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ABSTRACT 

 

Glioblastoma multiforme (GBM) is a debilitating malignant brain tumor with 

expected patient survival of less than a year and limited responsiveness to most treatments, 

often requiring biopsy for diagnosis and invasive surgery for treatment. We propose a DNA 

computer system, consisting of input, computation, and output components, for diagnosis and 

treatment. The input component will detect the presence of three GBM biomarkers: vascular 

endothelial growth factor (VEGF), caveolin-1α (CAV), and B2 receptors. The computation 

component will include indicator segments for each of these genes, and ensure that output is 

only released if all the biomarkers are present. The output component will consist of the 

therapeutic agent interleukin-12 (IL-12).  

This study will designate four groups of animals: untreated tumor-free (control), 

tumor-inoculated (RG2), treated and tumor-free (DNA), and treated and tumor-inoculated 

(RG2/DNA). In the RG2 and RG2/DNA groups, we will inoculate adult male Fischer rats 

with RG2 cells into the striatum to induce tumor growth. Rats in the DNA and RG2/DNA 

groups will be implanted with the DNA system at the same location via recombinant adeno-

associated viral vectors. The effectiveness of the DNA system will be evaluated through 

tumor size measurements, collected from brain slices stained with hematoxylin and eosin, 

and survival curve. Additionally, IL-12 localization will confirm the release of the output 

component.  

We anticipate that the DNA treatment will result in a decrease in tumor size, leading 

to smaller tumor size in the RG2/DNA group versus the RG2 group. The control group is 

expected to survive the longest, followed by the DNA group, then the RG2/DNA group, and 
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finally the RG2 group. In the DNA group, IL-12 is expected to stay localized to the 

implantation site, remaining in its unreleased stem-loop form. On the other hand, it is 

expected to be released and active in the RG2/DNA group.  

This study provides a proof of concept to demonstrate the viability and effectiveness 

of a DNA system using VEGF, CAV, and B2 receptors as biomarkers and IL-12 as a 

therapeutic output component in the RG2 model. Further research may include varying 

several of the parameters used in this study, including amount of RG2 administered, choice 

of biomarkers, quantity and choice of output component, and choice of animal model. This 

system provides a promising and innovative new approach that is less invasive than surgery 

yet is still effective in diagnosing, targeting, and treating GBM. 
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INTRODUCTION 

 

Motivation 

 Glioblastoma multiforme (GBM) is a debilitating malignant brain tumor with an 

expected patient survival of less than a year and limited responsiveness to most treatments 

(Holland, 2000). Diagnosis is difficult as well, with a biopsy required for confirmation and 

grading of the tumor. Pharmacological treatment is complicated by limited permeability of 

the blood-brain barrier, which only allows small lipid-soluble molecules to pass through 

(Nathanson and Mischel, 2010). As a result, invasive surgery is often necessary (AANS 

2013). A novel approach to diagnosis and treatment of GBM involves DNA computing. 

DNA computing simply refers to a form of computation that relies on DNA and associated 

biological material for performing computations rather than the silicon chips of traditional 

computers. Currently, much of the work with DNA computing is still in the experimental 

stage. It has been used to solve the traveling salesperson optimization problem and in 

building pattern-recognizers and simple circuits, and more recently it is being evaluated in 

disease diagnosis. DNA-based computing has advantages over silicon in that its raw 

materials are readily available at lowering costs. Additionally, DNA can store much more 

information per unit of area than can silicon. Further, DNA computation is suited to operate 

in parallel rather than serial, meaning it can perform many computations at the same time; 

this greatly increases speed and potential computing power (Hodge, 2009). Finally, DNA 

computing is more suited for computation in biological environments than is silicon, which, 

similar to many foreign bodies, has potential for immunogenic response and complications 
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(Felländer-Tsai, 2008). These factors make DNA computing a promising and exciting 

approach to disease diagnosis and treatment. 

 

 The DNA computer 

 The proposed DNA computer is based on a prototype by Benenson et al., 2001, which  

was made of DNA nucleotide sequences and enzymes. The computer was combined with 

input molecules in solution, and release of the output component was verified through PCR 

and gel electrophoresis. The DNA system has since been demonstrated in vitro for diagnosis 

and treatment of small-cell lung and prostate cancers (Benenson et al., 2004). It consists of 

input, computation, and output components, all made of DNA sequences, with the latter two 

combined into one unit (Figure 1). The purpose of the DNA computer is to detect whether 

specified biomarkers for the disease in question are present, and, if and only if they are all 

present, to release a therapeutic output component. 

The input component detects levels of certain mRNA sequences that correspond to 

proteins that are typically over- or underexpressed in the disease in question. That is, it 

detects known biomarkers for a given disease, and to be effective, it requires the disease to 

have signature biomarkers. The computation component, or diagnostic molecule, is attached 

to the output component, which is an inactive drug treatment for the disease in question, 

encoded in a stem-loop shape. The diagnostic molecule contains short DNA sequences to 

represent each of the biomarkers the system checks for. As each biomarker is found to be 

present, that section of the diagnostic molecule is cut off, which brings the diagnostic 

molecule closer to activation of the output drug. Eventually, only the output component 

remains, which is now active and free to be released and act on its disease target.  
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For each biomarker to be detected, the input component includes two separate 

„software‟ strands, one of them („software strand 2‟) bound to a protector strand (Figure 1A). 

The protector strand has an affinity for the overexpressed mRNA („disease-associated 

mRNA‟), and if this biomarker mRNA is present in sufficient quantity, the protector strand 

will bind to it, freeing software strand 2. The two software strands then become free to bind 

to each other, creating a „software molecule‟ with a sticky end, indicating presence of the 

first biomarker.  

This molecule joins with the Fok1 enzyme to form a „hardware-software complex.‟ 

(Figure 1B). Fok1 is a restriction enzyme which binds double-stranded DNA at a particular 

recognition site (GGATG), then cleaves the DNA sequence at 9 and 13 nucleotides away 

from the recognition site. The software molecule described above contains this recognition 

site, causing Fok1 to bind to it. The sticky end of the software molecule is complementary to 

a portion of the diagnostic molecule which represents overexpression of the first biomarker 

(„Gene 1‟). The hardware-software complex will then bind the diagnostic molecule, and Fok1 

will cleave the portion of the diagnostic molecule indicating overexpression of the first 

biomarker (Figure 1C).  

For each gene to be detected, there is another portion of the diagnostic molecule, and 

a different set of software strands. If all the genes to be tested are overexpressed, parts of the 

diagnostic molecule will be progressively cleaved until only the output component remains. 

The output component, a stem-loop drug that is inactive until the rest of the diagnostic 

molecule has been cleaved (Figure 1C), will then be free to be released and act on its target 

(Shapiro and Benenson, 2006). This system has not yet been tested in vivo nor in brain 
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tumors, so this proposal is intended as a proof of concept emphasizing the potential viability 

of such a system in vivo in the brain.  

 

 

Figure 1. Schematic of DNA computer. (A) The input component includes two separated software 

strands, one of which is bound to a protector strand. The protector strand has a high affinity for the 

biomarker mRNA and binds it, allowing the two software strands to bind to one another. (B) The 

active software molecule contains a binding site for Fok1 enzyme. Fok1 binds at that site, forming a 

hardware-software complex, and is able to cleave the DNA at 9 and 13 nucleotides from that site. (C) 

The sticky end of the software molecule is complementary to the indicator for Gene 1 in the 

diagnostic molecule. It binds at this location and Fok1 cleaves the indicator, exposing the next 

portion of the diagnostic molecule. A different software-hardware complex forms, corresponding to 

Gene 2. The process continues until the output component, a drug coded in a stem-loop, is released. 

This model was initially described in Benenson et al., 2001, and this figure and description are 

adapted from Shapiro and Benenson, 2006. 

 

GBM models 

 Several glioma models exist in both mice and rats. We propose using the RG2 Fischer 

rat model, which was created at the Koestner laboratory at The Ohio State University in 

1971, for several reasons. The model has a growth pattern similar to that of human GBM in 
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that it spreads invasively throughout the brain and is not encapsulated in any one area (Barth 

et al., 2009). Additionally, if we were to use a tumor implant from a different species, there 

would be greater potential for an immunogenic response. Since we are not using xenografts, 

immunocompromised rodents are not required. The RG2 model is non-immunogenic, 

compared to the weakly immunogenic F98 model and strongly immunogenic C6 and 9L 

models (Adam et al., 2006). As compared to mouse models, RG2 provides a larger area for 

stereotaxic implants and evaluation of tumor progression via MRI and histology (Jacobs et 

al., 2011). Thus, it is an ideal model for administrating and evaluating our proposed 

treatment.  

 The RG2 cell line was established in Fischer-344 rats using ethylnitrosourea, a potent 

mutagen (Matsukado et al., 1998). It is commercially available and can be stereotaxically 

injected into the striatum in various quantities. Introduction of 500 RG2 cells has shown 

minimal tumor growth, which is ineffective for evaluating treatment efficacy. Inoculation 

with 1000 cells results in a mean survival of no more than 1 month, limiting the amount of 

data that can be collected (Aas et al., 1995). Therefore, based on prior experiments and 

personal correspondence with authors, we propose inoculation with 800 RG2 cells (Ceberg, 

Foray).  

 

DNA system components 

 The input component of the DNA system will detect mRNA levels of proteins that are 

typically overexpressed in our GBM model. These include vascular endothelial growth factor 

(VEGF), caveolin-1α (CAV), and B2 receptors (Suzuki et al., 2004, Beaumont et al., 2009, 

Sibenaller et al., 2005, Valable et al., 2008). VEGF is a signal protein that stimulates 
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generation of blood vessels and is often overexpressed in tumors. CAV is a gene for 

membrane proteins called caveolae, and has been found to be up-regulated in several tumors 

and cancer cell lines (Shatz and Liscovitch, 2008). B2 receptors are G-protein coupled 

receptors for the peptide bradykinin, and have been implicated in tumor growth (Ikeda et al., 

2004). The input component will include protector strands with strong binding affinity to the 

mRNA associated with the genes for these proteins.  

The computation component will include a segment for each of these three genes, and 

will end in a stem-loop output component. The output drug will be interleukin-12, a strong 

anti-tumor agent shown to be a useful treatment for RG2 (Roche et al., 2010). IL-12 

stimulates immunogenicity and inhibits tumor angiogenesis, and has been effective in many 

tumor models (Xia et al., 2013), though it has had inconclusive results on tumors in humans, 

and clinical trials are still in progress. 

Administration of the combined computation and output components will be 

mediated by the vector recombinant adeno-associated virus type 2 (rAAV2), as described 

previously (Chiu et al., 2012). rAAV2 is a vector for gene delivery that has been used in 

studies involving a variety of diseases (Coura and Nardi, 2008). It is capable of targeting 

neurons, is nonpathogenic, and has very effective purification methods (Burger et al., 2005), 

making it an ideal vector for our purposes. 

 

Aims 

 Our aims are threefold: (1) determine if the components of this DNA system can be 

successfully introduced in vivo via vectors, (2) evaluate the effect of this system on 

glioblastoma size as seen in the RG2 model, and (3) evaluate the effect of the system on 
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survival curve of RG2 rats. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 12 

METHODS 

 

Animal model 

 Adult male Fischer 344 rats inoculated with 800 RG2 cells will be used as the animal 

model. Forty-two animals will be divided into 4 groups: untreated, tumor-free controls 

(“Control”, n=10), untreated RG2-inoculated controls (“RG2”, n=12), tumor-free DNA-

treated controls (“DNA”, n=10), and DNA-treated RG2-inoculated experimental group 

(“RG2/DNA”, n=10), where treatment consists of being administered the DNA system. This 

will allow us to control for any adverse effects the DNA system implantation may have 

caused, by comparing DNA animals against Control animals. We will also be able to ensure 

that the output module is only released when tumor indicators are present, by comparing 

DNA animals against RG2/DNA animals.  

Two animals from the inoculated untreated group will be sacrificed 14 days post-

inoculation and their brains analyzed histologically, as described below, to confirm tumor 

growth. Additionally, 5 animals from each group will be sacrificed at a time point 14 days 

post DNA system implantation (21 days post tumor inoculation) and their tumor sizes will be 

measured. The remaining animals in each group will contribute to the survival curve data and 

will be analyzed histologically post mortem. 

 

RG2 inoculation 

Pentobarbital at a dose of 45 mg/kg administered intraperitoneally is expected to 

provide anesthesia for 1 to 2 h. An intracerebroventricular injection of 800 RG2 cells will be 

administered to the striatum using the following stereotaxic coordinates: Bregma -0.5 mm, 
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midline ±3.0 mm, depth -4.6 mm below dura (Greenwood et al., 2012). Past studies have 

successfully administered RG2 cells to various brain regions including the striatum, which 

we have selected for ease of stereotaxic tumor-cell delivery. The tumor will be unilateral, 

with half the animals receiving it on the right side and half on the left. Control and DNA 

group animals will receive sham saline injections to control for effect of injection. The area 

will be sealed with bone wax and the incision sutured. Animals will be monitored until full 

recovery from anesthesia and given buprenorphine at a dose of 0.05 mg/kg for pain. Animals 

will be given 7 days of recovery time post inoculation before DNA system implantation, 

which has been previously shown to be sufficient for tumor uptake prior to treatment 

(Matsukado et al., 1998). Body weight will be monitored throughout the study to ensure that 

animals remain healthy. 

 

DNA system implantation 

The DNA system will be implanted using rAAV2, with separate vectors for each of 

the three input components as well as for the computation-output module. This vector was 

selected based on the size of the DNA components to be implanted. The computation-output 

module is about 13 Kbp (Roche et al., 2010) and the three input components are 30, 30, and 

10 Kbp (NCBI Gene), making it impossible to include all the components in a single vector. 

The vectors will be injected stereotaxically at the tumor inoculation coordinates indicated 

above, following a similar protocol, with sham injections for the Control and RG2 groups. 

 

Tumor size measurement 

Tumors may be visualized using the contrast agent gadoteridol and MRI (Behrens et 
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al., 2000), but our emphasis will be on histological evaluation. Following sacrifice of 

selected animals, as described in the Animal Model section, coronal brain slices will be 

cryostatically sectioned and stained with hematoxylin and eosin (H&E), a staining agent 

consisting of hematoxylin, which dyes nuclei blue, and eosin, which provides a red 

counterstain. This will be done as described previously (Aas et al., 1995). Tumor size will be 

calculated using the brain slice from each animal with the largest tumor representation. The 

largest and smallest diameters across the tumor will be measured (both will be the same if the 

tumor is a circle) and then a surface size estimated with the following equation: 

1/6 π s L  

where s and L are the small and large diameters, respectively (Adam et al., 2005). 

 

Interleukin-12 localization 

 Several coronal brain slices obtained from each animal as described above will be 

stained for IL-12 as previously described (Timoshanko et al., 2011). Briefly, we will incubate 

the sections with anti-IL-12 p40 monoclonal antibody and Alexa Fluor 594 dye. Slices will 

be analyzed under confocal microscopy to visually determine IL-12 localization relative to 

tumor localization. See Figure 2 for an example of IL-12 staining. This will show whether or 

not the IL-12 was released from the DNA system, and is a way to check if the input and 

computation components are working correctly.  
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Figure 2. A demonstration of staining for Interleukin-12 under confocal microscope in mouse 

glomeruli. (A) IL-12 expression (red) is visible in WT mice that have been administered IL-12. (B) No 

IL-12 expression is visible in IL-12-deficient mice. Modified from Timoshanko et al., 2001. 

 

Survival curve 

 The survival curve will be based on how many animals from each group survive at 

each day post tumor inoculation. Survival numbers will be measured daily for each of the 

groups at 1100 hrs. 
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RESULTS 

 

We expect tumor visualization using H&E stain to demonstrate tumor growth in the 

inoculated groups (RG2 and RG2/DNA) due to uptake and growth of the RG2 tumor cells 

(Figure 3). Tumor size is expected to be greater in the RG2 group than in the RG2/DNA 

group (Figure 4), because the treatment with the DNA system is expected to be effective. We 

anticipate that the Control group will have a survival curve similar to that of the DNA group, 

because expression of the DNA system in itself is not expected to affect survival. These two 

groups are expected to survive longer than the other two groups, with lowest survival for the 

RG2 group (Figure 5), because we expect tumor inoculation to have a detrimental effect on 

survival, but we expect the treatment to mitigate these effects to some degree. Localization of 

IL-12 is expected to be different in the two groups that were administered treatment with the 

DNA system. In the DNA group, we anticipate that the DNA system‟s output component will 

not be released, since the biomarkers that cause the DNA system to release IL-12 are not 

expected to be present. Thus, IL-12 is expected to be located at the same stereotactic 

coordinates where it was implanted, whereas it will be released in the RG2/DNA group.  Due 

to the presence of biomarkers in the RG2/DNA group causing the DNA system‟s 

computation component to result in a release of IL-12, we expect that the expression pattern 

of IL-12 will be widespread in these animals, throughout the extent of the tumor. This is 

expected to have the effect of reducing tumor size and prolonging survival. These results will 

be verified qualitatively by staining for IL-12. 

 



 17 

 

Figure 3. A tumor visible in the right caudate nucleus using H&E staining, following stereotaxic 

inoculation of RG2 cells into the head of the right caudate nucleus. (Aas et al., 1995). 

 

 

  
Figure 4. Expected tumor size after inoculation for the four groups: no tumor, no treatment 

(Control); no tumor, treatment (DNA); tumor, no treatment (RG2); tumor, treatment (RG2/DNA). 

n=2 at the 14 day timepoint, n=5 at 21 days, and n=5 at endpoint. The Control data points are 

hidden behind the DNA data points. Data is based on similar work by Aas et al., 1995. 
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Figure 5. Expected survival curve, based on similar work by Ceberg et al., 2012, measured as the 

fraction of animals surviving at each day after inoculation from each of four groups: no tumor, no 

treatment (Control); no tumor, treatment (DNA); tumor, no treatment (RG2); tumor, treatment 

(RG2/DNA). 
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DISCUSSION 

 

This system presents a novel treatment for a condition that has traditionally been very 

difficult to treat. Due to limited permeability of the blood-brain barrier, many purely 

pharmacological approaches face challenges in targeting gliomas, resulting in limited drug 

delivery and minimal therapeutic effect (Agarwal et al., 2013). As a result, highly invasive 

surgical intervention is commonly the only effective treatment option. Additionally, 

diagnosis often depends on biopsies, which are also invasive. This system provides an 

approach that is less invasive than surgery yet could still be effective in diagnosing, targeting, 

and treating GBM. 

The system is potentially very powerful in both its ability to diagnose specific areas 

of the brain and to strategically release the treatment component when needed. This study 

demonstrates the effectiveness of IL-12 as a treatment for the RG2 GBM model, but is 

somewhat limited by its specificity; it is difficult to extrapolate this treatment to other models 

without additional investigation. Extrapolation would require demonstrating the effectiveness 

of this approach on other GBM models in addition to GBM as induced by RG2. Additionally, 

IL-12 has had mixed results in humans. One phase I clinical trial of IL-12 injections found a 

reduction in tumor size in about half the cases (Kang et al., 2001). However, another found 

limited responsiveness and severe toxicities and side effects (Atkins et al., 1997). Given IL-

12‟s inconclusive effectiveness in treating human GBM, alternative therapeutic agents should 

also be considered when applying this system to other models or species.  

Further research may include varying several of the parameters used in this study. If 

initial tumor histology does not demonstrate sufficient growth for experimentation purposes, 
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larger quantities of RG2 may be administered. Alternatively, if the survival curve does not 

allow adequate time for evaluating treatment, due to animals dying off too quickly, animals 

could be inoculated with fewer RG2 cells. Provided the tumor growth and survival curves of 

RG2-inoculated animals are satisfactory, we can evaluate effects of the DNA system. If the 

size of the system causes damage to brain tissue, due to the large volumes of viral vector 

required to deliver the system‟s components, we may consider finding input and output 

components that are fewer base pairs in length, along with a smaller viral vector.  

Assuming the DNA system implantation proceeds without complication, we can 

examine its components. If interleukin-12 localization in the tumor-inoculated animals 

demonstrates that IL-12 was not released, the DNA system‟s input components should be 

reconsidered. Lack of IL-12 release could suggest that the mRNA sequences we predicted to 

be overexpressed were not present at high levels, or were not in close proximity to the DNA 

system. Other combinations of biomarkers for this disease may be used, as well as different 

injection sites for the DNA system. Alternative biomarkers may be determined by examining 

the gene expression profile of RG2. If IL-12 was released from the DNA system in the 

tumor-free animals, it is possible that the DNA system‟s input and computation components 

did not work as expected, causing inappropriate release of the output component. In this case, 

the components‟ proper functioning should first be verified in a controlled in vitro setting, 

and depending on those results, alternate biomarkers may need to be used.  

Assuming IL-12 release proceeded as expected, with it being released in only the 

tumor-inoculated animals implanted with the DNA system, we can consider its effectiveness 

in treating tumor size and survival. If tumor size in IL-12 treated animals did not decrease, 
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we might experiment with greater doses of IL-12, bearing in mind space constraints for total 

injection volume. If this is not effective, alternate anti-tumor agents may be used.  

If all the results are as expected, the next step is to apply this approach to different 

GBM models to ascertain its generalizability prior to any clinical trials. This study is meant 

as a proof of concept to demonstrate the viability and effectiveness of a DNA system using 

VEGF, CAV, and B2 receptors as biomarkers and IL-12 as a therapeutic output component 

in the RG2 model of GBM. 

 

Potential impact 

 Within the domain of GBM, this study has a large potential impact. Following 

successful studies with varying doses, models, and input components, it has many clinical 

applications. The system could be implanted in patients predisposed to or suspected of 

having GBM. Traditionally, diagnosis via imaging is inconclusive and only confirmed 

through biopsy. This system provides a less invasive alternative which is only used when 

needed. The anti-tumor drug would only be released when all the diagnostic conditions are 

met, meaning all the relevant biomarkers of the disease are found to be present. Similar 

approaches using the DNA system could be applied to other tumor types as well. This 

methodology provides a promising and innovative new approach to diagnosis and treatment 

of glioblastoma multiforme. 
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