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Synopsis

Mathematics education has a diverse and complex history. After decades of na-
tional reform, mathematics classrooms today are still in desperate need of change.
This article examines the current state of factory-model schooling through the
lens of Mandelbrot’s The Fractal Geometry of Nature in order to rethink ped-
agogic practices.

Keywords: mathematics education, factory-model schools, fractal lens, mathe-
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1. Introduction

As with many institutions in the United States, mathematics education has
a rich and complex story. Our field has been shaped, in large part, by ma-
jor reform initiatives over several decades; but, despite reform, instruction
in mathematics classrooms often looks similar to how it did shortly after
the Industrial Revolution. At the turn of the twentieth century, progres-
sive pedagogical ideals were beginning to gain popularity in North America.
Constructivist educators, like Rousseau and Dewey, believed teachers should
take students’ interests into account, rather than serving as “taskmasters”
[14, page 329]. These approaches to teaching and learning were in direct
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contrast to traditional, lecture-based disseminations of information during
this period in history.

To worsen the situation, educational reforms driven by “back to basics” fed-
eral initiatives, like A Nation at Risk and No Child Left Behind, have empha-
sized efficiency in mathematics education, thus propagating classrooms that
look strikingly similar to factories and are managed like businesses [14, 28].
This model of schooling has been in place for some time and the pendulum
seems like it is unlikely to swing back to progressive ideals in the near future.
Kilpatrick summarizes the progress in mathematics education this way:

. . . any change in the mathematics taught in school is likely to
come rather slowly and that pressures on the public schools from
politicians and the public may be as powerful in shaping such
change as anything the professional mathematics education com-
munity proposes. [14, page 332]

It is easy to become discouraged when attempting to navigate the current
climate of schools; however, many teachers are pushing against the norm and
are beginning to navigate these spaces [13].

Despite national pushes for efficiency in schools, classrooms can still be
thought of as interconnected systems, which include relationships between
students, teachers, and their environments [5]. In the following paragraphs,
my aim is to address issues found in navigating today’s educational land-
scape by borrowing ideas from Benoit Mandelbrot’s The Fractal Geometry
of Nature [18], to shape my theoretical framework. My hope is to use frac-
tal terminology to connect how educators can begin navigating complexities
found in mathematics classroom environments.

2. Fractal Geometry as an Interpretive Lens

In The Fractal Geometry of Nature [18], Mandelbrot outlines the nature of
fractals by providing nomenclature for and understanding of what humans
had not be able to understand mathematically what they had observed in
nature for centuries. When observing objects in nature, one may see inter-
esting shapes found in clouds, self-similarity in branching patterns in plants,
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and varying degrees of roughness in rocks and stones. In order to think about
geometry in the natural world, new terminology was needed to define what
was being studied. Mandelbrot used the term fractal to describe fracturing
found in objects that appeared to have reiterative patterns and degrees of
irregularity [18]. No longer did mathematicians have to use inexact language
to define the geometry of nature. In a similar sense, there are systemic issues
found in mathematics classrooms that need new nomenclature and ways to
understand deeply rooted issues associated with factory-model schools.

In the following, I would like to describe in more detail the status of today’s
schools and some ramifications of the current model of schooling before fo-
cusing my attention on mathematics classrooms, in particular. But to be
able to do any of that, I will first need to say more about fractals.

2.1. Need for Fracture

Fractal geometry was not a concept which had previously existed in mathe-
matics prior to the mid-twentieth century. The term fractal was concocted
in order to better describe the mathematics of nature and to better under-
stand famous mathematical monsters of the nineteenth century. Mandelbrot
states:

I coined fractal from the Latin adjective fractus. The correspond-
ing Latin verb frangere means “to break:” to create irregular
fragments. It is therefore sensible — and how appropriate for
our needs! — that, in addition to “fragmented” (as in fraction or
refraction), Fractus should also mean “irregular,” both meanings
being preserved in fragment. [18, page 4]

In the words above, there are two parts that stand out and which I believe
are relevant to the status of education today. The first is “to break” and the
second is the idea of something being described as “irregular.”

2.1.1. Frangere.

Fractus, when used a verb, means “to break.” It is clear that our education
system has systemic issues that need to be critically examined, even to the
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point of fracturing them to recognize the brokenness that exists within the
system. When speaking about the predominant model of schooling in the
United States today, Noddings describes “twin economic aims of education”
[21, page 75]. These twin aims are to advance the economic supremacy of
the United States and to produce students for economic success. In essence,
this is similar to the “functional” model of schooling proposed by Bobbit [3]
in the decade prior to the Great Depression. Functional, or factory-model,
schools recognize students as potentialities on the path to maturity [27].

The idea of fractus imposed on our educational system is not to literally
break it, but to recognize that the system is outdated. In many ways, soci-
ety has progressed and mathematics as a field has evolved, yet our schools
are still designed to produce students to fulfill needs within society deter-
mined decades ago. Furthermore, what we are producing through schools
can sometimes be far less noble than what prosaic politicians paint through
eloquent speeches. Anyon [1] points out that the needs we are trying to fill
are often taught through a hidden curriculum, which can inevitably reinforce
socioeconomic status. In other words, the children of the elites are being
taught to be elites while the children of the working class are taught how to
follow orders.

Additionally, unhealthy systems, like tracking in mathematics education, are
consequences of factory-model schools. Tracking is essentially sorting stu-
dents based on their intellectual abilities and prior achievements [23]. A
major problem with tracking is the manner in which students are sorted.
The process is often based on factors such as race and/or socioeconomic
status, rather than one’s abilities. In a similar fashion to teaching a hidden
curriculum, tracking students in mathematics often leads to the reproduction
of social class and unequal access to resources [2].

2.1.2. Irregularity.

In his 2010 TED Talk [19], Mandelbrot spoke to the notion of irregular-
ity and how irregularities can be described using fractal geometry. This
idea takes seemingly ordinary, but irregular, objects found in nature (like
rocks or clouds) and examines them at high resolutions. When we do that,
more details are revealed about the object itself. Unlike Euclidean geometry,
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Mandelbrot’s fractal geometry gives mathematicians the ability to measure
irregular objects and allows us to describe them geometrically by dimension,
length, and surface area [17].

In a similar way, today’s education system tends to shy away from the irregu-
larities found in schools. Since the dawn of the new millennium, schools have
been subjected to reform-accountability and standards movements such as
No Child Left Behind and Common Core —neither of which take into consid-
eration the complexities that exist in schools. Accountability measures like
these are simply quick-fix ideas set forth by politicians that fail to take into
consideration the long term effects they have on schools and society. Schools
tend to focus on atomized sets of standards that reduce the potentialities of
meaningful content to “mush” [20, page 85]. When looking at school systems
in the United States, it does not take long to see the irregularities when we
start to increase our resolution. Rather than looking critically at schools as
a whole, my intention is to now narrow the focus to look at complexities
found in mathematics classroom environments and how teachers can begin
navigating within their tangible spaces.

3. Classrooms as Fractals

Fractals are complex mathematical structures that involve various levels of
irregularity and an emergent nature of self-similarity. The same can be said
of classrooms found in the United States today. The manner in which teach-
ers go about establishing their classroom environment can vary drastically.
The closer one examines these environments, the more one will learn about
teachers’ philosophies and ideologies. While classrooms can vary significantly,
there are aspects of many classrooms that remain remarkably similar. Class-
rooms generally involve teachers and students interacting, desks or tables to
work on, a front of the room, a back of the room, and content in which to
engage. Environments can shape and form students’ and teachers’ identities.
Likewise, students’ and teachers’ lived experiences can also impact classroom
environments [13]. This dialectic is important to remember as teachers build
supportive places for students to learn.

Speaking in general terms, while teachers may be subjected to working within
factory-like models of schooling, there are ways to navigate this landscape
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that effectively support students and their learning. In the following para-
graphs, I outline human aspects within classrooms that teachers can imple-
ment with potentially lasting impacts on students and communities. These
include fostering spaces for collaboration, building positive relationships, and
constructing democratic classroom norms. My intention is not to impose a
particular curriculum ideology or teaching philosophy onto teachers, but to
provide a platform for teachers to begin thinking about the spaces in which
they teach.

3.1. Strange Attractors

Prior to the seminal work published by Mandelbrot, strange attractors were
being studied outside of mathematics. Strange attractors correspond to
chaotic systems in which “strictly deterministic equations of motion” result
in unpredictable phenomena [5]. When talking about the chaotic nature of
fractals, Mandelbrot states:

. . . turbulent intermittency was the first major problem I at-
tacked (starting in 1964) using early forms of fractal techniques,
and (quite independently) the theory of strange attractors took
off for earnest with the study of turbulence in Ruelle & Takens
(1971) [26]. Thus far, the two approaches have not met, but they
are bound to meet soon. [18, page 193]

In fact, the two approaches have now met and are known to be intricately
connected. In order to analyze the chaotic nature of dynamic systems, it is
paramount to be able to identify and classify attractors by creating phase
portraits based on qualities within systems. Within chaotic systems there
are often points of instability, called bifurcation points. These points “mark
sudden changes in the system’s phase portrait” and are often viewed as points
of emergence [5, page 116]. Mandelbrot’s geometry provided language to
describe this chaotic attractors within phase portraits.

In many ways, traditional classrooms are quite Euclidean in nature and
chaos is generally discouraged. When looking inside factory-model class-
rooms, desks are most likely arranged in rows, facing the front of the room.
This is sometimes out of necessity because of overcrowding; and, other times,
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because teachers feel like they need to disseminate as much information as
possible for success on exams. Mathematical metaphors like strange attrac-
tors and bifurcation points can be quite powerful in thinking differently about
the dynamics that exist in classroom environments. To move away from
factory-model schools, it is important to teachers to recognize the spaces
they create in classrooms can produce rich conversations and collaboration
between students.

Creating collaborative spaces and opportunities for substantive conversations
in classrooms is more than increasing the amount of discussion-based activ-
ities and horizontal information flow [24]. Coupling this with the notion of
bifurcations points and strange attractors can allow for meaningful conver-
sations to take place in mathematics classrooms. As teachers allow for dis-
cussion to revolve around meaningful mathematics that allows students to
critically examine information [16], there exist opportunities for turbulence
to revolve around these topics. As chaos increases, conversational bifurca-
tion points allow for dialogue to become emergent in nature and students
can begin grappling with and making meaning about personally meaningful
mathematical topics. This includes students making sense of “patterns of
reasoning, justification, conjecturing, and abstraction” [15, page 309].

3.2. A Lesson from Hausdorff

Functional models of schools typically use prescribed curriculum with pre-
dictable and quantifiable learning outcomes. Classrooms, however, are made
up of unique individuals with varying degrees of mathematical interest and
prior knowledge. As individuals in classrooms interact with on another, im-
pactful relationships between students and between students and teachers
begin to emerge [6, 29]. As teachers create spaces that are more collabora-
tive in nature, it is imperative to begin building positive relationships with
students.

In fractal geometry, there is an interesting way of describing the dimension-
ality of objects with high levels of irregularity. When contrasting dimensions
found in Euclidean space with dimensions of fractals, Mandelbrot was able
to incorporate the work of Hausdorff into his new geometry. In referencing
Hausdorff’s dimensions he states:
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Euclid is limited to sets for which all the useful dimensions co-
incide, so that one may call them dimensionally concordant sets.
On the other hand, the different dimensions of the sets to which
the bulk of this Essay is devoted fail to coincide; these sets are
dimensionally discordant. [18, page 14]

In a similar fashion, classrooms can be difficult to define, in general terms,
because of the diversity that exists within them. When working within reform
movements that emphasize test scores, teachers are often forced to see their
classrooms as dimensionally concordant.

One way for teachers to begin building positive relationships with students
is through care. According to Noddings [20], healthy, caring relationships
between students and teachers are essential to establishing supportive class-
room communities. Furthermore, “parents and taxpayers need to know that
any content–no matter how important symbolically–is worthless in a class-
room unless there are strong relationships between teacher and students as
well as appropriate teaching practices” [7, page 185].

The integration of Hausdorff’s work into defining fractals dimensionality was
key to allowing Mandelbrot to describe the degrees of roughness a fractal had.
In a similar sense, when teachers are able to build positive relationships with
their students, classrooms become more dynamic and can have dimensions to
them that do not fit the norm. Approaches to building positive relationships
varies teacher to teachers, depending on how comfortable teachers feel sharing
various aspects of their lives. Regardless of levels of comfort, deep care for
students’ academic, social, and emotional well-being is critical. As teachers
navigate their practice in schools that promote the twin economic aims of
education, building positive relationships with students is priority one. By
doing so, teachers learn to work within dimensionally discordant spaces that
can positively impact students.

3.3. The [In]finite

What students learn in classrooms in factory-model schools, is often orches-
trated by political stakeholders outside classrooms. Curricula are often sterril
and teachers’ roles are reduced to that of a “technical-production manager
who has the responsibility for monitoring the efficiency with which learning
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is being accomplished” [8, page 191]. As teachers move away from functional
roles and begin to recognize the complexities that exist within their classroom
environments, it does not take much to see the amount of fractal irregularity
that exists.

One of Mandelbrot’s most famous problems focuses on measuring the coast-
line of Great Britain. He makes the argument that coastlines of islands have
infinite perimeter, depending on the method chosen to measure the coast.
Paradoxically, as the perimeter of a coastline diverges towards infinity, its
area converges to a finite number.1 Mandelbrot extends this idea further in
saying:

To begin, let us echo “How Long Is the Coast of Britain” and ask
how many islands surround Britain’s coast? Surely, their number
is both very large and very ill-determined. As increasingly small
rock piles become listed as islands, the overall list lengthens, and
the total number of islands is practically infinite. [18, page 116]

In fractal geometry, measuring something differently has potential to bring
about infinite possibilities. This notion can be captured in mathematics
classrooms through the establishment of democratic norms.

According to Giroux, “transformative intellectuals take seriously the need to
give students an active voice in their learning experiences” [12, page 379]. An
alternative to functional classroom pedagogies is for teachers to engage in di-
alogue with students in order to establish democratic norms. These serve to
guide behavior and curriculum, as opposed to managing behavior and pre-
scribing curricular tasks [4]. As teachers and students work collaboratively
to establish agreed-upon normative behaviors, there begins to exist poten-
tial for substantive conversation and meaningful learning. In essence, when
teachers and students work together to agree on what they need from each
other to be successful opportunities for meaningful learning begin to increase
(like the perimeter of a coastline). Additionally, as opportunities increase,
students become more invested in what they are learning because it connects

1 Editors’ Note: The Journal of Humanistic Mathematics has recently published a
short story inspired by this observation. See [9].



Cacey L. Wells 439

to their lives. This allows for students to make meaningful connections and
learning tends to become more solidified (like the convergent area within the
infinite coastline).

4. Conclusion

4.1. Of Monsters and Boogie Men

Fleener (as cited in [25]) says that in “exploring the possibilities of and cre-
ating curriculum futures, we must address our own boogie man; those ideas,
practices, and goals that have constrained our ability to change, adapt or
create a new reality for schooling” [page 12]. For mathematicians of the
early twentieth century, their boogie men, so to speak, were what were con-
sidered to be the mathematical monsters of the day. These monsters plagued
mathematicians for decades. Mandelbrot describes the situation:

In a letter to Dedekind, at the very beginning of the 1875-1925
crisis in mathematics, Cantor is overwhelmed by amazement at
his own findings, and slips from German to French to exclaim
that “to see is not to believe” (“Je le vois, mais je ne le crois
pas”). And, as if on cue, mathematics seeks to avoid being misled
by the graven images of monsters. What a contrast between
the rococo exuberance of pre- or counterrevolutionary geometry,
and the near-total visual barrenness of the works of Weierstrass,
Cantor, or Peano! [18, page 21]

It was not until the 1960s and 70s that Mandelbrot’s work would uncover
“that some of the most austerely formal chapters of mathematics had a hidden
face: a world of pure plastic beauty” [18, page 4].

Similarly, the boogie man that has “constrained our ability to change” within
mathematics education is an oppressive, factory-model of schooling. The
complex nature of schools today can tend to be overwhelming, and oppor-
tunities for a single teacher to change the entire system seems unlikely.
However, a major theme of chaos theory we can learn from is the idea
that “small perturbations over time lead to major changes” [10, page 90].
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As teachers navigate realms in which their boogie man lurks, there are spe-
cific areas that can shine proverbial light to reveal its weaknesses. The way
we can “adapt and create new reality for schooling” is by rethinking the way
teachers structure their classroom environments to integrate spaces for mean-
ingful dialogue, continuing to build positive relationships with students, and
by establishing democratic ideals within mandated spaces.
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