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1. Abstract 
The construction of the James Webb Space Telescope has brought attention to infrared astronomy and 

cosmology. The potential information about our universe to be gained by this mission and future 

infrared telescopes is staggering, but infrared observation faces many obstacles. These telescopes face 

large amounts of noise by many phenomena, from emission off of the mirrors to the cosmic infrared 

background. Infrared telescopes need to be designed in such a way that noise is minimized to achieve 

sufficient signal to noise ratio on high redshift objects. We will investigate current and planned space 

and ground based telescopes, model the noise they encounter, and discover their limitations. The 

ultimate of our investigation is to compare the sensitivity of these missions in the near and mid IR and to 

propose new missions. 

Our investigation is broken down into four major sections: current missions, noise, signal, and proposed 

missions. In the proposed missions section we investigate historical and current infrared telescopes with 

attention given to their location and properties. The noise section discusses the noise that an infrared 

telescope will encounter and set the background limit. The signal section will look at the spectral energy 

distributions (SED) of a few significant objects in our universe. We will calculate the intensity of the 

objects at various points on Earth and in orbit. In the final section we use our findings in the signal and 

noise sections to model integration times (observation time) for a variety of missions to achieve a given 

signal to noise ratio (SNR). 

2. Introduction 
One of the more challenging regions of the electromagnetic spectrum to observe in is the near and mid 

infrared. Difficulty arises from the large quantities of noise generated by the telescope and the matter 

the telescope is looking through. When considering telescopes located within the atmosphere, we also 

need to account for the absorption and emission created by our atmosphere while for space the cost 

and feasibility of orbital missions become major concerns. Cosmology currently has many questions and 

proposed theories that would benefit from high sensitivity observations in this part of the spectrum. 

Examples of such phenomenon are the search for first light and the search for planets in other solar 

systems (Gardener et al. 2006)(National Research Council 2010). 

Our study can be viewed as a synthesis of numerous infrared models for the noise and signal that an 

infrared telescope encounters from 0.2-30 microns. Signal refers to light that comes from an object of 

interest which in this paper will be a distant galaxy with a spectrum running from ultraviolet radiation 

through microwave or approximately 10nm to 1mm. Distant galaxies are but one class of objects of 

interest in the IR. Noise is a term that accounts for all other light hitting our detector. We will also 

investigate how we can model a galaxy emitting in the infrared as well as what we can do to minimize 

noise. With information on the spectra of light our infrared telescope will be used to analyze and 

compare several possible observation missions. 

In section 3, we present a brief summary of a few current and past infrared telescopes. By learning 

about some major ground and space based telescopes, we gain an understanding of the current 



3 

strategies of observation. We will provide a baseline and context for the eventual missions we will 

simulate with our models. 

In section 4, we investigate the noise that our telescopes will encounter. By modeling backgrounds that 

are bright in the near and mid infrared, we gain an understanding of the origins of stray light coming 

from space, as well as their absolute magnitudes. We also investigate noise created within our 

atmosphere and discuss how the altitude of our telescope can affect noise levels. 

In section 5, we create models for sample galaxies. We model the spectral energy distribution (SED) of a 

galaxy and account for the absorption the light encounters as it travels to the telescope to determine 

how much light we will see. 

In section 6, we combine sections 4 and 5 by proposing mission scenarios and calculating integration 

times based off of our signal and noise spectra. We will compare these scenarios and comment on the 

advantages and disadvantages of each. 

3. Infrared Missions 
A key part of our study is to understand what methods have been used to collect infrared observations 

in the past. In researching other missions we gain knowledge of what methods scientists have used in 

the past as well as the advantages and disadvantages of their methods. For each mission we will take 

note of a few key parameters. The mirror temperature and emissivity will be useful for analysis of the 

noise generated by the emission of light off of the telescope. The size of the primary mirror and the 

telescope's field of view will facilitate comparison of the telescopes' respective ability to perform tasks 

ranging from wide scale surveys to ultra deep images. The location of the telescope will be crucial in 

determining what background emissions and absorptions occur. In the next section we will break down 

the telescopes by both their operational status and whether they are located on or near the ground or 

in space. 

3.1 Ground Based 

3.1.1 W. M. Keck Observatory 

Until the construction of the 10.4 m diameter Gran Telescopio Canarias in the Canary Islands in 2009, 

the twin 10m telescopes, Keck I and Keck II, near the summit of Mauna Kea in Hawaii were the largest in 

the world. Such large diameters on the mirror are enabled by using a segmented design with   

aluminum-coated glass hexagonal segments. Located at an altitude of 4,145m, the Keck telescopes are 

able to reduce the impact the atmosphere has on incoming light. The telescopes have many instruments 

some of which are sensitive in the near infrared and are of interest in this study. The second Near 

Infrared Camera (NIRC-2) is a super high resolution camera and spectroscope that operates from 1 to 5 

microns (Goodrich, 2002). NIRC-2 is unique because it uses the adaptive optics on Keck II in which 

corrects signals that are warped in the atmosphere. Keck contains the near infrared spectrograph 

(NIRSPEC) which is a cryogenic high-resolution spectrograph with a waveband of 0.95 to 5.4 microns 

that boasts an impressive resolving power R 25,000. 
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Keck serves as a good benchmark for a large land based telescope. While not specifically designed as an 

IR telescope and severely hampered by both warm optics and a significant amount of atmosphere it is 

still relevant in our discussion as a ground based telescope. (See http://keckobservatory.org/ and 

http://www.gtc.iac.es/en/ for more information) 

3.1.2 Gemini 

The Gemini telescopes are twin 8.1m with one located in Chile at over 2,700m and the other located on 

Mauna Kea near Keck. Gemini is very comparable to Keck in many respects, but it sets itself apart with 

its silver mirror coating. Silver has a significantly higher reflectivity (and thus lower emissivity) than the 

aluminum in Keck, which reduces the amount of noise off of the warm mirrors. In our study we will use  

the Gemini telescopes as an example of a large, ground based telescope with a silver coated mirror at 

high altitude.  

3.1.3 Stratospheric Observatory for Infrared Astronomy 

While not located on the ground, the Stratospheric Observatory for Infrared Astronomy’s (SOFIA) 

13.7km altitude of operation qualifies closer to a ground based telescope as it still encounters most of 

the disadvantages a telescope on Mauna Kea does due to the atmosphere. SOFIA has a 2.5m aluminum 

mirror located near the tail of a modified 747 which gives it the unique ability to move rapidly around 

the world to chase time sensitive objects. In this study SOFIA will primarily be compared with a balloon 

telescope which can reach altitudes of 40km and cost a fraction of the price. 

3.2 Extra-Terrestrial 

3.2.1 Spitzer Space Telescope 

The Spitzer Space Telescope launched in 2003 and operated until it ran out of cryonic material in 2009. 

The telescope used a 0.85m primary mirror composed of polished beryllium that was cooled to 5.5K. 

The low mirror temperature allowed Spitzer to be limited by the zodiacal emission rather than its optics. 

Beryllium was chosen for its high stiffness to density ratio which provides light mirrors that hold shape 

as they cool. Spitzer observed from the mid infrared into the far infrared with instrumentation from 3.6-

160 microns (Werner et al. 2004). 

3.2.2 James Webb Space Telescope 

One of the major sources of inspiration and data for this investigation is the James Webb Space 

Telescope (JWST). JWST is currently under development by NASA and is aiming for a 2018 launch 

(www.jwst.nasa.gov). With a waveband of 0.6-29 microns, cooled optics, and high sensitivity cameras 

and spectrometers, JWST will serve as a benchmark for this study. JWST will have a segmented 6.5m 

gold-coated primary mirror that will be radiatively cooled to under 50 K. It will observe from orbit 

around the Sun-Earth Lagrange point L2 where it will be above the infrared noise in the Earth’s 

atmosphere. A drawback to this mission is the cost which is currently close to $10 billion (Cowen). 

3.3 Modeled Telescopes 
In this study we analyze the quantity of noise and strength of signal that a range of telescopes will 

encounter. See table below for the parameters used in our model. For Keck, SOFIA, and JWST we used 

as accurate data as possible within the confines of our model. For Keck it must be noted that Keck is not 
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optimized for infrared observation. For this study we assume a Keck-like telescope located at the same 

position that has been IR optimized. Our calculations regarding SOFIA use our emissivity model outlined 

in section 4.1. These modeled numbers fall far below the 15-25% emissivities reported by various SOFIA 

teams. We are using a very low value here for a potential future SOFIA like telescope. For the balloon 

telescope we decided to use parameters that are futuristic in terms of diameter and temperature. For a 

high altitude telescope it might be possible to run the mirror just above the liquefaction point of the 

atmosphere. We note that the emissivity is a critical issue for IR telescopes and a high emissivity will 

severely hamper it performance. The specific design of the telescope is also critical and many visible 

light telescopes are used in the IR (such as Keck) and suffer from significant excess emissivity that an 

optimized IR specific telescope would not.  

Telescope Keck SOFIA Balloon JWST 

Altitude (km) 4 12.5 (12-13.7) 40 N/A 

Mirror Temperature (K) 270 230 100 50 

Mirror Diameter (m) 10 2.5 10 6.5 

Mirror Coating Aluminum Aluminum Aluminum Gold 

4. Noise 
The final result we are aiming for are the integration times for certain telescope setups pointing at a 

variety of galaxies. Integration time is the amount of time a telescope needs to look at a source such as a 

galaxy before it has detected a statistically significant quantity of photons. These times are calculated 

through the ratio between signal and noise – this is referred to as the SNR or Signal to Noise Ratio. The 

signal is the number of photons from the target galaxy that hit the detector of the telescope in a given 

time while the noise is the statistical fluctuations of the total number of photons that hit the detector. 

The noise term includes all photons including those from the source. This section will discuss what the 

significant sources of noise in the near and mid infrared. We will investigate three categories of noise: 

noise generated by the telescope, noise generated within our atmosphere, and noise generated by the 

many backgrounds in space as all as the noise (or photon statistics) from the source itself. For each of 

these cases we will discuss the cause of the light, how much of a problem it is for our observations, and 

how the impact of this noise on our study can be reduced. 
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4.0.1 Units 

Throughout this paper we will use units that may be unfamiliar to the reader. When we describe 

quantities of light, our most general unit is spectral radiance. In the study our core units of spectral 

radiance are named I and are 
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Here the W describes the amount of power (watts), m-2 represents the telescope’s mirror, arc sec-2 

represents the solid angle of the sky that the telescope views, and µm-1 and Hz-1 are used since we will 

have data of either per wavelength or frequency. 

Many of the radiances we encounter have very small values of energy. In these cases it is more intuitive 

to think about the flux of individual photons rather than the energy of these photons.  For a photon 
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Dividing by this relationship with our I(λ) and I(ν) values from above allows for two new units that we 

will name N 
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For more intuitive units we will also sometimes integrate out the area and solid angle from our N units 

to be able to work in just spectral photons per second. The integration of area and solid angle is 

equivalent to multiplying by the Area of the mirror A and by the solid angle on the sky per pixel Ω. For a 

diffraction limited system this integral conveniently reduces to        
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We also must make note of the conversion from   -  to   - . All of our equations in this section so far 

are fluxes and can be viewed mathematically as differential equations. Thus when trying to convert from 

N( ) to N( ) we have 
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But we have the relationship between   and   is simply       so 
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We drop the negative sign as it does not make physical sense and has no impact on the overall math and 

are left with the conversion 

 
         

 

  
 

 
(4.9) 

In this same way we can convert from flux per wavelength to flux per frequency. 

The physical intuitiveness of counting photons that the N and P units offer is useful in grasping the 

meaning of numbers in this study. We gain understanding of the very small levels of light that is 

effectively emitted by our source as well as the low tolerance for noise in our system. 

In this study we will also deal with two different units for the solid angle of the sky that out telescope is 

viewing since cosmologists and astronomers move between square arc seconds (arcsec2) and steradians 

(sr). The conversion between the two is a two-dimensional analogue to the conversion between degrees 

and radians when discussing angle. 

A common unit used when describing small fluxes originating from small points in space is the Jansky 

(Jy). One Jansky is simply defined as  
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4.0.2 Background Limiting Noise Generated (BLING) 

The choice of N( ) and P( ) provide intuitive ways to look at the noise our systems will encounter. 

Unfortunately these units contain differential terms in area and solid angle that our signal will not have. 

Thus we need to find a way to transform our noise into a format that can be used in signal to noise 

calculations. Detector performance is often specified by noise equivalent power (NEP) which is the signal 

that provides a signal to noise ratio of 1. Another useful unit commonly used is the background limited 

performance (BLIP). NEP, BLIP and BLING have units of 
 

   
 and can easily be related to our signal. Our 

study is aimed at modeling integration times and to facilitate such calculations we aim to define our 

system noise in terms of the background limited noise generated (BLING). We define BLING as 

 
     

 
  

 
(4.11) 

With noise power PN and integration time t. Unfortunately the calculation of BLING from the quantities 

we currently possess is not as simple as equation 4.11 would indicate. First we define the power per unit 

bandwidth for a system as 
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(4.12) 

Where      is as defined previously, A is the collection area, and Ω is the solid angle that a telescope 

views on the sky. In this study, we assume that our optics are diffraction limited which allows us to use 

the relationship 

 
      

  

  
 

 
(4.13) 

Combining with equation 4.12 yields 

 
     

      

  
            

 
(4.14) 

With our power per unit bandwidth defined in terms of quantities we understand, we can now calculate 

the total power P around ν0 with bandwidth Δν by integrating our equation for S(ν) 
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Recalling that the energy of a photon can be described by            we calculate the number of 

photons with a specific energy as  

 

         
        

              
  

    

  
       

       

 
 

   
  
 

   
  
 

 

 

(4.16) 

To calculate the total number of photons that we collect in a specific integration time t we simply 

multiply our rate by our integration time. Thus the mean number of photons collected is 

                     
 

(4.17) 

Since the BLING is essentially the uncertainty of the number of photons collected multiplied by the 

energy of the photons we need to calculate the uncertainty. This is done by  

 

            
 
           

 
       

    

  
  

   
  
 

   
  
 

 

 
 

 

 

(4.18) 

It is important to note that the statistical fluctuation in the number of photons has two terms. Photons 

are bosons (integral spin) since the spin of a photon is 1. The two terms are given by        

             
   

 

   However this only applies for completely correlated sources of photons. Our 

sources are essentially all uncorrelated not only from each other but within the source itself. The second 
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term is effectively a collective coherent term that would be relevant if we were observing coherent 

sources such as a laser but we are not. All of our physical processes are from random uncorrelated 

processes. In our calculation of BLING we will calculate the uncertainty each second so we set t=1. Thus 

our expression for BLING is 

 

                                
   

  
 

   
  
 

 

 
 

      
 

   
  

 

(4.19) 

In cosmology we are usually provided with a spectral resolution R instead of a bandwidth so we make 

the substitution   
 

  
 

 

                 
   

  
  

   
  
  

 

 
 

      
 

   
  

 

(4.20) 

4.0.3 The Black Body 

Essentially all of the light we investigate in this study can be modeled by a black body or some linear 

combination of black bodies. A black body is an idealized radiator at constant temperature whose 

radiation spectrum is defined by Planck’s law. In terms of a frequency λ, the spectral radiance          

at temperature T is 

 
          

    

  
 

 

 
  
      

        
 

            
  

 

(4.21) 

To convert from          to          we divide by the energy of a photon        as shown in section 

4.0.1 yielding 

 
          

  

  
 

 

 
  
      

          
       

              
  

 

(4.22) 

We also are sometimes interested in knowing the raw output of the source in photons per second. To 

calculate these values we integrate          over the area of the detector and the solid angle of the 

detector acceptance. This is equivalent to multiplying by the Area of the mirror A and by the solid angle 

on the sky per pixel Ω. For a diffraction limited system this integral conveniently reduces to        

yielding 

 
         

  

  
 

 

 
  
      

       
       

        
  

 

(4.23) 

The first application of black bodies that we encounter is in the emissivity of the mirrors in our 

telescopes. A major consideration in the design of any telescope is the noise generated directly by the 
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mirrors. An ideal mirror reflects 100 percent of incoming light providing exactly the information that it 

sees in the sky. In reality some of the light energy striking the mirror is absorbed and emitted in a 

modified black body spectrum known as a grey body. Thus the detector sees some photons that are 

released by the telescope. We will see that this source of noise is dependent of the temperature and 

composition of the mirror. 

The proportion of light that is reflected is the reflectivity (R) of the mirror. The remainder of the light is 

absorbed and is referred to as the emissivity ( ) of the mirror. Since these two quantities are 

proportions for normal optical systems 

       
 

(4.24) 

The spectrum of a grey body is simply a black body scaled by an emissivity function that is often 

wavelength dependent 

 
              

    

  
 

 

 
  
      

         
 

            
  

 

(4.25) 

For our           and          distribution all that is necessary is a scaling by an emissivity function as 

above 

 
              

  

  
 

 

 
  
      

       
       

        
  

 

(4.26) 

We now have a qualitative understanding of the role emissivity plays in calculating the noise in a 

telescope system as well as a quantitative view of the general spectrum of a blackbody. 

 

4.1 Emissivity of Telescope 

4.1.1 Bulk Emissivity Model 

When deciding how to model the emissivity of the telescope mirrors it was clear from experimentally 

determined emissivities that a constant emissivity with respect to wavelength would omit a lot of 

information. The Hagen-Rubens formula is useful in approximating a wavelength dependent emissivity 

function (Xu et al. 1996) 

 

   
      
  

 

 
 

 (4.27) 

 

Where λ is wavelength, c is the speed of light    is the permittivity of free space, and   is the surface 

electrical conductivity of the material. The systems we compared to the model had mirrors coated in 

beryllium, aluminum, silver or gold and the respective surface electrical conductivies are as follows. 
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Material σ (Ω-1 m-1) 

Beryllium (Be)           
Aluminum (Al)           
Gold (Au)           
Silver (Ag)           

Source: Eddy Current Technology 1984 

 

With the Hagen-Rubens formula and the surface electrical conductivities for the mirror materials we are 

able to plot our four modeled emissivity curves against a range of wavelengths. To qualitatively check 

how well the models work we compare researched measured emissivity measurements from a variety 

of telescopes and compare it to the ideal model from above. 

  
Figure 4.1: Recorded and modeled emissivities compared over two wavebands. 

Sources: Gemini Observatory 2003, Lightsey 2012, Bock 1995 

As it can be observed in Figure 4.1 the model does not quite match the measured values. However it 

provides a reasonable estimate, as the modeled values remain within an order of magnitude throughout 

the waveband of this investigation. Therefore, we use the Hagen-Rubens formula to model mirror 

emissivity due to its reasonable accuracy as well as its simplicity to compute. 

4.1.2 Application of Emissivity Model 

Since mirrors with non-zero emissivity act as a grey body, the spectrum and magnitude of noise they 

emit is highly dependent on temperature. A grey body is just a linear transformation of a black body so 

all of the mathematical properties of black bodies still apply. We focus on the Stefan-Boltzmann law and 

Wien’s displacement law as they are both temperature dependent and relevant to our noise analysis. 
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The Stefan-Boltzmann law describes the total energy emitted per surface area per time. The black body 

emissive power    is directly proportional to Temperature raised to the fourth power 

 
      

     

      
            

 

    
(4.28) 

 

It is shown in equation 4.28 that temperature is certainly important in keeping the amount of noise 

generated low. Wien’s displacement law shows the wavelength at which the Planck distribution’s peak 

occurs and it is inversely proportional to the temperature of the black body 

          (4.29) 
 

Where T is the temperature in Kelvin,      is the wavelength with the peak emission, and b is a 

constant of proportionality equal to              . 

With total power directly proportional to wavelength and peak power inversely proportional it can be 

seen why lower mirror temperature are optimal for infrared telescopes. As further shown in figures 4.2 

and 4.3, the black body spectrum shrinks and moves to high wavelengths rapidly. 

 

Figure 4.2: Black body emission at various temperatures 
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Figure 4.3: Black body photon emission at various temperatures 

4.2 Cosmic Microwave Background 
The most prolific background in our universe is the cosmic microwave background (CMB). Up until 

300,000 years after the big bang, matter in the universe existed as a plasma of photons and electrons. 

These charged particles absorbed or scattered all photons inhibiting the propagation of photons through 

the universe. At around 300,000 years after the big bang the universe became cool enough for the 

protons and neutrons to combine into hydrogen atoms. Shortly after, photons were able to move freely 

without being scattered. These photons still exist and are distributed relatively uniformly throughout the 

universe. Due to the expansion of space, the waves of these photons have been stretched out over the 

billions of years to their present low energy state in the microwave spectrum (Planck collaboration 

2005). 
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Figure 4.4: The photon emission of the cosmic microwave background 

  

Figure 4.5: The emission of the cosmic microwave background 



15 

Analysis on data collected by the Cosmic Background Explorer (COBE) has shown that the CMB is a near-

perfect black body at a temperature of 2.726 K (Fixsen 2009). By Wien’s Law the intensity peaks at 

1.063mm and falls off sharply towards shorter wavelengths as shown in figures 4.4 and 4.5. Therefore, 

the CMB will not provide significant if any noise in the waveband of this study, but it may need to be 

considered in far infrared and near millimeter observation missions.  

 

Figure 4.6: BLING generated by the cosmic microwave background 

4.3 Cosmic Infrared Background 
With the intensity of the cosmic microwave background dropping off at around 100 microns, 

cosmologists considered the possibility of backgrounds in other wavelength ranges. The cosmic infrared 

background (CIB) is a general term describing a complex background that has been partially measured 

from    micron to over 500 microns. Theory supporting the CIB first appeared in the 1960s through the 

work of Partridge and Peebles and has been supported by the measurements from infrared satellites 

such as COBE and Spitzer in the past few decades (Hauser 2001). The component of the CIB that is 

relevant to this study is primarily the near-infrared background. The most reliable data in this region was 

collected in the Cosmic Background Explorer (COBE) mission through collected data between 1 and 240 

microns by the DIRBE instrument and out to 1000 microns with the FIRAS instrument though the 

primary source is with the DIRBE. There exists a split in behavior in the CIB at about 10 microns 
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(Franceschini et al. 2001). In both cases the background is thought to be largely from light from 

unresolved galaxies. In other words, the light that we see and name the CIB is actually coming from 

galaxies that are too far away or faint to be attributed to specific point sources. 

 

Figure 4.7: The photon emission of the cosmic infrared background. 
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Figure 4.8: The emission of the cosmic infrared background. 

For wavelengths less than 10 microns the primary mechanism of photon creation is stellar 

nucleosynthesis (Franceschini et al. 2006). Stellar nucleosynthesis simply refers to the fusion within a 

star in which heavier elements are formed. Fusion is a highly exothermal reaction that releases large 

amounts of energy which is eventually thermalized and ends up as heat in the form of electromagnetic 

radiation. The majority of the photons released in galaxies that are large enough to show up in the CIB 

are in the ultraviolet and visible spectrum. However since these galaxies are typically very far away from 

earth, the light is redshifted towards and often into the infrared. 

Beyond 10 microns the infrared background is primarily composed of light from thermal emission of 

dust particles in a galaxies interstellar medium (ISM). Young, hot stars produce large amounts of light in 

the ultraviolet some of which is absorbed by the ISM of the star’s galaxy. This heats up the dust particles 

which emit light as grey bodies. Observation by the Infrared Astronomical Satellite (IRAS) in the 1980s 

helped determine that the primary sources of infrared emission are luminous (LIRGs) and ultra-luminous 

(ULIRGs) infrared galaxies (Soifer, Neugebauer, and Houck 1987). These galaxies are highly luminous 

because they have very high star creation rate. For a high star creation rate to be possible there must be 

a large amount of dust in the galaxy all of which is absorbing energy and emitting in the infrared. 
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The two regions of the CIB can be seen by the two peaks in Figure 4.7 Since there are only a few 

windows where the CIB can be directly observed, we use Franceschini’s model to generate a full 

spectrum. 

 

Figure 4.9: BLING generated by the cosmic infrared background 

4.4 Zodiacal Emission 
The highest intensity extraterrestrial background in the infrared is the emission and reflection of the 

dust within our solar system. When the COBE Diffuse Infrared Background Experiment (DIRBE) took on 

the task of resolving the CIB, they were faced with the task of creating precise models of the light 

emitted within our solar system. We are able to use their models to predict the noise that the zodiacal 

background will add to our study. To accurately understand the zodiacal background we need to have an 

understanding of how dust is distributed within our solar system, the manner in which this dust reflects 

sunlight, and the process in which it absorbs and subsequently re-emits energy from the sun. 

To model the zodiacal light we first need a density model of the interplanetary dust (IPD) cloud. The IPD 

model is the most intensive piece in the full model as it involves creating a spatial model in three 

dimensions. While the cloud appears to be smooth, there are significant perturbations that need to be 

taken into account (Reach 1997). 

The models of Dr. Bill Reach show that along with a complex spatial structure, the zodiacal background 

also has variation in its spectral and temporal structures. Plots containing intensities of the zodiacal light 
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for various directions of view from the earth are shown in Figure 4.7. The high intensity of light emitted 

combined with the complex structure makes the prospect of a telescope that is sent out of the solar 

system highly appealing if not currently practical. 

 

Figure 4.10: The zodiacal background photon emission at three different directions of sight from Earth
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Figure 4.11: The zodiacal background emission at three different directions of sight from Earth 

 

Figure 4.12: BLING generated by the zodiacal background along the GNP 45° zenith 
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4.5 Other Atmospheric Effects 
When considering telescopes located within the Earth’s atmosphere we must understand and account 

for the effect that this large amount of matter has on photons. In this study we examine the radiance or 

for the amount of noise light generated within the atmosphere. We also must understand and be able to 

quantify the absorption through a transmission coefficient. Any light passing through the atmosphere 

will reduce significantly in intensity. 

Our atmosphere is primarily comprised of gaseous nitrogen, oxygen, and water vapor as well as 

numerous trace gases. These gasses absorb energy from the sun and are heated. They then emit 

radiation just as we say the zodiacal dust radiate. We see these photons as we try to look up through the 

atmosphere at stars and galaxies and thus must include them in our total noise calculation. 

 

Figure 4.13 The radiance of our atmosphere at various altitudes 

Some of the gases in our atmosphere absorb significant amounts of incoming electromagnetic radiation. 

Ozone is probably the most well-known for its ability to absorb harmful ultraviolet radiation from the 

Sun. In the infrared water vapor is the primary absorber. Therefore in our experiment it is critical to 

choose scenarios in which we minimize the amount of water vapor our telescope is looking through. We 

describe the magnitude of the absorption through the transmission coefficient τ which is a number 

between 0 and 1 representing the proportion of light that reaches a telescope. 
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To model these two effects of the atmosphere we turn to the moderate resolution atmospheric 

transmission model (MODTRAN 5.2). This model allows us to model numerous atmospheric gases, the 

amount of light they emit, and the transmission they allow. In running our model we chose to have our 

point of view as a 45° path through the atmosphere. We chose to run the models at altitudes of 0km for 

sea level, 4km for Mauna Kea and other high altitude ground-based telescopes, 12.5km for the 

operating altitude of SOFIA, and 40km for the operating altitude of a balloon-based telescope. 

 

Figure 4.14 The transmission of out atmosphere at various wavelengths. 

4.6 Interpolation 
Since we are dealing with discrete data we need to have consistent independent vectors between 

backgrounds. For instance our model of the Zodiacal light has 7 data points where as our model for the 

CMB is essentially a continuous function. To enable comparison we fit all of our models onto a new 

independent axis using linear interpolation. Linear interpolation is a simplistic curve fitting approach 

that draws straight lines between each data point. We can then approximate intermediate points with 

our knowledge of these lines. 
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As a general example assume we know two points (x1,y1) and (x2,y2). If we choose a point (x,y) that falls 

on the line between (x1,y1) and (x2,y2) the slope of the line from (x1,y1) to (x,y) must equal the slope of 

the line from (x1,y1) to (x2,y2) as they are along the same line. Therefore we have 

     
    

 
     
     

 

 
(4.30) 

From here it is trivial to get an equation for our interpolated y value in terms of a new x value 

             
    
     

 

 
(4.31) 

We choose to interpolate all of our data onto a sequence of wavenumbers from 1 to 33,333. A 

wavenumber describes the frequency of light and has units of cm-1. A wavenumber is a unit of frequency 

though it is actually the inverse of the wavelength if the wavelength is given in centimeters. Units in 

terms of wavenumbers are especially useful in integrations as each time the wavenumber is increased 

by one there is an increase in frequency by about 3.010 Hz or 30 GHz. Uniform bin widths greatly simplify 

the process of numerical integration. 

4.7 Total Noise Calculation 
With all of the significant sources of noise quantitatively described we are now prepared to calculate the 

total noise that a telescope will see at a given location. This comes down to simply summing the BLINGs 

for each noise source in quadrature 

 

                   
 

 

  

 
 

 

 

(4.32) 

This is a somewhat incomplete picture as we need to account for the transmission of our atmosphere 

for noise sources that originate outside of Earth. Thus we must multiply each extraterrestrial BLING by 

the transmission coefficient for our altitude. We can then write our total BLING as 

 
                             

                  
  

 
 
 

 

(4.33) 

The total BLING is a comprehensive metric for the total noise our system incurs and will be used for the 

calculation of limiting flux densities as well as integration time when paired with our SED. 
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Figure 4.15: The total BLING with R=10 for our four idealized telescopes. As mentioned the names 

associated with these telescopes (Keck, SOFIA) are meant as the equivalent idealized instrument of the 

same size and at the same site. The “real” Keck and “real” SOFIA are far worse than this primarily due to 

the fact their actual (“real”) emissivity is far greater than the idealized one we used. 

5. Signal 
To calculate integration times we need to quantify a signal. For this investigation we will model a galaxy 

with its Spectral Energy Distribution (SED) or spectral radiance as perceived on Earth. In particular we 

will use Messier 87 (M87) which is an elliptical galaxy that is close enough to Earth that we do not need 

to account for the effects of redshift. As in our total noise calculation we will need to determine the 

effect the Earth’s atmosphere has on light from this galaxy. With the combination of our SED and an 

absorption function we can integrate over wavelength and receive the total energy, or signal power, 

which can be used to calculate the integration time. It must be made clear that we proceed with the 

assumption that M87 is a point source for all of our telescopes. This allows us to compress the entire 

signal onto one pixel of our detector, which greatly simplifies our calculations. This is a somewhat 

inaccurate assumption as M87 will not be seen as a point source by any of the telescopes we are 

modeling. As we proceed with this study we will account for this phenomenon and refine our signal 

model. 

5.1 SED Data 
We obtained data on M87 through the NASA/IPAC Extragalactic Database (NED). The database provided 

a large collection of radiances that had been measured and peer-reviewed over the past fifty years. 

Figure 5.1 shows the NED generated plot of the data with log radiance plotted against log frequency. As 

can be seen in figure 5.1, there are frequencies that contain multiple radiance values. To create a signal 

curve that is easy to analyze we first average these multiple points. The data then must be interpolated 
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onto the same wavenumber scale used in our total BLING calculation so we may eventually be able to 

compare our signal with the noise calculated in section 4. 

 

Figure 5.1: The SED for the M87 galaxy (NASA/IPAC Extragalactic Database)1 

5.2 Dusty Galaxy SED Model (Denny et al. 2013) 
The UCSB group is publishing a paper on detection of far IR sources and below I summarize some of this 

from Sean Denny’s senior thesis (2011) and recently submitted paper (Denny et al 2013).  

Blain et al. (2002) developed a method for modeling the SED of far-infrared galaxies. We have used his 

method to generate some of our own models. About 99% of the energy released by galaxies in the 

submillimeter and far-IR wavebands is produced by dust grain thermal emission; the remainder is 

accounted for by fine structure atomic and molecular rotational line emission. Dust emits a relatively 

featureless (in terms of sharp lines) modified blackbody spectrum. We do not consider polycyclic 

aromatic hydrocarbons (PAH) here. The minimum parameters necessary to describe this spectrum are a 

dust temperature    and an emissivity function    (Blain et al. 2002). 

In a given galaxy there will be a distribution of dust temperatures, corresponding to the structure and 

environment of each grain. For our purposes, we took    to be the temperature of the coolest grains, 

that significantly contribute to the submillimeter and far-IR energy output of the galaxy. We focus on the 

observation of distant galaxies, for which there are very few spatially and spectrally resolved images, so 

                                                           
1
 The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, California Institute of 

Technology, under contract with the National Aeronautics and Space Administration. <http://ned.ipac.caltech.edu/> 
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we assumed a volume averaged emissivity function of frequency. A future paper will consider line 

emission. We model 

         
 

(5.1) 

The value of   is usually assumed to be between 1 and 2. The spectral energy distribution (SED) of the 

dust emission can now be expressed as      

                   
 

(5.2) 

Where         is the black body radiance with units of  
 

       
  

It is important to note that this model is valid only in the submillimeter to far-IR wavebands. In the mid-

IR and near-IR wavebands, dust grains with a temperature greater than    and stellear emission will 

prevent the SED from dropping with a Wien exponential (Blain et al. 2002). In these bands it is instead 

reasonable to model the SED as a power law 

         
 

(5.3) 

At higher wavelengths, the SED once again deviates from a modified blackbody function. The slope of 

the SED changes abruptly at about 3 mm, at which the dominant contribution shifts from thermal dust 

emission to synchrotron radio emission (Blain 1999). Synchrotron radiation is generated by the 

acceleration of ultra-relativistic charged particles through magnetic fields, and obeys a power law 

function of frequency 

              
 

(5.4) 

Where typically            .The SED model we used for all frequencies of concern can now be 

expressed as a piecewise function 

 

     

 
 
 

 
 
                 

   
    

  
  

 

 
  
     

  

                

                   

 

(5.5) 

       is the transition frequency from the modified blackbody to the high frequency inverse power law. 

It must be found by fitting data. Additionally, equation 5.5 is only a proportionality; the constants of 

proportionality can only be found by tailoring the SED to match a particular galaxy with some known 

values of     . IRAS data for NGC 958 was fit to yield parameter values            ,       -    , 

   , and      K (Blain et al. 2002, Blain 1999) and shown in figure 5.2. 
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Figure 5.2: Fit piecewise SED model of NGC 958. Parameters: z = 0.0196, Td = 21K, αradio = -0.8, β = 2, αhigh 

= -1.95 

NGC 958 has a redshift of 0.0196. In order to model galaxies at different redshifts, the SED must be 

scaled, which we now describe. The luminosity distance      of an object is defined by the relationship 

between bolometric (i.e. integrated over all frequencies) flux   and bolometric luminosity   

 

      
 

   
 

 

(5.6) 

The source function of a galaxy varies widely with frequency, rendering a bolometric approach 

unhelpful, and differential forms of   and   must be used,      and     . As a result, the k-correction 

must be applied to either the flux or luminosity because the redshifted object is emitting flux in a 

different band than in which we are observing. 
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Figure 5.3: Luminosity Distance as a function of redshift for the Benchmark Model of the universe. This 

is the cosmological model that we assume to generate our SEDs. Parameters assumed: ΩM = 0.3, ΩL = 

0.7, w0 = -1, H0 = 70 

If a source at redshift   emits at frequency      , we observe it at frequency      

      
     
   

 

 
(5.7) 

For a bandwidth at the source       , between frequencies        and       , the bandwidth at we 

observe is      , between frequencies       and       

                                            

      
      
   

 

 

(5.8) 

The differential flux observed,     , is related to the differential flux being emitted,   , by 

 
      

       
       

 

 

(5.9) 

In the case of NGC 958, the SED we modeled was not the emitted spectrum, but the spectrum at 

         . As a result, if we want to find the spectrum at some   , we must use equation 5.9 twice 

and take the ratio of the results 

      

     
  

    
    

  
     

     
 
 

 

 

(5.10) 

  is the frequency the observer sees from the galaxy at redshift   . 
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Since we were interested in observing the galaxy at some redshift   , and we know the functional form 

of       from equation 5.9, the last step is to map       into the    frame (Hogg 1999) 

 
    

    
    

    

       
    
    

  
     

     
 
 

   
    
    

     

 

(5.11) 

Equation 5.11 incorporates the effects of the inverse-K correction. Because the absolute change in 

shifted frequency is proportional to the emitted frequency, the bandwidth of the redshifted signal is 

narrowed. Because of this compression, the differential flux,      picks gains an extra factor of  
    

    
 . 

Additionally, since     is mapped into the    frame, if    is on the Rayleigh-Jeans portion of the SED, 

then       will scale as ~ 
    

    
 
 

, and will increase significantly for large z. 

The inverse K-correction is shown in Figure 5.4 and the correction applied to the template SED is shown 

in Figure 5.5The inverse-K correction greatly benefits the observation of millimeter-wave and microwave 

galaxies with the peak effect at 70 GHz. The effects are less significant in the submillimeter regime, 

though they do offer benefits at high redshift. Note that the overall effect is make high redshift galaxies 

in the far IR much brighter than naively expected from a pure inverse square law analysis. A z=2- 

equivalent dusty galaxy (if it existed) could be brighter than a z=1 dusty galaxy for example. This offers 

the possibility of a unique probe of high redshift structures. 

 

 

Figure 5.4: Intensity vs. redshift for our model SED highlights the effects of the inverse K-correction for 

frequencies 0.07-1THz for redshift out to z=20. 
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Figure 5.5: Shifted template SED for various redshifts. 

5.3 Signal Integration 
Similarly to our calculation of BLING we must perform an integration to get the full signal power seen by 

our detector. By making the assumption that we are viewing a point source we are able to ignore the 

solid angle component of our radiance and our total signal power can be calculated as 

 

          
 

 
 
 

           
   

  
 

   
  
 

 

 

(5.12) 

With d the diameter of the primary mirror, τ(ν) the frequency dependent transmission, Δν the 

bandwidth, ϵ is the telescope efficiency, and I(ν) the intensity of the source. Notice that I(ν) is equivalent 

to the power per unit bandwidth S(ν) used in section 4.0.2. The quantity P has units of Watts and can be 

used in tandem with our total BLING to calculate our integration times. The telescope efficiency ϵ is a 

number between 0 and 1 that indicates the proportion of the primary mirror area that is able to 

transmit light to the detector. For this study we assumed that all of our telescopes have efficiencies of 1, 

but will have to investigate further as we continue to refine our model. 

6. Integration Time 
We now have the signal for our galaxy as well as a total noise calculation for each of our telescopes. 

Furthermore the signal and noise are in units than can be manipulated to provide a time in seconds. We 

specifically wish to find the integration time for our system given a specific signal to noise ratio. The 

integration time will provide the amount of time our telescope has to point at M87 until it has achieved 

the desired and statistically significant signal to noise ratio. Integration time is a very good metric for 

telescope performance because it combines the telescope's ability to pick up the signal as well as the 
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disadvantages it may encounter due to noise. Furthermore integration time is simple to comprehend 

and highly relevant to major telescopes in which people sign up for certain amounts of time. If a 

telescope takes a long amount of time to resolve a simple object, very few scientists will have the ability 

to work on it. 

We must use our values of total BLING and integrated signal to create a signal to noise ratio. By 

rearranging our definition of BLING we get an expression for our total noise power PN in Watts 

 
        

 
      

    

 
 
 

 

 

(6.1) 

Now we define our signal to noise ration σ as 

 
   

  
  

 

 
(6.2) 

With PS our total signal power and PN as above. By combining these two equations and solving for time 

we have our formula for integration time 

 

  
    

 
  

    
 

   
      

  
 
 

 

 

(6.3) 

With this simple formula we are now able to calculate and compare integration times across our 

modeled telescopes. For this study we chose σ=5 which is typically the smallest signal to noise ratio 

deemed significant. Figure 6.1 provides us with these integration times for our modeled telescopes. 

Graphically the integration time is useful as a quick glance at this plot provides a reader with 

information on the effectiveness of the telescope in units that are easy to comprehend. We now can 

definitively see the advantages that a space telescope such as James Webb has over a land based 

telescope such as Keck. 
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Figure 6.1: Integration times at R=10 for our four telescopes for observing M87 IF it were a point like 

source (i.e. fits into a single pixel) and SNR of σ=5. 

6.1 Limiting Signal 
Another metric used by cosmologists to quantify a telescope's observational power is the limiting flux 

density. This limiting flux is a signal that is calculated by specifying an integration time and a desired 

signal to noise ratio. Using these parameters we calculate the minimum signal strength that the 

telescope can resolve in a given integration time. The mathematical grounds for this calculation are 

trivial from equation 4.11 

 
   

      

  
 
 

                    
     

  
       

 

(6.4) 

This calculation only depends on our calculation of total BLING and allows us to check the noise model 

against recorded data. As can be seen through the comparison of the JWST line in Figure 6.2 our noise 

model is quite reasonable for JWST and close for SOFIA. We may also calculate our Limiting Flux by “un-

integrating” our limiting signal or dividing by the bandwidth 

 
               

                

   
 

      
 

     
  

 

(6.5) 

Where A is the effective area of the mirror and R is the spectral resolution. 

A crucial noise source we have not yet included is the OH emission in the atmosphere which is very high 

at short wavelengths (1-3 microns). The lack of included OH emission certainly accounts for some of the 

discrepancy we see between our calculated limiting flux and the recorded value for SOFIA. Also recall 

that our current model uses a much lower mirror emissivity than has been reported by SOFIA. 

Additionally we have not included noise from the detector, which is generally quite small, but will also 
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bring our model closer to the calculated values. It is also important to note that the true JWST values 

shown on the left of Figure 6.2 are requirements rather than calculated values. As our calculated values 

fall consistently and slightly below these requirements, we may have some confidence in our noise 

model. 

Figure 6.2: Limiting sensitivity plots in Janskys (Jy). Left: A collection of sensitivity values 

(http://www.stsci.edu/jwst/science/sensitivity) Right: Modeled values for our four idealized 

telescopes. The Keck and SOFIA in reality will be far worse than this. 

7. Conclusions 
In this study we have made significant progress towards the creation of a comprehensive model for 

infrared astronomy. We combined models for noise caused by our telescope’s mirror, the Earth’s 

atmosphere, and extraterrestrial emissions to describe the total noise a telescope will encounter. 

Furthermore this model can easily be adjusted for different telescope altitudes, mirror coating, and 

mirror diameter, facilitating comparison between current and hypothetical telescopes. We are able to 

confirm the accuracy of our noise models through comparison of modeled limited sensitivity with 

collected data. 

To compare our four telescopes in a lifelike situation we used data compiled by the Infrared Processing 

and Analysis Center (IPAC) for the spectral energy distribution of the Messier 87 galaxy as one example 

of a source SED. With this signal we calculated integration times for our four telescopes. These 

integration times provided a simple and clear platform to compare our four telescopes as well as any 

future simulations. With the infrastructure we have built we can easily expand this study by including 

more SEDs, such as the dusty SED outlined in section 5.2 as well as more telescope scenarios. 

The progress made in this study has merely set the stage for our investigation of near and mid infrared 

observation. As we proceed, we can improve on our noise model by including the OH emission within 

the atmosphere as well as the noise generated by the detector of the telescope. We also plan on 

expanding to more telescope scenarios particularly by modifying the parameters of various more exotic 

scenarios. Future rounds of simulations will control for particular parameters in our setup, such as 
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mirror temperature and emissivity. Through such analysis we will be able to pinpoint the most essential 

features of infrared telescopes. 

This study began with investigation of NASA’s current super-project James Webb Space Telescope. From 

early on in our research we knew that JWST was going to be much more sensitive than any current 

telescope, but we needed a method to quantify this advantage in sensitivity. We now have a model that 

describes this phenomenon and can progress to determining ideal parameters for infrared telescopes. 
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