalized Approximation Scheme). Let X be a Banach space.

For each n ∈ N, let Qn = Qn(X) be a family of subsets of X satisfying the following

conditions:

(GA1) {0} = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn ⊂ . . . .
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(GA2) λQn ⊂ Qn for all n ∈ N and all scalars λ.

(GA3) Qn +Qm ⊆ Qn+m for every n,m ∈ N .

Then Q(X) = (Qn(X))n∈N is called a generalized approximation scheme on X. We

shall simply use Qn to denote Qn(X) if the context is clear.

We use here the term “generalized” because the elements of Qn may be subsets of

X. Let us now give a few important examples of generalized approximation schemes.

Example 3.2.

1. Qn = the set of all at-most-n-dimensional subspaces of any given Banach space

X.

2. Let E be a Banach space and X = L(E); let Qn = Nn(E), where Nn(E) = the

set of all n-nuclear maps on E. [47]

3. Let ak = (an)1+ 1
k , where (an) is a nuclear exponent sequence. Then Qn on

X = L(E) can be defined as the set of all Λ∞(ak)-nuclear maps on E.[16]

Definition 3.3 (Generalized Kolmogorov Number). Let BX be the closed unit ball

of X, Q(X) = (Qn(X))n∈N be a generalized approximation scheme on X, and D be

a bounded subset of X. Then the nth generalized Kolmogorov number δn(D;Q) of D

with respect to BX is defined by

δn(D;Q) = inf{r > 0 : D ⊂ rBX + A for some A ∈ Qn(X)}. (3.1)

Assume that Y is a Banach space and T ∈ L(Y,X). The nth Kolmogorov number

δn(T ;Q) of T is defined as δn(T (BY );Q).
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It follows that δn(T ;Q) forms a non-increasing sequence of non-negative numbers:

‖T‖ = δ0(T ;Q) > δ1(T ;Q) > · · · > δn(T ;Q) > 0. (3.2)

We are now able to introduce Q-compact sets and operators:

3.1 Q-compact sets and maps

Definition 3.4 (Q-compact set). Let D be a bounded subset of X. We say that D

is Q-compact if lim
n
δn(D;Q) = 0.

Definition 3.5 (Q-Compact map). We say that T ∈ L(Y,X) is a Q-compact map if

lim
n
δn(T ;Q) = 0, i.e., T (BY ) is a Q-compact set.

There are examples of Q-compact maps that are not compact, first, such map

involves projections P : Lp[0, 1]→ Rp where Rp denotes the closure of the span of the

space of Rademacher functions (see [3] for details ), another example is the weighted

backward shift operator Bw on c0(N) with w = {wn} not converging to 0 is Q-compact

but not compact.

Definition 3.6. The nth symmetrized approximation number τn(T ) for operator T

between arbitrary Banach spaces X and Y is defined as follows:

τn(T ) = δn(JY T ),

where JY : Y → `∞(BY ∗) is an embedding map

Remark 3.7. Definition 3.6 is equivalent to

τn(T ) = an(JY TQX)

30



as well as to

τn(T ) = cn(TQX),

where QX : `1(BX)→ X.

Proposition 3.8 (Refined version of Schauder’s theorem [12], p. 84). An operator

T between arbitrary Banach spaces X and Y is compact if and only if

lim
n→∞

τn(T ) = 0

and moreover,

τn(T ) = τn(T ∗).

Motivated by this, we define Q-compact using the symmetrized approximation

numbers.

3.2 Schauder’s type theorem for Q-compact maps

Definition 3.9. We say T is Q- symmetric compact if and only if

lim
n→∞

τn(T,Q) = 0.

Remark 3.10 ([12], Prop. 2.5.4-6).

a) From remark 3.7, we have τn(T,Q) = cn(TQX , Q), where QX : `1(BX)→ X.

b) We will also abbreviate the canonical embeddingK`1(BY ∗ ) : `1(BY ∗)→ `∞(BY ∗)
∗

by K so that QY ∗ = J∗YK.

c) Denote by P0 : `∞(BX∗∗)→ `∞(BX) the operator which restricts any bounded

function on BX∗∗ to the subset KX(BX) ⊂ BX∗∗ so that Q∗X = P0JX∗ .
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d) The relations (b) and (c) are crucial facts for the estimates of δn(T ∗, Q∗) and

cn(T ∗, Q∗). In particular, we have cn(T ∗, Q∗) 6 δn(T,Q).

We now state and prove (adopting similar proof due to Pietsch and reproduced in

[12], Prop. 2.6) the following.

Theorem 3.11 ( Schauder’s theorem for Q-compact operators). An operator T be-

tween arbitrary Banach spaces X and Y is Q- symmetric compact if and only if

lim
n→∞

τn(T,Q) = 0

and moreover,

τn(T ∗, Q∗) = τn(T,Q),

that is to say the degree of Q-compactness of T and T ∗ is the same in so far as it is

measured by the symmetrized approximation numbers τn.

Proof. The first part is the definition. So it suffices to show τn(T ∗, Q∗) = τn(T,Q).

By Remark 3.10 (a) and (b) we have the following estimates:

τn(T ∗, Q∗) = cn(T ∗QY ∗ , Q
∗) = cn(T ∗J∗YK,Q

∗) 6 cn((JY T )∗, Q∗) 6 δn(JY T,Q) = τn(T,Q)

Conversely, we have by using Remark 3.10 (c) and (d):

τn(T,Q) = cn(TQX , Q) = δn(TQX)∗, Q∗) = δn(Q∗XT
∗, Q∗)

= δn(P0JX∗T
∗, Q∗) 6 δn(JX∗T

∗, Q∗) = τn(T ∗, Q∗)
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Chapter 4

Applications of interpolation
techniques to PDEs

This chapter defines the K-functional via rearrangement-invariant function spaces,

studies its effect on interpolation spaces, applies interpolation theory to some lin-

ear and non-linear partial differential equations, and also gives some criteria for the

boundedness of the norms of operators arising from PDEs in some concrete Banach

spaces. Let (X,A, µ) be a σ-finite measure space: X denotes the underlying space,

A the σ-algebra of measurable sets, and µ the measure. Denote by M(X) the set of

µ-measurable complex-valued functions on X. If f ∈ M(Rn) and 1 6 p < ∞, we

define

Lp(Rn) = {f : Rn → C : ||f ||Lp(Rn) =

(∫
Rn
|f |pdµ

) 1
p

<∞}.

For 0 < p < 1, ||f ||p does not define a norm because it does not satisfy the triangle

inequality. We will restrict ourselves to the case 1 < p < ∞ because the duality

theory is easier when 1 < p < ∞. For example, If 1 < p < ∞, where q is the dual

exponent of p: 1
p

+ 1
q
, then Lq = (Lp)

∗. Also, many problems in Fourier Analysis

and partial differential equations concern the boundedness of operators on Lebesgue

spaces Lp and we have many operators that are only bounded in intermediate spaces
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Lp for 1 < p < ∞ and not for p = 1 or p = ∞. For example, consider the Hardy

operator H : Lp → Lp given by

Hf(x) =
1

x

∫ x

0

f(s)ds,

where f is an integrable function with non-negative values. In [29] it is shown that

||Hf ||Lp 6 p
p−1
||f ||Lp and that the constant is the best possible one. Therefore,

||H||Lp = p
p−1

, which shows that H is unbounded on L1.

Interpolation techniques are powerful tools in the study of the boundedness of

operators. Before we define K-functional, we need the concept of re-arrangement-

invariant function spaces.

4.1 Rearrangement-invariant function spaces

The sequence (bn) is said to be a re-arrangement of (an) if there exists a permutation

of N such that bn = aσ(n) for all n.

For example,

(bn) = 1,−1

2
,−1

4
,
1

3
,−1

6
,−1

8
,
1

5
,− 1

10
,− 1

12
, · · · ,

is a rearrangement of

an = 1,−1

2
,
1

3
,−1

4
,
1

5
,−1

6
,
1

7
,−1

8
,
1

9
,− 1

10
,− 1

11
,− 1

12
,

1

13
,− 1

14
, · · · ,

where

σ(k) =


4n for k = 3n

2(2n− 1) for k = 3n− 1

2n− 1 for k = 3n− 2

.

Note that
∞∑
n=1

an =
∞∑
n=1

(−1)n + 1

n
= log(2)
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It can be shown that
∞∑
n=1

bn =
1

2
log(2).

This scary situation does not happen for sequences with non-negative terms. In

fact, suppose that an > 0 for all n. Then, if (bn) is a rearrangement of (an), we have∑
bn =

∑
an.

In more general measure spaces, we say that non-negative functions f and g are re-

arrangements of one another if their distribution functions coincide. For each measur-

able function f , this notion enables the construction of a decreasing right-continuous

function f ∗ on (0,∞) called the decreasing rearrangement of f , which is analogous

to rearranging the terms of a non-negative sequence in decreasing order.

Definition 4.1. For each f ∈M(X), we define the distribution function µf : R+ →

R+ by

µf (t) = µ ({x ∈ X : |f(x)| > t}) .

Definition 4.2. For each f on X we define its decreasing rearrangement f ∗ by

f ∗(s) = inf{t : µf (t) 6 s}, s > 0.

The function f ∗ is locally integrable if and only if f ∈ L1(X)+L∞(X). The action

of the Hardy operator on f ∗ is usually denoted by

f ∗∗(t) =
1

t

∫ t

0

f ∗(s)ds, t > 0.

Let (X,µ) be a measure space. Lp,q(X) denotes the space of measurable functions

f which satisfy

||f ||Lp,q =

(
q

p

∫
(0,∞)

[t
1
pf ∗(t)]q

) 1
q

<∞
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when 1 6 p <∞, 1 6 q <∞, and

||f ||Lp,∞ = sup
t>0

t
1
pf ∗(t) <∞

when 1 6 p 6∞. When p = q,

||f ||Lp,p = ||f ∗||p = ||f ||p

and we recover Lp.

In general, however, ||.||Lp,q is not a norm since the triangle inequality only holds

when 1 6 q 6 p < ∞ or p = q = ∞. But when 1 < p 6 ∞ and 1 6 q 6 ∞, if

we replace f ∗ in the definition of ||f ||Lp,q with f ∗∗, then we get a quantity which is

equivalent to ||f ||Lp,q and which defines a norm. The reason the triangle inequality

does not fail when we use f ∗∗ is that f ∗∗ is sub-additive.

Example 4.3. Take X = [0, 2π] and consider f : X → R given by f(x) = sinx.

Then the distribution of f is given by

µf (t) = 2π − 4 arcsin t, t ∈ [0, 1]

Also, the decreasing rearrangement of f is given by

f ∗(t) = cos
t

4

We have

f ∗∗(t) =
1

t

∫ t

0

f ∗(s)ds =
sin t

4

4t
.

In measure theory, to prove a fact about a measurable function one tries it on

much simpler functions and then invokes the standard limit theorems. Measurable

functions can be approximated by simple functions. More precisely, for 1 6 p < ∞,
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the set of simple functions f(x) =
∑n

j=1 ajχEj(x), where µ(Ej) <∞ for all j, is dense

in Lp.

Example 4.4. In this example, we compute the distribution function and the de-

creasing rearrangement function of a nonnegative simple function f .

Let

f(x) =
n∑
j=1

ajχEj(x)

be such that Ej are pairwise disjoint and all ai distinct and such that a1 > a2 >

· · · > an > 0. Then for a1 6 t, we have µf (t) = 0, but for a2 6 t < a1 we have that

µf (t) = µ(E1). Similarly we find for a3 6 t < a2 that µf (t) = µ(E1) + µ(E2). Then

we have

µf (t) =
n∑
j=1

(
j∑
i=1

µ(Ei)

)
χ[aj+1,aj)(t) =

n∑
j=1

µ(Ej)χ[0,aj)(t)

where an+1 = 0.

Let mj =
∑j

i=1 µ(Ei). By definition we find f ∗(t) = 0 when t > mn, f ∗(t) = an

when mn > t > mn−1. We find

f ∗(t) =
n∑
j=1

ajχ[mj−1,mj)(t).

We have

f ∗∗(t) =
1

t

∫ t

0

f ∗(s)ds =
1

t

n∑
j=1

ajµ([0, t] ∩ [mj−1,mj)).

We are now ready to define rearrangement-invariant spaces.

Definition 4.5. A Banach function space F of measurable functions on X which

satisfies F ⊂ L1(X) +L∞(X) and contains characteristic functions of subsets of X of

finite measure is a rearrangement-invariant space if f ∈ F and there are C,D ∈ (0,∞)

such that C|f | 6 |g| 6 D|f | for g ∈M(X) implies that g ∈ F and that ||g||F = ||f ||F .
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Basic examples of rearrangement-invariant spaces are L1 ∩ L∞ and L1 + L∞.

For θ > 0, 0 < p 6∞, and w(t), a non-negative monotone function on R+, here is

a functional Φ which generates useful norms and quasi-norms:

||w||θ,q := Φθ,q(w) :=

{(∫∞
0

[
t−θw(t)

]q dt
t

) 1
q , 0 < p <∞

ess sup06t<∞
(
t−θw(t)

)
, q =∞

(4.1)

If we take θ = 1 − 1
q
, w(t) =

∫ t
0
f ∗(s)ds = tf ∗∗(t), then the norm (1.1) gives

Calderon’s definition of the spaces Lp,q, which are also known as the Lorentz spaces,

and it becomes

||f ||Lp,q :=


(∫∞

0

[
t
1
pf ∗∗(t)

]q
dt
t

) 1
q

, 1 6 q <∞

ess supt>0

(
t
1
pf ∗∗(t)

)
, q =∞

(4.2)

The Lorentz spaces are examples of rearrangement-invariant spaces.

Now, we replace w(t) with a function we will call the K-functional and replace

L1(X) and L∞(X) with general Banach spaces X0 and X1, respectively, so that they

are continuously embedded into a topological vector space V so that X0 ∩ X1 and

X0 +X1 are defined. This motivates the following definition.

Definition 4.6. A pair X = (X0, X1) of Banach spaces is called a Banach couple

if X0 and X1 are both continuously embedded in some Hausdorff topological vector

space V .

4.2 Real interpolation spaces

Definition 4.7. An intermediate space between X0 and X1 is any normed space X

such that X0 ∩X1 ⊂ X ⊂ X0 +X1 (with continuous embedding).
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Example 4.8. If 0 < p < q < r 6∞, then X = Lq is an intermediate space between

X0 = Lr and X1 = Lp, that is, Lr ∩ Lp ⊂ Lq ⊂ Lr + Lp and ||f ||q 6 ||f ||λp ||f ||1−λr ,

where λ ∈ (0, 1) is defined by λ = q−1−r−1

p−1−r−1 .

Proof. Suppose f ∈ Lq and let E = {x : |f(x)| > 1}, g = fχE, and h = fχEc . Then

|g|p = |f |pχE 6 |f |qχE, so g ∈ Lp, and |h|r = |f |rχEc 6 |f |qχEc , so h ∈ Lr (For

r =∞, ||h||∞ 6 1). Hence, we have Lq ⊂ Lr + Lp.

On the other hand, if r = ∞ , we have |f |q 6 ||f ||q−p∞ |f |p and λ = p
q
, so ||f ||q 6

||f ||
p
q
p ||f ||

1− p
q

∞ = ||f ||λp ||f ||1−λ∞ .

If r <∞, we use Hölder’s inequality, taking the pair of conjugate exponents to be

p
λq

and r
(1−λ)q

, we have
∫
|f |q =

∫
|f |λq|f |(1−λ)q 6 ||f ||λqp

λq
||f ||(1−λ)q

r
(1−λ)q

=
[∫
|f |p
]λq
p
[∫
|f |r
] (1−λ)q

r = ||f ||λqp ||f ||
(1−λ)q
r . The result follows as it was promised.

Definition 4.9. An interpolation space between X0 and X1 is any intermediate space

X such that every linear mapping from X0 +X1 into itself which is continuous from

X0 into itself and from X1 into itself is automatically continuous from X into itself.

An interpolation space is said to be of exponent θ (0 < θ < 1) , if there exists a

constant C such that one has

||A||L(X) 6 C||A||1−θL(X0)||A||
θ
L(X1) for all A ∈ L(X0) ∩ L(X1).

Definition 4.10. Let Xi, i = 0, 1 be two normed spaces, continuously embedded into

a topological vector space V so that X0 ∩X1 and X0 +X1 are defined with X0 ∩X1

equipped with the norm

||f ||X0∩X1 = max{||f ||X0 , ||f ||X1}
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and X0 +X1 is equipped with the norm

||f ||X0+X1 = inf
f=f0+f1

(||f0||X0 + ||f1||X1).

Definition 4.11. For f ∈ X0 +X1 and t > 0 one defines

K(f, t) = inf
f=f0+f1

(||f0||X0 + t||f1||X1),

and for 0 < θ < 1 and 1 6 p 6 ∞ (or for θ = 0, 1 with p = ∞), one defines the real

interpolation space as follows:

(X0, X1)θ,p :=

{
f ∈ X0 +X1 : t−θK(f, t) ∈ Lp

(
[0,∞),

dt

t

)}

with the norm ||f ||(X0,X1)θ,p :=

{(∫∞
0

(
t−θK(f, t)

)p dt
t

) 1
p , 0 < p <∞

sup06t<∞ t
−θK(f, t), p =∞

K(f, t) is continuous and monotone decreasing in t, with K(f, t)→ 0 as t→ 0+.

Example 4.12 ([6], Theorem 5.2.1). Let X0 = L1(Rn) and X1 = L∞(Rn). Then

(X0, X1)θ,p = Lp(Rn), where θ = 1− 1
p
, and K(f, t) =

∫ t
0
f ∗(s)ds.

The preceding example shows that the Lp spaces are examples of interpolation

spaces.

Definition 4.13. A quasi-norm is a non-negative function ||.||X defined on a real or

complex linear space X for which the following conditions are satisfied:

(1) If ||f ||X = 0 for some f ∈ X, then f = 0.

(2) ||λf ||X = |λ|||f ||X for f ∈ X and all scalars λ.

(3) There exists a constant cX > 1 such that

||f + g||X 6 cX [||f ||X + ||g||X ]

for f, g ∈ X.
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One advantage of the real interpolation method is the fact that it generalizes to

any quasi-Banach space, a linear space X equipped with a quasi-norm ||.||X such that

every Cauchy sequence is convergent.

4.3 An Application of the interpolation theory to

the heat equation

We will need the convolution of two functions:

Definition 4.14. The convolution of two measurable functions f and g is defined as:

f ∗ g (x) =

∫
Rn
f(y)g(x− y)dy

In our application of interpolation theory to partial differential equations, we will

need the Riesz-Thorin theorem.

Theorem 4.15 (The Riesz-Thorin interpolation theorem, [6], Theorem 1.1.1). Let

(X,µ) and (Y, ν) be σ-finite measure spaces. Assume that p0 6= p1, and q0 6= q1 and

that

T : Lp0(X,µ)→ Lq0(Y, ν)

is a bounded linear map with norm M0, and that

T : Lp1(X,µ)→ Lq1(Y, ν)

is a bounded linear map with norm M1.

Then

T : Lpθ(X,µ)→ Lqθ(Y, ν)

is a bounded linear map with the norm M 6 M1−θ
0 M θ

1 provided that θ ∈ (0, 1) and

1
pθ

= 1−θ
p0

+ θ
p1
, 1
qθ

= 1−θ
q0

+ θ
q1

.
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As an application of the Riesz-Thorin interpolation theorem, we have Young’s

Inequality.

Theorem 4.16 (Young’s Inequality, [26], Example 1.3.6). If f ∈ Lp(Rn) and g ∈

Lq(Rn), p, q, r > 1, and 1 + 1
r

= 1
p

+ 1
q
, then f ∗ g ∈ Lr(Rn) and:

||f ∗ g||r 6 ||f ||p||g||q.

Next, we need the concept of a semigroup.

Consider a differential equation f ′(x) = af(x). If f is real-valued, then a solution

is the exponential function f(x) = eax. If f is matrix-valued, then a solution will be

given by a matrix exponential f(x) = eAx. If we want to go one step further (say

we take A to be a bounded or unbounded linear operator on some concrete Banach

space), we will need a semigroup of operators.

Definition 4.17. Let X be a Banach space, and for t > 0, the family {Tt ∈ L(X)}t>0

is said to be a strongly continuous semigroup, denoted C0, if it satisfies the following

conditions:

(i) T0 = Id

(ii) Tt+s = Tt ◦ Ts for all t, s > 0.

(iii) limt→t0 Ttf = Tt0f for all t0 > 0 and all f ∈ X.

A semigroup approach is a tool for solving initial boundary value problems. In par-

ticular, the boundedness of the norm of a semigroup of linear operators is important

in this respect and we appeal to interpolation theory to either show that the solution

makes sense in intermediate spaces or that the solution can be extended uniquely to

a much larger space.
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Example 4.18. Let X = Lp(R). Recall that the heat equation as given by{
ut = uxx, x ∈ R, t > 0

u(x, 0) = f(x)
(4.3)

Using Fourier Transform methods, the solution to (4.3) can be written as

u(x, t) = (4πt)−
1
2

∫
R
e−

(x−y)2
4t f(y)dy.

The heat kernel is given by Kt(s) = (4πt)−
1
2 e−

s2

4t , t > 0

We can write the solution using the convolution as u(x, t) = Kt ∗ f . It can be

shown that the solution to (4.3) is a continuous semigroup on X written as

Ttf(x) =

{
f(x), for t = 0

(Kt ∗ f)(x), for t > 0, x ∈ R, f ∈ X

Physically, the function Ttf(x) represents the temperature at position x and time

t in a homogeneous isotropic medium(one whose electromagnetic properties are the

same in all directions) R with the unit coefficient of thermal diffusivity, given that

the temperature at position x at time 0 is f(x).

Now, consider the linear operator Tt : Lp(R) → Lp(R) given by Ttf(x) = u(x, t),

then to what extent does the following inequality hold: ||Ttf ||p 6 Cp(t)||f ||p?

We examine the heat kernel Kt : R→ R, t > 0, given by Kt(s) = (4πt)−
1
2 e−

s2

4t .

Since
∫
R e
−a|s|2dx =

(
π
a

)1/2
, we can see that Kt ∈ L1(R) and ‖Kt‖L1(R) = 1.

Applying Young’s inequality to the convolution functional Ttf = Kt ∗ f , we get

‖Ttf‖Lp(R) 6 ‖Kt ∗ f‖Lp(R) 6 ‖Kt‖Lr(R)‖f‖Lq(R), (4.4)

where 1 + 1
p

= 1
r

+ 1
q
.

Now, we just have to estimate ‖Kt‖Lr(R). We have

‖Kt‖Lr(R) = (4πt)−1/2

(∫
R
e−

r
4t
|s|2ds

)1/r

= (4πt)−1/2

(
π
r
4t

)1/2r

= Crt
− 1

2(1− 1
r ) = Crt

− 1
2( 1

q
− 1
p).
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(4.5)

Combining (4.4) and (4.5), we get

‖Ttf‖Lp(R) 6 ‖Kt ∗ f‖Lp(R) 6 ‖Kt‖Lr(R)‖f‖Lq(R) 6 Crt
− 1

2( 1
q
− 1
p)‖f‖Lq . (4.6)

Now assume 1 6 p0, p1, q0, q1 6 ∞. For i ∈ {0, 1}, set α(i) = −1
2

(
1
qi
− 1

pi

)
and

1 + 1
pi

= 1
ri

+ 1
qi

.

Then (4.6) gives us

‖Ttf‖Lpi (R) 6 Crit
αi‖f‖Lqi (4.7)

Now set Xi = Lpi , Yi = Lqi . It is known that (X0, X1)θ,pθ = Lpθ and (Y0, Y1)θ,qθ =

Lqθ , where 1−θ
p0

+ θ
p1

= 1
pθ

and 1−θ
q0

+ θ
q1

= 1
qθ

.

By applying the Riesz-Thorin to (4.7), we have

‖Ttf‖Lpθ (R) 6 C1−θ
r0

Cθ
r1
tα0(1−θ)+α1θ‖f‖Lqθ (R). (4.8)

So we have applied the interpolation techniques to bound the norm of the semi-

group {Tt}t>0 associated with the heat equation.

What we have learned in this example can be generalized as a theorem.

4.4 Theorems on boundedness of linear operators

on concrete Banach Spaces

Theorem 4.19. Let {Tt}t>0 : Lp → Lq be a semigroup associated with a PDE, u(x, t)

a solution of the PDE, u(x, 0) = f(x), such that Ttf(x) = u(x, t) = Kt ∗ f , where Kt

is a kernel, and Kt ∈ Lp, f ∈ Lq. Then we can control the norm of the semigroup

{Tt}t>0 in all interpolation spaces.
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Proof. By the generalized Minkowski’s inequality applied to Young’s Inequality for

the case q = 1 and r = p, we have

||Kt ∗ f ||p 6 ||Kt||p||f ||1.

and, by Hölder’s inequality,

||Tf ||∞ 6 ||Kt||p||f || p
p−1

Thus,

T : L1 → Lp,

T : L p
p−1
→ L∞

are bounded, linear operators,

and therefore by the Riesz-Thorin interpolation theorem, we have

T : Lp → Lq

is a bounded linear map provided 1
p

= 1−θ
1

+ θ
p−1
p

, 1
q

= 1−θ
p

+ θ
∞ = 1−θ

p
.

If we take K(x, y) = Kt(x− y) in the following Theorem 4.20, then Theorem 4.19

is a special case.

Theorem 4.20 ( [18], Theorem 6.18). Let (X,M, µ) and (Y,N , ν) be σ-finite mea-

sure spaces, and let K be an (M⊗N )-measurable function on X × Y . Suppose that

there exists C > 0 such that
∫
|K(x, y)|dµ(x) 6 C for a.e. y ∈ Y and

∫
|K(x, y)|dν(y) 6

C for a.e. x ∈ X, and that 1 6 p 6∞. If f ∈ Lp(Y, ν), then the integral

Tf(x) =

∫
K(x, y)f(y)dν(y)

45



converges absolutely for a.e. x ∈ X, the function Tf thus defined is in Lp(X,µ), and

||Tf ||p 6 C||f ||p.

Using the real interpolation theory, we will now prove that theorem 4.20 holds

true in larger spaces called Lorentz spaces.

We need the following general interpolation theorem for quasi-Banach spaces,

which generalizes Riesz-Thorin theorem. For the definition of quasi-normed spaces,

the reader should see Definition 5.10 on page 58.

Theorem 4.21 ([6], Theorem 3.11.8). Let (X0, X1) and (Y0, Y1) be interpolation cou-

ples of quasi-normed spaces. Let T be defined on X0 + X1 such that T : Xi → Yi be

sub-linear with quasi-norm Mi(i = 0, 1). Then for any θ ∈ (0, 1) and q ∈ [1,∞] we

have

T : (X0, X1)θ,q → (Y0, Y1)θ,q

is sub-linear with quasi-norm M bounded by

M 6M1−θ
0 M θ

1 .

Now we are ready to state the general theorem about the boundedness of integral

operators: T : Lp,r → Lq,r : ||Tf ||Lq,r 6 C||f ||Lp,r on Lorentz spaces.

Theorem 4.22. Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces, and let K

be an (M⊗N )-measurable function on X ×Y . Suppose that there exists C > 0 such

that
∫
|K(x, y)|dµ(x) 6 C for a.e. y ∈ Y and

∫
|K(x, y)|dν(y) 6 C for a.e. x ∈ X.

Let 1 < q <∞ and 1 6 r 6∞. Then for 1 < p 6 q <∞, if f ∈ Lp,r(Y, ν), then the

integral

Tf(x) =

∫
K(x, y)f(y)dν(y)
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converges absolutely for a.e. x ∈ X, the function Tf thus defined is in Lq,r(X,µ),

and ||Tf ||Lq,r 6 C||f ||Lp,r .

Proof. Showing that the integral Tf(x) =
∫
K(x, y)f(y)dν(y) converges absolutely

for a.e. x ∈ X follows from Fubini’s theorem in a similar manner in which it is

shown in [18], Theorem 6.18. It only remains to show that Tf is in Lq,r(X,µ), and

||Tf ||Lq,r 6 C||f ||Lp,r .

For 1 < p < q there are numbers 1 < p1 < p < p2 < q, p < p2 6 q1 < q < q2 and

η ∈ (0, 1) such that 1
p

= 1−η
p1

+ η
p2

and 1
q

= 1−η
q1

+ η
q2

. To see that this is always satisfied,

we can take η = 2−1, p1 = (2q)−1p(p + q), p2 = 2−1(p + q), q2 = (2p)−1(q(p + q)).

Now take Xi = Lpi and Yi = Lqi . Then by real-interpolation method we have

(X0, X1)η,r = Lp,r and (Y0, Y1)η,r = Lq,r. Since ||Tf ||Lq 6 C||f ||Lp for 1 < p 6 q <∞,

the hypothesis of Theorem 4.21 are satisfied and we have, T : Lp,r → Lq,r is sub-linear

with

||Tf ||Lq,r 6M1−η
0 Mη

1 ||f ||Lp,r .

Now if we take p = q = r in Theorem 4.22, then we have Theorem 4.20.

4.5 Application of interpolation theory to a non-

linear Schrödinger equation

While the semigroup approach gives a unique solution in a certain Banach space

context, there may be other solutions (if one widens one’s notion of solution). For

example, it is well-known that another solution to the heat equation treated above is
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given by

v(x, t) = u(x, t) +
∞∑
k=0

g(k)x2k

(2k)!

where u is the semigroup solution given above and g(t) = e
−1

t2 (cf. [23], p. 7).

Since the heat equation is an example of a linear PDE, we will add a second appli-

cation of interpolation theory to a non-linear PDE called the Schrödinger equation.

This demonstrates that the theory is applicable to non-linear PDEs.

Before we state the problem and tools for solving it, we need to describe the

concrete Banach spaces suited for the problem. An n-tuple of nonnegative integers

α = (α1, α2, · · · , αn) is called a multi-index and we define

|α| =
n∑
i=1

αi

and

xα =
n∏
i=1

xαii for x ∈ Rn.

Denoting Dk = ∂
∂xk

and D = (D1, D2, · · · , Dn) we have Dα =
∏n

i=1D
αi
i .

Let Ω ⊂ Rn with a smooth boundary ∂Ω. Cm(Ω) denotes the set of all m-times

continuously differentiable real-valued functions in Ω. Cm
0 (Ω) denotes the subspace

of Cm(Ω) consisting of those functions with compact support in Ω. For u ∈ Cm(Ω)

and 1 6 p <∞, we define

||u||m,p =

∫
Ω

∑
|α|6m

|Dαu|pdx

 1
p

.

Denoting by C̃m
p (Ω) the subset of Cm(Ω) consisting of those functions u for which

||u||m,p <∞, we define Wm,p(Ω) to be the completion in the norm ||.||m,p, turning it

into a Banach space.
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For p = 2, we denote Wm,2(Ω) = Hm(Ω). In this case, for u, v ∈ Hm, we define

〈u, v〉m =
∫

Ω

∑
|α|6mD

αuDαvdx.

The spaces Wm,p(Ω) consist of functions u ∈ Lp(Ω) whose derivatives Dαu, in the

sense of distributions, of order k 6 m are in Lp(Ω).

We will need the following theorem.

Theorem 4.23 ([43], Theorem 10.8). A is the infinitesimal generator of a C0 group

of unitary operators on a Hilbert space H if and only if iA is self-adjoint.

Example 4.24. We consider the following non-linear Schrödinger equation in R2{
1
i
∂u
∂t
−∆u+ k|u|2u = 0, (t, x) in [0,∞]× R2

u(x, 0) = f(x) in R2
(4.9)

where u is complex-valued function and k is a real constant. The space in which

this problem will be considered is L2(R2). Defining the linear operator A0 by D(A0) =

H2(R2) and A0u = −i∆u for u ∈ D(A0), the initial value problem (4.9) can be

rewritten as{
du
dt

+ A0u+ F (u) = 0, for t > 0

u(0) = f
(4.10)

where F (u) = ik|u|2u.

Using the scalar product 〈u, v〉m =
∫

Ω

∑
|α|6mD

αuDαvdx, for m = 0, integration

by parts, and Fourier transforms method, we have the following lemma.

Lemma 4.25 ([43], Lemma 5.2). The operator iA0 is self-adjoint in L2(R2).

Since iA0 is self-adjoint, by Theorem 4.23, we know that −A0 is the infinitesimal

generator of a C0 group of unitary operators, Tt,−∞ < t < ∞, on L2(R2). An

application of the Fourier Transform gives the explicit formula for Tt:

Ttu(x) =
1

4πit

∫
R2

ei
|x−y|2

4t u(y)dy. (4.11)
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Theorem 4.26. Let {Tt}t>0 be the semigroup given by equation (4.11). If 2 6 p 6∞

and q−1 +p−1 = 1 then Tt can be extended in a unique way to an operator from Lq(R2)

into Lp(R2) and

||Ttu||0,p 6 (4πt)−( 2
q
−1)||u||0,q. (4.12)

Proof. Since Tt is a unitary operator on L2(R2), Tt : L2(R2) → L2(R2) is a bounded

linear operator with ||Ttu||0,2 = ||u||0,2 and norm M0 = 1. From equation (4.11),

Tt : L1(R2) → L∞(R2) is a bounded linear operator with ||Ttu||0,∞ 6 (4πt)−1||u||0,1

and norm M1 = (4πt)−1

Since 2 6 p 6 ∞ and q−1 + p−1 = 1, we have θ = 1 − 2
q
, and by the Riesz-

Thorin interpolation theorem, Tt : Lq(R2) → Lp(R2) is a bounded linear operator

with ||Ttu||0,p 6 (4πt)−( 2
q
−1)||u||0,q.
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Chapter 5

Compact H-Operators

This chapter defines and establishes relations among approximation spaces of certain

operators called H-operators, which generalize the notion of self-adjoint to Banach

spaces. The problem of creating interpolation spaces is at the core of interpolation

theory [6].That is, given a pair (X0, X1) of Banach (or quasi-Banach) spaces, called

a Banach couple, with X0 and X1 both continuously embedded in some Hausdorff

topological vector space, how can one construct and describe interpolation spaces

(X0, X1)θ,q for the pair (X0, X1), where θ and q are some parameters. Such spaces

(X0, X1)θ,q should have the interpolation property that a linear operator T , which

is bounded on Xi for i = 0, 1 is automatically bounded on (X0, X1)θ,q. A natural

question to ask is what properties of T as a linear operator on Xi still hold true when

T is viewed as a linear operator on (X0, X1)θ,q. The answer to this classical question

depends on the details of the method used to construct (X0, X1)θ,q. Two of the main

methods used are real and complex methods, but there are others. In [13], it is shown

using the real interpolation method that if T ∈ K(X0, Y0) and T ∈ L(X1, Y1), then

T ∈ K((X0, X1)θ,q, (Y0, Y1)θ,q). In this chapter, we construct and describe interpo-

lation spaces when T is a compact H-operator. Under certain conditions regarding

Bernstein and Jackson inequalities, interpolation spaces can be realized as approx-
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imation spaces, see [14], Theorem 9.1 on page 235. Thus, we are able to define

approximation spaces for compact H-operators using the sequences of their eigenval-

ues and establish relations among these spaces using interpolation theory. In section

5.1, we start with a motivational example leading to the definition of H-operators.

Section 5.2 discusses approximation spaces. Section 5.3 briefly presents interpolations

spaces and illustrates how approximation spaces can be realized as examples of in-

terpolation spaces under some conditions. Section 5.4 defines approximation spaces

for compact H-operators contrasts them with the general approximation spaces and

presents an inclusion theorem and a representation theorem. Section 5.5 points to a

connection with Bernstein’s Lethargy problem.

5.1 Defining H-Operators

A fundamental result about linear operators on Hilbert spaces is the spectral theorem,

which says that for a compact self-adjoint operator T acting on a separable Hilbert

space H, one can choose a system of orthonormal eigenvectors {vn}n>1 of T and

corresponding eigenvalues {λn}n>1 such that

Tv =
∞∑
n=1

λn〈v, vn〉vn, for all x ∈ H. (5.1)

The sequence {λn} is decreasing and, if it is infinite, converges to 0.

To investigate the spectral properties of an arbitrary T ∈ K(H), where H is a

Hilbert space, it is useful to study the eigenvalues of the compact positive self-adjoint

operator T ∗T associated with T . If

λ1(T ∗T ) > λ2(T ∗T ) > · · · > 0

denote the positive eigenvalues of T ∗T , where each eigenvalue is repeated as many
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times as the value of its multiplicity, then the singular values of T are defined to be

sn(T ) :=
√
λn(T ∗T ), n > 1.

Using the representation (5.1) for T ∗T one can prove the following Schmidt repre-

sentation for T

Tx =
∞∑
n=1

sn(T )〈ψn, x〉φn, x ∈ H, (5.2)

where {ψn}n>1 and {φn}n>1 are orthonormal systems in H (see [34] ).

It is known that the concept of H-operators is the generalization in a Banach space

of the concept of self-adjoint operators. We start with a motivation that will lead to

a concrete definition.

Definition 5.1. A norm ‖ · ‖ on the n × n matrices is called a unitarily invariant

norm if

‖UXV ‖ = ‖X‖

for all X and for all unitary matrices U and V .

Example 5.2. For di ∈ R, i = 1, 2, · · ·n, let’s consider

T =

d1

. . .

dn


We will examine the operator norm of the resolvent of T , (T −λI)−1, where λ ∈ C

is in the spectral set of T . First, note that

|dj−λ| = |dj−(a+bi)| =
√

(dj − a)2 + b2 >
√
b2 = |b| =⇒ |dj−λ|−1 6 |b|−1 = | Im λ|−1.

Therefore, we have

‖(T − λI)−1‖ = max{|d1 − λ|−1, · · · , |dn − λ|−1} 6 |Im(λ)|−1 (5.3)
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If T is self-adjoint, then one can choose an orthonormal basis such that there exists

a unitary matrix P and a diagonal matrix such that T = PDP−1.

Since the operator norm or any norm defined in terms of singular values is unitarily

invariant, we have the norm of T equal to the norm of D. So that it suffices to compute

the operator norm of a diagonal matrix with real diagonal entries as we have done

above.

Thus if T is a self-adjoint operator, which must have real eigenvalues, between

complex Banach spaces, then

‖(T − λI)−1‖ 6 |Im(λ)|−1 (5.4)

which motivates the following definition.

Definition 5.3. Let T ∈ L(X, Y ) be a linear operator between arbitrary complex

Banach spaces X and Y . Then T is an H-operator if and only if its spectrum is real

and its resolvent satisfies

||(T − λI)−1|| 6 C| Im λ|−1,

where Im λ 6= 0.

Here C is independent of the points of the resolvent. An operator in Hilbert space

is an H-operator with constant C = 1 if and only if it is a self-adjoint operator. In

[40], it is proved that closed operators with real eigenvalues are an example of H-

operators.

If T is a compact H-operator, then {λk(T )} denotes the sequence of eigenvalues

of T , and each eigenvalue is repeated according to its multiplicity. We also assume

that {λk(T )} is ordered by magnitude, so that |λ1(T )| > |λ2(T )| > · · · .
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In 1918, F. Riesz proved compact operators have at most countable set of eigen-

values, λn(T ), which arranged in a sequence, tend to zero. This result raises the

following question:

What are the conditions on T ∈ L(X, Y ) such that (λn(T )) ∈ `q?

Having (λn(T )) ∈ `1 is the precise condition one needs in order to generalize the

Schmidt representation (5.2) given above for compact operators on Banach spaces.

The question can be recast more specifically, what is the rate of convergence to

zero of the sequence (λn(T ))?

Here is an example that shows the importance of the preceding question.

Example 5.4. Consider the diagonal operator

T = diag (a1, a2, a3, · · · , ) where an =
1

log(n+ 1)
, n = 1, 2, · · · .

Note that T is compact and its eigenvalues are λn(T ) = an. In [34], it is shown

that for each q > 0, the number aqn goes to zero slower than
1

n
when n → ∞. It

follows that λn(T ) /∈ `q.

To answer the question on the rate of convergence, in [45], A. Pietsch developed

the theory of s-numbers, sn(T ), which characterize the degree of compactness of T .

There are several possibilities of assigning to every operator T : X → Y a certain

sequence of numbers {sn(T )} such that

s1(T ) > s2(T ) > · · · > 0.

Definition 5.5. We recall the definition of the following s-numbers:
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1. The nth approximation number

αn(T ) = inf{||T − A|| : A ∈ F(X, Y )}, n = 0, 1, . . .

Note that αn(T ) provides a measure of how well T can be approximated by

finite mappings whose range is at most n-dimensional. The largest s-number is

the approximation number.

2. The nth Kolmogorov diameter of T ∈ L(X) is defined by

δn(T ) = inf{||QGT || : dimG 6 n}

where the infimum is over all subspaces G ⊂ X and QG denotes the canonical

quotient map QG : X → X/G.

It is clear that αn(T ) and δn(T ) are monotone decreasing sequences and that

lim
n→∞

αn(T ) = 0 if and only if T ∈ F(X, Y )

and

lim
n→∞

δn(T ) = 0 if and only if T ∈ K(X, Y ).

In [25], it is shown that for any compact operator T on a Hilbert space H the

n-th singular value sn(T ) coincides with the n-th approximation number αn(T ). This

allows us to compute αn(T ).

Example 5.6. Consider the non-self-adjoint T =

2 1 0
0 2 0
1 1 1


The characteristic polynomial of T is ∆(λ) = λ3−5λ2 +8λ−4 and the eigenvalues

of T are λ1(T ) = 2, λ2(T ) = 2 and λ3(T ) = 1.

We have T ∗T =

5 3 1
3 6 1
1 1 1

.
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The characteristic polynomial of T ∗T is ∆(λ) = λ3 − 12λ2 + 30λ − 16 and the

eigenvalues are approximately λ1(T ∗T ) = 8.796, λ2(T ∗T ) = 2.466, and λ3(T ∗T ) =

0.738

Note that we have α1(T ) = s1(T ) > |λ1(T )|, α2(T ) = s2(T ) < |λ2(T )|, and

α3(T ) = s3(T ) < |λ3(T )|, which means we cannot compare αn(T ) with |λn(T )|.

Note also that in the preceding example, T 6= T ∗ and T ∗T 6= TT ∗, that is, T is

neither self-adjoint nor normal. We should give an example that is not self-adjoint,

but normal and see how it compares.

Example 5.7. Consider T =

[
2 −3
3 2

]
. Then T ∗ = T t =

[
2 3
−3 2

]
.

We have T ∗T =

[
13 0
0 13

]
= TT ∗.

The eigenvalues of T are λ1 = 2 + 3i and λ2 = 2 − 3i where it follows that

|λ1| =
√

13 = |λ2| . The singular values of T are s1(T ) =
√

13 = s2(T ).

In this case, we have αn(T ) = sn(T ) = |λn(T )|, for n ∈ {1, 2}.

For compact self-adjoint operators on Hilbert spaces and more broadly for com-

pact H- operators we will be able to always compare the preceding approximation

quantities.

Indeed, the importance of H-operators comes from a result of Markus [40], which

shows that for a compact H-operator T with eigenvalues (λn) (numbered in order of

decreasing modulus and taking into account their multiplicity), the sequence (|λn(T )|)

is equivalent to approximation numbers and Kolmogorov diameters. Specifically, in

[40] Markus proved the following theorem.

Theorem 5.8. If T is a compact H-operator on a Banach space X, then

δn−1(T ) 6 αn(T ) 6 2
√

2C|λn(T )| 6 8C(C + 1)δn−1(T ), (5.5)
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where C is a constant from the definition of H-operator, and δn(T ) and αn(T ) are

the n-th Kolmogorov diameter and n-th approximation numbers of T respectively.

The following corollary follows from the preceding theorem.

Corollary 5.9. If T is a compact H-operator on a Banach space X, then for any

0 < µ 6∞, |λn(T )| ∈ `µ ⇐⇒ δn(T ) ∈ `µ ⇐⇒ αn(T ) ∈ `µ.

This equivalence allows us to construct approximation spaces for H- operators

using sequences of eigenvalues, but before we do this we will first introduce approxi-

mation spaces.

5.2 Approximation spaces

For ease of flow, we recall the following definitions already encountered in the pre-

ceding pages.

Definition 5.10. A quasi-norm is a non-negative function ||.||X defined on a real or

complex linear space X for which the following conditions are satisfied:

(1) If ||f ||X = 0 for some f ∈ X, then f = 0.

(2) ||λf ||X = |λ|||f ||X for f ∈ X and all scalars λ.

(3) There exists a constant cX > 1 such that

||f + g||X 6 cX [||f ||X + ||g||X ]

for f, g ∈ X.

A quasi-Banach space is any linear space X equipped with a quasi-norm ||.||X such

that every Cauchy sequence is convergent.
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Definition 5.11. An approximation scheme (X,An) is a quasi-Banach space X to-

gether with a sequence of subsets An satisfying the following:

(A1) there exists a map K : N → N such that K(n) > n and An + An ⊆ AK(n) for

all n ∈ N,

(A2) λAn ⊂ An for all n ∈ N and all scalars λ,

(A3)
⋃
n∈NAn is a dense subset of X.

Approximation schemes were introduced in Banach space theory by Butzer and

Scherer in 1968 [11] and independently by Y. Brudnyi and N. Kruglyak under the

name of “approximation families” in [9]. They were popularized by Pietsch in his

1981 paper [48], for later developments we refer the reader to [1, 2, 4].

Let (X,An) be an approximation scheme. For f ∈ X and n = 1, 2, · · · , the nth

approximation number is defined by

αn(f,X) := inf{||f − a|||X : a ∈ An−1}.

αn(f,X) is the error of best approximation to f by the elements of An−1.

Definition 5.12. Let 0 < ρ < ∞ and 0 < µ 6 ∞. Then the approximation space

Xρ
µ, or more precisely (X,An)ρµ consists of all elements f ∈ X such that

(nρ−µ
−1

αn(f,X)) ∈ `µ,

where n = 1, 2, · · · . We put ||f ||Xρ
µ

= ||nρ−µ−1
αn(f,X))||`µ for f ∈ Xρ

µ.

Now, we define and present Lorentz sequences as examples of approximation

spaces.
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Definition 5.13. A null sequence x = (ζk) is said to belong to the Lorentz sequence

space `p,q if the non-increasing re-arrangement (sk(x)) of its absolute values |ζk| sat-

isfies

(
k

1
p
− 1
q sk(x)

)
∈ `q, (5.6)

so that

λp,q(x) =


(
∞∑
k=1

(
k

1
p
− 1
q sk(x)

)q) 1
q

for 0 < p <∞ and 0 < q <∞

sup16k<∞ k
1
p sk(x) for 0 < p <∞ and q =∞

(5.7)

is finite.

Example 5.14. Let 0 < ρ < ∞ and 0 < µ 6 ∞. Consider the approximation

scheme (X,An), where X = `∞ and An:= the subset of sequences having at most

n coordinates different from 0. For any η ∈ `∞, the sequence αn(η; `∞) is the non-

increasing rearrangement of the sequences η and Xρ
µ = `ρ−1,µ (see[48], page 123).

5.3 Realizing approximation spaces as interpola-

tion spaces

For completeness, we briefly recall a number of definitions in interpolation theory

already presented in chapter 4.

Definition 5.15. An intermediate space between X0 and X1 is any normed space X

such that X0 ∩X1 ⊂ X ⊂ X0 +X1 (with continuous embedding).

Definition 5.16. An interpolation space between X0 and X1 is any intermediate

space X such that every linear mapping from X0 +X1 into itself which is continuous
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from X0 into itself and from X1 into itself is automatically continuous from X into

itself. An interpolation space is said to be of exponent θ (0 < θ < 1) , if there exists

a constant C such that one has

||A||L(X) 6 C||A||1−θL(X0)||A||
θ
L(X1) for all A ∈ L(X0) ∩ L(X1).

Definition 5.17. Let Xi, i = 0, 1 be two normed spaces, continuously embedded into

a topological vector space V so that X0 ∩X1 and X0 +X1 are defined with X0 ∩X1

equipped with the norm

||f ||X0∩X1 = max{||f ||X0 , ||f ||X1}

and X0 +X1 is equipped with the norm

||f ||X0+X1 = inf
f=f0+f1

(||f0||X0 + ||f1||X1).

Definition 5.18. For f ∈ X0 +X1 and t > 0 one defines

K(f, t) = inf
f=f0+f1

(||f0||X0 + t||f1||X1),

and for 0 < θ < 1 and 1 6 p 6 ∞ (or for θ = 0, 1 with p = ∞), one defines the real

interpolation space as follows:

(X0, X1)θ,p :=

{
f ∈ X0 +X1 : t−θK(f, t) ∈ Lp

(
[0,∞),

dt

t

)}

with the norm ||f ||(X0,X1)θ,p :=

{(∫∞
0

(
t−θK(f, t)

)p dt
t

) 1
p , 0 < p <∞

sup06t<∞ t
−θK(f, t), p =∞

K(f, t) is continuous and monotone decreasing in t, with K(f, t)→ 0 as t→ 0+.

K-functional provides a relationship between interpolation and approximation spaces.

Once again, the Lorentz sequences are examples of interpolation spaces as can be

seen from this classical example.
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Example 5.19. The Lorentz sequence space lp,q can be created as an approximation

space using a real interpolation space. Take X = `r and Y = `s. Then (`r, `s)θ,q = `p,q

for 1
p

:= (1−θ)
r

+ θ
s

and 0 < q 6∞.

Now, if we take p = q, then (`r, `s)θ,p = `p,p = `p for 1
p

:= (1−θ)
r

+ θ
s

and 0 < p 6∞,

so that every `p may be realized as an interpolation space.

The real interpolation method provides the connection between interpolation spaces

and approximation spaces. To state this connection, we need the following fundamen-

tal inequalities [10].

Jackson’s inequality, which measures the rate of decrease of αn(f ;X) is given by

αn(f,X) 6 C(n+ 1)−σαn(f ;Y ), where C is a constant. (5.8)

Berstein’s inequality, which measures the rate of increase of ‖pn‖X , where pn ∈ An,

is given by

‖pn‖X > C(n+ 1)−σ‖pn‖Y , where C is a constant. (5.9)

If Jackson’s and Bernstein’s inequalities are valid for the pair X and Y , then we

can characterize completely the approximation spaces Xρ
µ using the real interpolation

spaces (X, Y )θ,q.

Proposition 5.20 ([14], Theorem 9.1). If both the Jackson and the Bernstein in-

equalities hold for the spaces X and Y , then for 0 < ρ < r and 0 < µ 6 ∞ we

have

Xρ
µ = (X, Y ) ρ

r
,µ. (5.10)
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According to the preceding proposition, to identify for a given X and approxima-

tion scheme Q, the approximation spaces Xρ
µ, 0 < µ < r, it is enough to find a space

Y for which the Jackson and Bernstein inequalities are valid.

There is a way to find such spaces Y :

Proposition 5.21 ([14], Theorem 9.3). Consider an approximation scheme (X,An).

Then for 0 < µ 6∞, 0 < ρ <∞, the space Y := Yρ := Xρ
µ satisfies the Jackson and

the Bernstein inequalities. Moreover, for 0 < α < r and 0 < µ1 6∞,

(X, Y )α
r
,µ1 = Xα

µ1
. (5.11)

We will use the preceding theorem to establish relations among approximation

spaces of H-operators.

5.4 Inclusion and Representation Theorems for Ap-

proximation Spaces

Now, we define an approximation space for compact H-operator by using |λn(T )|.

Definition 5.22. Let 0 < ρ <∞ and 0 < µ 6∞. SetX := the set of all compact H-operators

between two arbitrary Banach spaces.Consider an approximation scheme (X,An).

We define an approximation space for H-compact operators by nd Aρµ := {T ∈ X :

(nρ−µ
−1|λn(T )|) ∈ `µ}. We put ||T ||Aρµ = ||nρ−µ−1|λn(T )|)||`µ for T ∈ Aρµ.

To realize the importance of constructing approximation spaces for compact H-

operators, let’s recall the following question: What are the conditions on T ∈ L(X, Y )

such that (λn(T )) ∈ `q?

Answer: If T is a compact H-operator, then A
1
q
q consists of all elements T ∈

L(X, Y ) such that (|λn(T ))| ∈ `q, which implies (λn(T )) ∈ `q.
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Lemma 5.23. If 0 < θ < 1 and 1 6 µ1 6 µ2 6 ∞, one has (X0, X1)θ,µ1 ⊂

(X0, X1)θ,µ2 (with continuous embedding).

Proof. Note that if 1 6 µ < ∞, and t0 > 0, then by the monotonicity of the K-

functional, K(f, t), we have K(f, t) > K(f, t0) for t > t0, so that

(
||f ||(X0,X1)θ,µ

)µ
=

∫ ∞
0

(
t−θK(f, t)

)µ dt
t

> [K(f, t0)]µ
∫ ∞
t0

t−θµ
dt

t
= [K(f, t0)]µ

t−θµ0

θµ

which implies

t−θ0 K(f, t0) 6 C||f ||(X0,X1)θ,µ

and thus we have ||t−θK(f, t)||L∞((0,∞), dt
t

) 6 C||f ||(X0,X1)θ,µ and now using the Hölder’s

inequality, one obtains:

||f ||(X0,X1)θ,µ2
= ||t−θK(f, t)||Lµ2 ((0,∞), dt

t
) 6 C ′||f ||(X0,X1)θ,µ1

for 1 6 µ1 6 µ2 6∞.

We are done as promised.

We will also use the following lemma, which gives the basic relation between Kol-

mogorov numbers and approximation numbers.

Lemma 5.24 ([12]). δn(T ) 6 αn(T ) for all T ∈ L(X, Y ).

Theorem 5.25 (Inclusion Theorem). Let 0 < ρ <∞ and 0 < µ1 6 µ2 6∞. If T is

a compact H-operator between arbitrary Banach spaces X and Y , then Aρµ1 ⊂ Aρµ2.

Proof. From (5.5) we have αn(T ) 6 2
√

2C |λn(T )|, which implies

nρ−µ
−1

αn(T ) 6 2
√

2Cnρ−µ
−1 |λn(T )| .
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Thus, if nρ−µ
−1 |λn(T )| ∈ `µ, then 2

√
2Cnρ−µ

−1 |λn(T )| ∈ `µ, which implies that

nρ−µ
−1
αn(T ) ∈ `µ. It follows that if T ∈ Aρµ, then T ∈ Xρ

µ. Therefore, Aρµ ⊂ Xρ
µ.

By Lemma 5.24, we have δn−1(T ) 6 αn+1(T ), (5.5) implies that

2
√

2C|λn(T )| 6 8C(C + 1)δn−1(T ) 6 8C(C + 1)αn(T ).

Hence,

2
√

2C

8C(C + 1)
nρ−µ

−1|λn(T )| 6 nρ−µ
−1

αn(T ).

Thus, if nρ−µ
−1
αn(T ) ∈ `µ, then 2

√
2C

8C(C+1)
nρ−µ

−1|λn(T )| ∈ `µ. It follows that T ∈

Xρ
µ =⇒ T ∈ Aρµ. Hence, Xρ

µ ⊂ Aρµ.

We have Aρµ = Xρ
µ. By Proposition 5.20, we also know Aρµ = Xρ

µ = (X, Y ) ρ
r
,µ.

By Lemma 5.23, we have Aρµ1 ⊂ Aρµ2 as was promised.

The proof of the following theorem relies on Markus’ inequality (5.5), Hölder’s

inequality and proof of an analogous representation theorem in [48].

Theorem 5.26 (Representation Theorem). Let 0 < ρ < ∞ and 0 < µ 6 ∞. Set

X := the set of all compact H-operators between two arbitrary Banach spaces and

Aρµ := {T ∈ X : (nρ−µ
−1|λn(T )|) ∈ `µ}. Consider an approximation scheme (X,An).

Then T ∈ X belongs to Aρµ if and only if there exists gn ∈ A2n such that T =
∑∞

n=0 gn

and (2nρ||gn||X) ∈ `µ. Moreover, ||T ||rep
Aρµ

:= inf ||(2nρ||gn||)||`µ, where the infimum is

taken over all possible representations, defines an equivalent quasi-norm on Aρµ.

Proof. Suppose T ∈ Aρµ. We wish to find gn ∈ A2n such that T =
∑∞

n=0 gn and

(2nρ||gn||X) ∈ `µ. Choose g?n ∈ A2n−1 such that

||T − g?n||X 6 2α2n(T ) 6 4
√

2C|λ2n(T )|.
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Set g0 = 0 = g1, and gn+2 = g?n+1 − g?n for n = 0, 1, · · · .. We have gn ∈ A2n , and

T = lim
n→∞

g?n =
∞∑
n=0

gn.

Moreover, it follows from

||gn+2||X 6 cX [||T − g?n+1||X + ||T − g?n||X ] 6 4cXα2n(T ) 6 16
√

2cXC|λ2n(T )|

that (2nρ||gn||X) ∈ `µ.

Next, suppose there exists gn ∈ A2n such that T =
∑∞

n=0 gn and (2nρ||gn||X) ∈ `µ.

We must show that T ∈ Aρµ. Although αn(T,X) is in general not a continuous

function of T , we can also find an equivalent quasi-norm X, p-norm, that is always

continuous. Thus, we can assume that ||.||X is a p-norm with 0 < p < µ. If T ∈ X

can be written in the form T =
∑∞

n=0 gn such that gn ∈ A2n and (2nρ||gn||X) ∈ `µ,

then it follows from
∑N−1

n=0 gn ∈ A2N−1 that

|λ2N (T )| 6 2
√

2(C+1)α2N (T ) 6 2
√

2(C+1)||T −
N−1∑
n=0

gn||pX 6 2
√

2(C+1)
∞∑
n=N

||gn||pX .

In the case 0 < µ <∞ we put q = µ
p
, and choose γ such that ρp > γ > 0. Then

∞∑
N=0

[2Nρλ2N (T )]µ 6 2
√

2(C+1)
∞∑
N=0

[2Nρα2N (T )]µ 6 2
√

2(C+1)
∞∑
N=0

2Nρµ

(
∞∑
n=N

2−nγ2nγ||gn||pX

)q

6 2
√

2(C + 1)
∞∑
N=0

2Nρµ

(
∞∑
n=N

2−nγq
′

) q
q′
(
∞∑
n=N

2nγq||gn||pX

)

6 c12
√

2(C + 1)
∞∑
N=0

2N(ρµ−γq)
∞∑
n=N

2nγq||gn||µX

6 c12
√

2(C + 1)
∞∑
n=0

2nγq||gn||µX
n∑

N=1

2N(ρµ−γq)
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c22
√

2(C + 1)
∞∑
n=0

[2nρ||gn||X ]µ <∞.

The desired result follows as was promised.

5.5 Connection to Bernstein’s Lethargy Theorem

The question of the rate of convergence of λn(T ) provides some connection to the

classical Bernstein’s Lethargy problem.

Now, we consider the Bernstein lethargy problem for linear approximation: given a

nested system A1 ⊂ A2 ⊂ · · · of linear subspaces of a Banach space X and a strictly

decreasing sequence d0 > d1 > · · · > dn → 0, does there exist an element x ∈ X such

that for all n = 0, 1, 2, · · · , αn(x) = αn(x,An) = dn?

The answer is yes in many particular cases: if X is a Hilbert space; if all An are

finite-dimensional; if dn >
∑∞

k=n+1 dk for all n. However, the Bernstein problem is

still unsolved in its general setting.

In the remaining part of this section, we investigate for infinite-dimensional Ba-

nach spaces X and Y the existence of an operator T ∈ L(X, Y ) whose sequence

of approximation numbers {αn(T )} behaves like the prescribed sequence {dn} given

above in the Bernstein lethargy problem. If An denotes the space of all bounded

linear operators from X into Y with rank at most n, then αn(T ) = ρ(T,An).

Definition 5.27. The operator T ∈ K(X, Y ) where X and Y are complex Banach

spaces is said to be a kernel operator if it can be represented in the form

T =
∞∑
j=1

αjfj(·)yj (5.12)
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(fj ∈ X∗, yj ∈ X, ||fj|| = ||yj|| = 1, j = 1, 2, · · · ), where
∑∞

j=1 |αj| <∞.

Proposition 5.28. [40] For any sequence of non-negative numbers (dn) that tends

to zero, a kernel operator T exists such that δn(T ) > dn (n = 0, 1, 2, · · · ).

By Lemma 5.24, we always have αn(T ) > δn(T ) for every T ∈ L(X, Y ). Then by

the preceding proposition, we have for a strictly decreasing sequence d0 > d1 > · · · >

dn → 0, there is always an element in L(X, Y ), namely a kernel operator T such that

one has αn(T ) > δn(T ) > dn.
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[24] , Goldenštein, L.S. Markus, A.S. On a measure of noncompactness of bounded
sets and linear operators, Studies in Algebra and Mathematical Analysis,
Kishinev, pp. 45–54 (1965).

[25] I. Gohberg, M.A. Kaashoek, and D.C. Lay, Equivalence, Linearization, and
decomposition of holomorphic operator functions, J. Funct. Anal. 28, 102-144
(1978).

[26] L. Grafakos, Classical Fourier Analysis, Third edition, Graduate Texts in Math.
249, Springer, New York, 2014, p. 40.

[27] A. Grothendieck, Sur certaines classes de suites dans les espaces de Banach et
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