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The Nature of Numbers: Real Computing

Bradley J. Lucier

Purdue University, West Lafayette, Indiana, USA
lucier@purdue.edu

Synopsis

While studying the computable real numbers as a professional mathematician, I
came to see the computable reals, and not the real numbers as usually presented
in undergraduate real analysis classes, as the natural culmination of my evolving
understanding of numbers as a schoolchild. This paper attempts to trace and
explain that evolution. The first part recounts the nature of numbers as they
were presented to us grade-school children. In particular, the introduction of
square roots induced a step change in my understanding of numbers. Another
incident gave me insight into the brilliance of Alan Turing in his paper introducing
both the computable real numbers and his famous “Turing machine”. The final
part of this paper describes the computable real numbers in enough detail to
supplement the usual undergraduate real analysis class. An appendix presents
programs that implement the examples in the text.

1. Background

1.1. “Numbers are your friends.”

I used to tell my kids that. Numbers are my friends, at least.

The protagonist of Roddy Doyle’s novel The Dead Republic [3] relates how
for a period in the 1950s and ’60s an optimistic and confident Republic of
Ireland set out to educate every child, building schools, developing curricula,
and hiring teachers as needed. That remark resonated with my memories
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of grade school in Ontario (1961–68), a period that began with memorizing
addition and multiplication tables and, influenced by the so-called New Math,
ended with a few weeks doing all arithmetic calculations in base seven!

Numbers were both useful and fun in grade school. Numbers felt comfortable,
like friends.1

My understanding of numbers got foggier in high school. Learning in uni-
versity about Dedekind cuts, the uncountability of the reals, completeness,
etc., fed a certain excited arrogance, a feeling that this rigor, like a warm
mid-morning breeze, had blown away the fog. But I was wrong—some wisps
remained.

By training and by nature I’m a Numerical Analyst, which means that I com-
pute approximations to either numbers or functions, generally because you
can’t compute them exactly. I sometimes want to bound with complete accu-
racy the error in a computation. It’s like being asked to write down sin(π/4)
to 4 decimal places: 0.7071. The true value is

√
2/2 = 0.70710678 . . ., and

the error in your answer is
√

2/2− 0.7071 = 0.00000678 . . . It doesn’t matter
what comes after “678” because, whatever it is, the error is less than 0.00005,
so you’ve answered the question correctly.

Later in my career I was drawn to the question of which numbers can be
computed to any given accuracy, and how to do it. Such numbers are the
computable or constructive reals.

In my quest I found John Harrison’s Ph.D. thesis, “Theorem Proving with the
Real Numbers” [7]; Section 4.5 provides explicit algorithms for calculating
with computable real numbers.2

In studying and programming the algorithms found there, I realized that this
approach to the real numbers, the computable reals, is the natural continua-
tion of the approach begun in grade school; further, that the fog in my head
in high school was a quite natural result of diverting from the grade-school
approach without anyone having explicitly said so; and that the “rigor” of
university held false promise for someone who, like me, wants to compute
answers with guaranteed accuracy.

1“Numbers befriended him throughout the day.” [4, “The Fruit Crate”, page 81]
2Harrison presents specialized versions of methods developed by Valérie Ménissier-

Morain; see [10] and the references therein. Ménissier-Morain also presents alternate
formulations of the computable/constructive real numbers.
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1.2. Who’s the audience?

I first organized this material for presentations to the Math Club at Purdue
University. But much of the material presented here (not Section 4.14) is
accessible to motivated high school students with an interest in mathematics
and computer programming. (You’ll need the generally useful ability to
ignore mention of inessential notions you might not yet understand.) Some
of the examples come from a first course in calculus. Wikipedia articles on
fields, ordered fields, real closed fields, etc., might offer starting points for
further reading, while [2] provides an introduction to the field of computable
analysis itself.

2. History

2.1. Prehistory

Before I started Grade 1 at age six, I didn’t know my letters. I may not have
known my numerals. I probably had some ideas about numbers.

School taught us about whole numbers: adding and subtracting one-digit
numbers in Grade 1; adding with carrying and subtracting with borrowing
in Grade 2; multiplication flashcard contests in Grade 3. Everything was
about manipulating the digits of numbers.

2.2. Fractions and decimals: Diverging

Fractions and decimal numbers were developed between Grades 4 and 6,
entirely separately from each other.

Notions of accuracy were introduced with decimal numbers around Grade 4.
For example, 3.14 is a better approximation to π = 3.14159 . . . than is 3.1;
even so, 3.1 is good enough for certain purposes. Let’s say that “we know
x to n decimals” when we know n correctly rounded decimal digits of x to
the right of the decimal point. Technically, the difference between x and its
“approximation to n decimals” is no more than 1

2
10−n.

We needed to adapt the operations taught in earlier grades to work with
these new “approximations”. For example, if you want to know the value of
2π to one decimal and you argue, “Well, π is 3.1 to one decimal, so π + π is
3.1+3.1 = 6.2 to one decimal”, then you’d be wrong. 2π = 6.283185 . . ., so to
one decimal accuracy, 2π is 6.3. You need to compute the intermediate result
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to two decimals to get the final answer to one decimal: 3.14 + 3.14 = 6.28,
which, to one decimal accuracy, is 6.3. To know a sum of two numbers
correct to n decimals, you need to know the summands correct to at least
n+ 1 decimals: that’s the rule.

This process can fail , although I don’t remember my Grade 4 teacher making
a point of this. Here’s an example of when this fails in the form of a challenge
game.

Let’s assume that I’m thinking of two numbers, x and y, and I tell you that,
to two decimal places, x is 1.11 and y is 1.14. In other words, x could be
bigger or smaller than 1.11, but it rounds to 1.11; similarly, while y rounds
to 1.14, it could be bigger or smaller than 1.14.

I challenge you to tell me x+ y to one decimal accuracy.

Given what you know, you can say for certain that x + y is about 2.25, but
it could be bigger than 2.25, in which case you should round to 2.3, or it
could be less than 2.25, in which case you should round to 2.2. You just
can’t know, based on the information I gave you, whether x + y is, to one
decimal accuracy, 2.2 or 2.3.

You might think that getting more decimals of x and y could help, but no!
Ask me for three decimals of x and y, and I’ll say 1.110 and 1.140. Again,
x+ y is about 2.250, but you still don’t know whether it’s bigger or smaller
than 2.25, so you don’t know whether to round to 2.2 or 2.3. Ask me for four,
and I’ll say 1.1100 and 1.1400, confounding you again. If the numbers I’m
thinking of are exactly x = 111/100 and y = 114/100 and I give you correctly
rounded approximations of arbitrary length to x and y, you’ll never be able
give me x+y rounded correctly to one digit to the right of the decimal point.

We can conclude that it’s not always possible to compute correctly rounded
decimal sums given only correctly rounded decimals as data.

2.3. Fractions and (some) decimals: Converging

When I was 12, the teacher wrote a list like this on the board: 2/5 = 0.4,
2/3 = 0.6, 1/12 = 0.083, 5/7 = 0.714285, where the line over a string of digits
means that that string repeats indefinitely. She pointed out that rationals
seem to have decimal expansions with strings of digits that eventually repeat,
and then asked: Are (a) fractions and (b) numbers with decimal expansions
that eventually repeat, the same kind of numbers?
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That was an interesting question, and I answered yes, with the following
reasoning.

To show that fractions have decimal expansions that eventually repeat (pos-
sibly with 0’s at the end), I pointed out that when computing the decimal
expansion of p/q using long division, the remainder at each stage must be
one of 0, 1, . . ., q − 1.

Let’s consider what happens after you’ve passed the unit digit of p, so that
you’re always pulling down the digit 0 as the next digit of p in long division.
If any of the remainders after this point are 0, then the computation ends
and you’ve calculated the (finite) decimal expansion of p/q. Otherwise, in-
finitely many remainders take only finitely many values (between 1 and q−1,
inclusive), so at least one of the remainders repeats; at that point the entire
computation repeats and the string of digits in the quotient must repeat.

It was a bit harder to explain that a number whose decimal expansion even-
tually repeats is also a fraction. Let’s do an example.

Consider x = .3450234. Multiplying it by 1,000 will leave only the repeating
part to the right of the decimal point: 1,000x = 345.0234. We can multiply
again by 10,000 to put one string of repeating digits to the left of the decimal
point, and subtract:

10,000× 1,000x = 3,450,234.0234

1,000x = 345.0234

9,999,000x = 3,449,889.

So x = 3,449,889/9,999,000 = 383,321/1,111,000. One can do something
similar for any repeating decimal.

2.4. Square roots: A crisis

A bit later, the teacher pointed out that the square of any even number 2k,
which is (2k)2 = 4k2, is also even; and the square of any odd number 2k+ 1,
which is (2k+ 1)2 = 4k2 + 4k+ 1 = 4(k2 + k) + 1, is odd. So if a square of a
whole number, p2, is even, then p must itself be even.

She then claimed that there is no rational number p/q in lowest form (mean-
ing p and q have no common factor) with (p/q)2 = 2.

For if there were, then p2 = 2q2 is even, so p itself must be even, or p = 2k
for some k. Then p2 = 4k2 = 2q2 or q2 = 2k2, so q2 is even, so q, again,
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must be even. So p and q must both be even. In other words, they have
2 as a common factor, which contradicts our assumption that we’ve already
removed any common factors from p and q, because we assumed that p/q
was in lowest form.

Then the teacher said that, nonetheless, there is a number, written
√

2, whose
square is 2.

She explained that this meant that if you laid out all the rational numbers
on a horizontal line, with x to the left of y if x < y, then there would be a
hole or “gap” where you’d expect the number whose square is 2 to be, and
that

√
2 fills that gap.

I objected—rather vigorously, in fact!

Until now, every number was rational, so it could be represented as a finite
string of digits (with some of those digits possibly repeating forever). The
digits of

√
2 could not eventually repeat, because it isn’t rational, so it was

impossible to write down all its digits at once.

How could we know that a number exists if we can’t write down a represen-
tation of its string of digits? 3

But I could see immediately that
√

2 lies between 1 and 2, because 12 < 2 <
22, so its unit digit is 1; and quick mental calculation showed 1.42 = 1.96 <
2 < 1.52 = 2.25, so

√
2 = 1.4 . . . The principle was clear: you could compute

as many digits of
√

2 as you liked, at the very least by trial and error.

After school I told my mother that the teacher had told us about square
roots, but she hadn’t given us an effective method to compute their digits,
which bothered me. My mother told me that my father could show me how,
and eventually he did (a separate story, see Section 3). The significant aspect
of the computation that we’ll use later is that if you know 2n decimals of x,
you can compute n decimals of

√
x.4

3James Propp proposed almost exactly the same question [13]: “Students should also
be led to see that the question ‘But how do we know that the square root of two really
exists, if we can’t write down all its digits or give a pattern for them?’ is a fairly intelligent
question. In what sense do we know that such a number exists?” His paper, which consid-
ers various properties related to completeness, does not, however, mention the computable
real numbers.

4Sometimes you can get by with fewer digits of x, but we’ll not go into all the details.
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After I encountered square roots, I thought of numbers no longer as objects
represented by finite strings of digits (with some possibly repeating), but as
objects with an associated process that would compute whatever digits of
the number you might need. You may never be able to write down all the
digits at once, but you’d be able to compute as many as you need at a given
time. Today, you’d implement that “process” as a computer program.

And if you couldn’t compute an object’s digits, it wasn’t a number.

2.5. High school: Fog

I didn’t think much about the nature of numbers in high school, I was too
busy learning about things like trigonometry: What was sin(1/4)? arctan(1/2)?
I guess I didn’t care, I just assumed they existed.

At the time, there was Grade 13 in Ontario, where one was taught “baby”
calculus, so I learned about e = 2.718281828459 . . ., and how to compute
both π and e using series. Series also helped with sin(1/4) and arctan(1/2).

I read a number of books from what is now called the Anneli Lax New Mathe-
matical Library , published by the Mathematical Association of America and
directed to high school students. There I learned about other representations
of numbers (e.g., continued fractions [11]). But there was no overarching the-
ory of what numbers were, and evidently I didn’t think I needed one.

2.6. University: Rigor, but . . .

In the 1970s, all first-year science majors at the University of Windsor were
required to take a course called Basic Concepts of Mathematics , developed by
Elias Zakon, which covered some properties of the real numbers as a complete
ordered field; see [16].

There it was, “the” real numbers.

The course showed that completeness implies the Archimedean property:
that for all positive numbers x and y, there is a natural number n such that
n× x > y.

Cantor’s diagonalization argument was used to prove that the real numbers
could not be put in a list, so they could not be indexed by the natural
numbers: x1, x2, . . . This argument went something like this:
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Let’s assume that we can put all real numbers strictly between 0 and 1 in a
list, e.g.,

x1 = 0.8574025375628211 . . .

x2 = 0.2876463473845367 . . .

x3 = 0.7342236104231586 . . .

...

Cantor then said: I’ll specify a new number x̂ whose first digit is different
from the first digit of x1, whose second digit is different from the second digit
of x2, and, in general, whose nth digit is different from the nth digit of xn,
n = 1, 2, . . .

Here’s one rule that works: if d is the nth digit of xn, then let the nth digit of
x̂ be 7 if d < 5 and 3 otherwise. If I repeat the previous list while underlining
the nth digit of the nth number in the list, I get

x1 = 0.8574025375628211 . . .

x2 = 0.2876463473845367 . . .

x3 = 0.7342236104231586 . . .

...

and using this rule we’d get x̂ = 0.337 . . . You can see it’s not x1, because
its first digit differs from the first digit of x1; similarly for x2 and x3; but the
same is true for any xn in the list, so this x̂ = 0.337 . . . cannot be in our list.5

So our assumption that we can put all the real numbers in a list is false. Any
set that can be put in a list is said to be countable. The real numbers are
uncountable.

The approach in Basic Concepts of Mathematics was completely axiomatic:
one simply assumed that the set of real numbers exists. Later sections in the
book showed, however, that one could construct such numbers by associating
them with so-called Dedekind cuts , which constructed the real numbers from
special pairs of sets of rational numbers.

There are a number of ways to define Dedekind cuts. For our purposes, a
cut is a pair (A,B), where A and B are nonempty sets of rational numbers

5Two numbers whose digits all differ from each other can be equal, e.g., 0.500 . . . =
0.499 . . ., but that can’t happen with numbers all of whose digits are 3 or 7.
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for which (a) every rational number is contained in A or B, and (b) for all
x in A and y in B, x ≤ y. If A has a maximum z, then (A,B) represents
that rational number; similarly if B has a minimum. If A has no maximum
and B has no minimum, then there is a “gap” between A and B, with all
the rational numbers in A strictly to the left of the rational numbers in B
on the number line. The pair (A,B) is then associated with the real number
in that gap. Heuristically, the real numbers fill in all the gaps between the
rational numbers.

To get back to our example of x =
√

2, we can define A and B by

A = {x = p/q | x < 0 or x2 < 2} and B = {y = p/q | y > 0 and y2 > 2}.

Then Dedekind defined
√

2 = (A,B); heuristically,
√

2 is the point in the
gap between the rational numbers in A and B.

By this point I had completely forgotten my early struggles with numbers
and reveled in all the great stuff I was learning at university: that every
vector space has a basis, that you can’t measure the volume of some sets of
points, etc.

Perhaps I should have retained some of my (literally) childish skepticism
in my approach to numbers, because I did not suspect for a moment that,
as we’ll see later, Dedekind’s approach introduces “numbers” for which one
cannot compute digits (for any reasonable meaning of the word “compute”).

3. Interlude: Computing Square Roots

3.1. History, Part I

My teacher introduced square roots, but not a way to compute them except
through trial and error, digit by digit.

I told my mother that I wasn’t happy about this when I got home from
school, and she said that my father, who had a small accounting office, knew
how to compute square roots, and he could show me when he got home.

I was very excited about this, called him at work, and insisted that he tell me
over the phone before he came home, which he eventually did: “For example,
to compute the square root of 2, take a blank sheet of paper. . .” I’ll give the
reasoning behind the method here.
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3.2. But first: Watch a video!

It’s much easier to understand the procedure for computing square roots by
hand if you see an example being done dynamically. Of the many videos on
YouTube, I especially like the one by Tibees [14].

3.3. Mathematical justification

We’ll say that we know the “integer square root” x of a positive integer y if
x2 ≤ y < (x+ 1)2.

The question is, can we use x, the integer square root of y, to quickly learn
the integer square root of a number that begins with the digits of y but
has two more digits, y1y2, adjoined at the end? The new number would be
100y + 10y1 + y2. (This is how we define adjoin.)

The answer is yes. We can adjoin a single digit x1 to the right of x, or
10x+ x1. The new digit would be the biggest to satisfy

(10x+ x1)
2 ≤ 100y + 10y1 + y2,

or, expanding,

100x2 + 20x× x1 + x21 ≤ 100y + 10y1 + y2,

or, moving one term from the left side to the right and factoring,

(20x+ x1)× x1 ≤ 100(y − x2) + 10y1 + y2.

Such a digit exists because the two-digit number 10y1 + y2 < 100 and y <
(x+ 1)2 implies y + 1 ≤ (x+ 1)2, so

(10x+ 0)2 = 100x2 ≤ 100y ≤ 100y + 10y1 + y2 < (continued on next line)

< 100y + 100 = 100(y + 1) ≤ 100(x+ 1)2 = (10x+ 10)2.

So for (10x + x1)
2 ≤ 100y + 10y1 + y2 to be satisfied, x1 must satisfy 0 ≤

x1 < 10, i.e., it must be a digit.

3.4. The algorithm

The algorithm is roughly as follows: You keep track of y − x2, your current
square root “remainder”, like the remainder in long division. Then you
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adjoin the next two digits of y to the right of the remainder, computing
100(y − x2) + 10y1 + y2.

Along the left edge of the paper, you keep track of 2x, where x is your current
answer. You then want to find the largest digit x1 such that if you adjoin
it to the right of 2x (forming 20x + x1) and multiply by x1, subtracting the
product from 100(y − x2) + 10y1 + y2 yields a new nonnegative remainder.

You then adjoin the new digit x1 to the right of x, so the new answer is
10x+ x1. To update the column on the left with twice the new answer, you
need only double x1 and add any carries this might generate (e.g., 2×6 = 12,
with carry 1) into the current value of 20x—you don’t need to double all of
10x+ x1 again.

And this works with any number, not just integers, because, well, it does.

In Figure 1, we use this method to compute the first digits of
√

2, beginning
with x = 1.

1. 4 1 4
√

2. 00 00 00

1 × 1 1

1 00

2 4 × 4 96

4 00

2 8 1 × 1 2 81

1 19 00

2 8 2 4 × 4 1 12 96

6 04

Figure 1: Computing the square root of 2.

During the computation, the digits we’ve computed so far of
√
y sit above

the radical sign; the left column contains twice the number above the radical
sign; and the last line is the current value of y − x2.
The boxes contain the values of the new digit x1 adjoined both to the right
of x (above the square root sign) and to the right of 2x, in the left column.
We subtract the product of x1 and 20x + x1, the updated value on the left,
from the old remainder to get the new remainder.
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And because you must pull down two digits of y to compute each new digits
of
√
y, this algorithm proves our previous claim: If you know 2n digits of y

to the right of the decimal point, then one can calculate n digits of
√
y to

the right of the decimal point.

3.5. History, Part II

As I said, my father explained how to compute
√

2 to me over the phone.
And it took a while. You can imagine my sheet of paper filling up as he
explained what he was doing at work, with numbers “to the left”, “up top”,
“down below”, etc. At about the point I left the computation above, my
father said “You should be able to see the pattern now” and I just sort of
grunted. I was totally confused. The page was a messy mass of digits.

I didn’t look forward to my father coming home that night, and, indeed,
he right away asked to see the paper I had used for the computation. I
remember him asking “What’s this?” or something similar, perhaps a bit
sharply (considering how much time he’d taken from his work that day).
Then we sat together and he showed me again.

3.6. Explaining algorithms over the phone, and Alan Turing

Years later, I remembered this incident while thinking about Alan Turing’s
1936 paper [15] that introduced both his “machines” and the idea of “com-
putable numbers”.

Turing’s famous minimal machine has an infinite tape divided into squares.
At any time there is precisely one square of the tape in the “focus” of the
machine. The machine can read what is in that square, write one of a finite
set of symbols to that square, or can erase whatever symbol is on the square;
after this the machine can move the tape one square to the left or to the right.
The machine has an internal state, and can make decisions about what to
do depending on what is written on the square directly in its view.

In his paper, Turing cites grade-school arithmetic on a two-dimensional grid
as motivation. In grade school, as in this document, we use only finitely
many symbols, beginning with the decimal digits 0 through 9. The way one
lines up the digits, left-and-right and up-and-down, to compute

√
y =

√
2,

for example, and changes the focus from the current computation at the
bottom of the page back up to the top to get more digits of y, is sim-
ilar to moving Turing’s tape back and forth after adding symbols to it.
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Turing’s tape is infinite in the same way that our page would need to extend
arbitrarily far to the left, right, and downward to compute arbitrarily many
digits of

√
2.

Turing was teaching a machine to compute numbers in the same way my
father was teaching me over the phone to compute square roots—I was the
machine. And had he used chess notation to designate positions on a square
grid (e.g., “Put ‘2’ in the square in column P of row 4.”), like the way Turing
used a tape divided into boxes, my father would have succeeded.

4. The Computable Reals

4.1. What is computable?

Because computers are ubiquitous in our lives, we’ll take an informal and
practical approach to computability: an object is computable if there can
exist a computer program that is guaranteed to compute it in a finite number
of steps.6

So pick a programming language and a character set in which to write pro-
grams. I generally prefer to write programs in Scheme, a member of the Lisp
family of programming languages, and I’ll use the Latin-1 character set, a
256-character subset of the complete Unicode character set.

4.2. The definition

We start with my old grade-school idea: something is a number if and only
if we can compute as many digits of it as we want.

But that notion isn’t precise enough, so let’s see what will work.

One issue is that we want to do operations on these numbers—add them,
multiply them, etc. This means that we have to be ready to accept as input
to addition, multiplication, etc., what we’re producing as outputs of those
operations.

6In the first half of the 20th century, many brilliant minds worked on the question
of computability. Alan Turing came up with his machines; Alonzo Church invented the
lambda calculus; a number of people developed recursive function theory. Church and
Turing proved that all these theories defined the same class of functions; afterwards,
the Church–Turing thesis, which claims that these three equivalent theories capture all
informally specified “effectively calculable functions” was widely accepted. This is related
to the notion of Turing completeness.
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We’ve shown in a previous section by an example that it is not guaranteed (in
all cases) to compute correctly rounded sums of numbers given only correctly
rounded numbers as inputs (see Section 2.2).

So we have to weaken our definitions a bit: we say that a real number x is
computable7 if and only if there can exist a computer program that computes
for each positive integer k (roughly, the number of digits we want to the right
of the decimal point) an integer N such that

|N − 10kx| < 1, or equivalently

∣∣∣∣ N10k
− x
∣∣∣∣ < 1

10k
. (1)

A similar formula can be found in Section 4.5 of [7].

For example, if x = π = 3.14159 . . . and k = 2, then N = 314 or N = 315
will work because both

|314−102π| = |−.15926535 . . . | < 1 and |315−102π| = |.8407346 . . . . . . | < 1.

The number N/10k, 3.14 or 3.15 in our case, is our approximation to x
to k decimal digits. We don’t require that N/10k be a correctly rounded
approximation; our expectations are weaker.

Note, however, that if 10kx is an integer, then because N is an integer and
|N−10kx| < 1, then N = 10kx (they’re both the same integer). In particular,
if x = 0 then N = 0 for all k ≥ 0.

We take “we know a computable real x” or “we’re given a computable real
x” to mean that we have in hand a program that for any k will compute an
N that satisfies (1).

Given a computable real x and nonnegative integer k, it will be useful (if
an abuse of notation) to denote any N that satisfies (1) by x(k). In some
cases x(k) is unique, but usually x(k) could be one of two adjacent integer
values—in the example with π, x(2) ∈ {314, 315}. In general x(k) is not a
function, with a unique value for each k, but a relation, with two possible
values for each k. In everything that follows, it doesn’t matter which value of
x(k) we use. In fact, we’ll see that x(k) can take different values in different
contexts.

7To simplify the presentation, we assume the existence of Dedekind’s real numbers,
only some of which are computable; this isn’t necessary.
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4.3. Background: Manipulating inequalities

The expression that defines x(k), |x(k) − 10kx| < 1, involves (a) absolute
values and (b) inequalities. To be helpful, we review here properties of in-
equalities and absolute values.

First, we need the fact that |a| < b if and only if −b < a < b.

More importantly, we need the triangle inequality , |a + b| ≤ |a| + |b|. If we
want to show that |a+b| < 1, for example, we might first show that |a| < 1/2
and |b| ≤ 1/2, so |a+ b| ≤ |a|+ |b| < 1/2 + 1/2 = 1.

And we want to compute an integer x(k) such that |x(k) − 10kx| < 1. Our
strategy will often be to find an intermediate result, another number X, for
which we can show through two separate arguments that |X − 10kx| < 1/2
and that we can compute an integer x(k) for which |x(k)−X| ≤ 1/2. Then
subtracting and adding X and using the triangle inequality gives

|x(k)−10kx| = |(x(k)−X)+(X−10kx)| ≤ |x(k)−X|+|X−10kx| < 1

2
+

1

2
= 1.

4.4. Simple consequences of the definition

Because |x(k) − 10kx| < 1, we have −1 < 10kx − x(k) < 1 or x(k) − 1 <
10kx < x(k) + 1. So, if x(k) ≥ 1, we know that 10kx > x(k) − 1 ≥ 0, so
x > 0. If x(k) ≤ −1, we know x < 0.

Similarly, if x(k) > N for some integer N , then 10kx > N ; so, if x(k) > 1
then 10kx > 1.

Finally, if, for some k, |x(k)− y(k)| > 1, then x 6= y.

4.5. Two useful functions

We’ll gather together two useful functions.

The first is the round operator, which takes any rational number p/q and
produces an integer

round

(
p

q

)
= N for N − 1

2
≤ p

q
< N +

1

2
.

By restricting the argument to be rational, we know grade-school methods to
compute round, which gives a better bound on the error than we guarantee
for computable real numbers:
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∣∣∣∣round

(
p

q

)
− p

q

∣∣∣∣ ≤ 1

2
rather than |x(k)− 10kx| < 1.

Our second useful function involves square roots. We gave an algorithm (in
Section 3.4) to find, for any nonnegative integer y, a nonnegative integer x
such that x2 ≤ y < (x+ 1)2. We can conclude that this x satisfies x ≤ √y <
x+ 1, which implies |x−√y| < 1, but we need to do a bit better.

We write y = x2+r, where r is the remainder. In our new integer square root
routine, which we’ll call isqrt, we want to return x if y = x2+r < (x+1/2)2 =
x2 + x+ 1/4 and to return x+ 1 if y = x2 + r > (x+ 1/2)2 = x2 + x+ 1/4.
Since x, y, and r are all integers, we see that

isqrt(y) =

{
x+ 1, r > x,

x, otherwise.

So, for integer y, we can compute an integer isqrt(y) such that
∣∣isqrt(y) −√

y
∣∣ < 1/2.

4.6. Rational numbers are computable

To see that each rational number x = p/q is computable, note that for any
k ≥ 0, 10kx is rational and | round(10kx) − 10kx| ≤ 1

2
< 1, so the integer

x(k) = round(10kx) satisfies our definition (1).

4.7. The computable numbers are a field

Given computable x and y, is z = x + y computable? What about x × y?
1/x for x 6= 0?

√
x?

Let’s start with addition. The question is: If x and y are computable, is
z = x + y computable? That is, for any k can we compute an integer z(k)
such that |z(k)− 10k(x+ y)| < 1?

The answer is yes, and the method is more or less what was taught in Grade 4.
First we compute x(k + 1) and y(k + 1) (which we can do by assumption,
because x and y are computable), one more digit than we want to compute
of z. Then

|x(k + 1)− 10k+1x| < 1 and |y(k + 1)− 10k+1y| < 1.
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Dividing each of these inequalities by 10 gives∣∣∣∣x(k + 1)

10
− 10kx

∣∣∣∣ < 1

10
and

∣∣∣∣y(k + 1)

10
− 10ky

∣∣∣∣ < 1

10
.

So∣∣∣∣x(k + 1) + y(k + 1)

10
− 10k(x+ y)

∣∣∣∣
≤
∣∣∣∣x(k + 1)

10
− 10kx

∣∣∣∣+

∣∣∣∣y(k + 1)

10
− 10ky

∣∣∣∣ < 2

10
.

But [x(k + 1) + y(k + 1)]/10 is now rational so the integer

z(k) := round

(
x(k + 1) + y(k + 1)

10

)
satisfies ∣∣∣∣z(k)− x(k + 1) + y(k + 1)

10

∣∣∣∣ ≤ 1

2
.

Adding the previous two inequalities gives

|z(k)− 10k(x+ y)| < 2

10
+

1

2
< 1, as required.

Computing the negative of a computable real is trivial: If |x(k)− 10kx| < 1
then for y = −x we can take y(k) = −x(k).

Explicit algorithms (in base two arithmetic instead of base 10) for multipli-
cation and inverse (1/x for nonzero x) are given in [7], Section 4.5. Beyond
the following special case of of dividing a computable real x by a positive
integer N , we won’t discuss them here.

We note that if |x(k)− 10kx| < 1, N > 1, and y = x/N , then∣∣∣∣x(k)

N
− 10k

x

N

∣∣∣∣ < 1

N
≤ 1

2
,

and because x(k)/N is rational we have | round(x(k)/N) − x(k)/N | ≤ 1/2.
Combining these two inequalities gives | round(x(k)/N) − 10ky| < 1, so we
can take y(k) = round(x(k)/N).

In fact the computable reals form a field, a sub-field of the real numbers.
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4.8. Equality

One of the axioms of a field says that “for each number x 6= 0, there exists
a number called x−1 such that x × x−1 = 1.” So it’s important to know
whether any given x is zero, especially when one wants to compute x−1 or
y/x.

But this is not computably decidable for the set of computable reals. Here’s
why: Say we want to know whether a given x is zero, so we ask for x(0), i.e.,
an integer such that |x(0) − x| < 1. Let’s say x(0) = 0, then by definition
of x(0) we can say only that −1 < x < 1. If we then compute x(20) and
find x(20) = 0, then we know that −10−20 < x < 10−20, but we aren’t any
closer to knowing whether x is precisely zero or not. One cannot write a
program that is guaranteed to be able to tell me whether x is zero after a
finite number of steps.

Similarly if we want to know whether x > 0: If we happen to find a k such
that x(k) > 0, then we know that x > 0. If we continue to get x(k) = 0 for
all the ks we try, we can’t tell whether x > 0, x < 0, or x = 0.

It is also not computable to determine the equality of computable numbers in
general, for x = y if and only if x− y = 0, which we have seen is, in general,
not computable. (This lack of computability manifests itself in programs that
don’t stop, if you ask them the wrong questions!) This can arise in ways that
are perhaps not anticipated; for example, trying to compute round(x) when x
is computable (and not just rational) is, in general, not computable because
round(x) = N if and only if

N − 1

2
≤ x < N +

1

2

and neither of those inequalities is computably decidable.

The computable reals form an ordered field, but the ordering is not com-
putable.

4.9. Square roots

We can use the function isqrt to show that if y is nonnegative and computable,
then so is x =

√
y.

For any k we need to compute an integer x(k) such that |x(k) − 10kx| < 1,
or |x(k)− 10k

√
y| < 1.
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The analysis of the algorithm depends on the simple formula a2 − b2 =
(a− b)(a+ b), and we proceed as follows:

First compute y(2k), for which |y(2k)− 102ky| < 1.

If y(2k) = 0, then we know |0 − 102ky| < 1 so
∣∣10k
√
y
∣∣ < 1, so x(k) = 0 =

isqrt(y(2k)) works.

If y(2k) = 1, then y > 0 and |1 − 102ky| < 1. Using a2 = 1 and b2 = 102ky
we find

|1−102ky| =
∣∣1−10k

√
y
∣∣×∣∣1+10k

√
y
∣∣ < 1 or

∣∣1−10k
√
y
∣∣ < 1∣∣1 + 10k

√
y
∣∣ < 1,

so x(k) = 1 = isqrt(y(2k)) again works.

Otherwise, when y(2k) > 1, we have 102ky > 1, so both
√
y(2k) > 1 and

10k
√
y > 1. With a2 = y(2k) and b2 = 102ky we see

|y(2k)− 102ky| =
∣∣√y(2k)− 10k

√
y
∣∣× ∣∣√y(2k) + 10k

√
y
∣∣ < 1,

or ∣∣√y(2k)− 10k
√
y
∣∣ < 1∣∣√y(2k) + 10k

√
y
∣∣ < 1

2
.

Because y(2k) is an integer,
∣∣isqrt(y(2k)) −

√
y(2k)

∣∣ < 1/2 and x(k) :=
isqrt(y(2k)) satisfies

∣∣x(k)− 10k
√
y
∣∣ < 1.

One can show that the computable reals form a real closed field .

4.10. In general, x(k) is a relation, not a function

We’ve previously noted that the condition |x(k) − 10kx| < 1 allows one to
return N or N + 1 for x(k) when N < 10kx < N + 1. Sometimes, for a given
x, different ways of computing x(k) could lead to either result.

For example, let

x =

√
2

2
=

√
1

2

and consider the two associated ways of computing the “digits” of this num-
ber, which we obtain by combining our programs for taking the square root
of a computable number, converting a rational number to a computable num-
ber, and dividing a computable number by a positive integer:
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• Convert 2 to a computable number, compute its square root, then
divide by 2. Call this program x̄(k),

x̄(k) = round

(
isqrt(round(2× 102k))

2

)
.

• Convert 1/2 to a computable number and compute its square root
directly. Call this program x̂(k),

x̂(k) = isqrt

(
round

(
1

2
× 102k

))
.

We can see that x = x̄ = x̂, and the computable number z = x̄ − x̂ is zero.
Computing x̄(k), x̂(k), and z(k) for various values of k quickly leads us to
discover that

x̄(13) = 7071067811866 6= x̂(13) = 7071067811865,

yet z(13) = 0, as it must, since z is zero. We can conclude that

0.7071067811865 <

√
2

2
< 0.7071067811866.

Here is a simple, concrete example, where two programs to compute the
“digits” of a computable number give two different results for a specific k.

4.11. How many computable reals?

Because we’re using a character set of 256 elements, there are precisely 256n

strings of n Latin-1 characters. We can put all possible (valid and invalid)
computer programs in a list:

1. Start with listing all 256 length-one strings.

2. Add all 2562 = 65,536 length-two strings to the list.

3. Etc.

There are countably many finite-length strings of characters, so countably
many computer programs.
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Most of these programs are not even syntactically valid;8 others never stop.
Of those programs that run to completion, some print the string “hello,
world”,9 while only some compute x(k) for some computable real number x.
So there are at most countably many computable real numbers, and most
real numbers (in Dedekind’s sense) are not computable.

Somewhat paradoxically, however, Cantor’s diagonalization argument shows
again that you cannot put all the computable real numbers between 0 and 1
in a list x1, x2, x3, . . . For if you could, you could compute xk(k), for example,

x1(1) = 8

x2(2) = 28

x3(3) = 734

x4(4) = 0127

...

We can now compute a new real x̂ whose digits are derived from the unit
digits of xk(k) in the following way: If the unit digit of xk(k), d say, satisfies
d < 5, then set the kth digit of x̂ to 7; otherwise, set it to 3. We take x̂(k)
to be simply the first k digits in this expansion.

By the way we constructed x̂, we have |x̂(k) − 10kx̂| ≤ 0.7777 . . . < 1;
furthermore, |x̂(k)− xk(k)| ≥ 2 > 1, so we know that x̂ 6= xk for every k. So
x̂ is not in this list!

What is going on? There are no more computable reals than programs, and
there are clearly only countably many programs, yet if we assume we can put
all the computable reals into a list, we can always find another computable
real not in that list!

What this construction shows is that one cannot compute the list of com-
putable reals—one cannot write a computer program to pick out from the
list of all possible programs those programs that represent the computable
reals.10

8Except maybe in the programming language Perl; see [9].
9The first example program in Kernighan and Ritchie’s 1978 tutorial The C Program-

ming Language [8].
10Indeed, in his paper [15], Turing showed that one cannot write a program to determine

whether a general program will halt, let alone whether it will halt and return an integer
satisfying (1).



338 The Nature of Numbers: Real Computing

4.12. A real number that is not computable

The previous section shows that we cannot computably tell which computer
programs correspond to computable reals and which do not. This result
allows us to specify a real number that is not computable.

To simplify, we assume this number U lies between 0 and 1, and we specify
its decimal digits. In particular, we set the Mth digit of U to be 3 if the Mth
program in our list of all possible programs is a program for a computable
real, and 7 otherwise. Since one cannot computably decide for every program
whether that program computes a computable real, the digits of U are not
computable. Therefore U itself is not computable.

4.13. All useful numbers are computable

To me this is almost a tautology—if you can’t compute the value of a number
to arbitrary accuracy, then that number isn’t very useful!

Let’s look specifically at π and e, perhaps the two most famous “useful”
numbers. Each can be defined in terms of convergent infinite series of rational
numbers from calculus, for example,

π = 4
∞∑
n=0

2

(4n+ 1)(4n+ 3)
and e =

∞∑
n=0

1

n!
.

Each of these series is of the form A =
∑∞

n=0 an, with the properties that (a)
the sequence of rational coefficients {an | n = 0, 1, 2, . . .} is itself computable
(for any N one can compute the first N coefficients in a finite number of
steps), and (b) there is a computable function T (K), K = 1, 2, . . ., (a modulus
of convergence) returning nonnegative integers, such that the partial sums
AN =

∑N
n=0 an satisfy11 |AT (K) − A| < 1

K
.

The limits of such series are themselves computable: for each k, let K =
2× 10k and N = T (K); then

|AN − A| <
1

2
× 10−k or |10kAN − 10kA| < 1

2
.

Now 10kAN is itself rational, so we find that A(k) = round
(
10kAN

)
satisfies

|A(k)− 10kAN | ≤ 1
2
. Combining the two previous inequalities gives |A(k)−

10kA| < 1, as needed.

11See Definition 3.1 in [1] or Definition 3.11 of [2] to find similar requirements.
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An extension of this argument shows that if x is a computable real within
the radius of convergence of the power series

f(x) =
∞∑
n=0

anx
n

with computable rational coefficients an and a computable modulus of con-
vergence, then f(x) is also a computable real. So log x, ex, sin x, cos x, etc.,
are all computable functions.

4.14. All computable functions are continuous

We prove here that all computable functions that are defined for all com-
putable real arguments and return computable real results are continuous.12

To be more precise in this section, to every computable real number x we
associate one of Turing’s “machines”13 X, which, for each nonnegative integer
argument k, stops after a finite number of steps and returns an integer X(k)
for which ∣∣∣∣X(k)

10k
− x
∣∣∣∣ < 1

10k
, k ≥ 0. (2)

(In this section X is the machine and X(k) is the value it returns.) For each
computable y there is a machine Y , etc.

So what can we learn from (2) for a fixed K ≥ 0? First that

X(k)− 1

10k
< x <

X(k) + 1

10k
, k = 0, 1, . . . , K,

and the intersection of these intervals(
LK
10K

,
UK
10K

)
=

K⋂
k=0

(
X(k)− 1

10k
,
X(k) + 1

10k

)
(3)

12Later material does not rely on this section, which is more technical than the others.
13You can think of X as an algorithm, function, computer program, subroutine, pro-

cedure, closure, etc., depending on the terminology used by your favorite programming
language. You can also think of a computer as a “universal” Turing machine that takes
programs as representations of other Turing machines and executes them.
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is nonempty—x is in each of these intervals, after all. (Here L is for Lower
and U is for Upper .)

Second, we note that if a computable real y is also in the intersection, that
is,

LK
10K

< y <
UK
10K

,

then
X(k)− 1

10k
< y <

X(k) + 1

10k
, k = 0, 1, . . . , K.

This means that if Y is a valid machine for y (so Y and y satisfy (2)), then

Y (k) =

{
X(k), 0 ≤ k ≤ K,

Y (k), K < k,
(4)

where we’ve now replaced Y (k) with the value X(k) for all k ≤ K, is also a
valid machine for y; that is, Y and y also satisfy (2).

We now consider the function f(x). To say that f(x) is computable means
that there is a machine F that has a slot into which one can plug in another
machine X associated with a computable real number x. As before, X will
take nonnegative integers as arguments and return integers. The machine
F after X is plugged in specifies a new machine FX ,14 which again takes
nonnegative integers k as arguments and returns integers FX(k) that satisfy∣∣∣∣FX(k)

10k
− f(x)

∣∣∣∣ < 1

10k
, k ≥ 0. (5)

The machine FX , when applied to k, stops after a finite number of steps,
during which it evaluates X(`) for at most finitely many `; the number of
evaluations of X, and the arguments `, may depend on k and previous results
that X returns. FX cannot somehow look at the steps that X takes in its
computations: it can only receive the results X(`).

We’re now ready to show that we can make f(y) as close to f(x) as we like
by specifying how close y must be to x. In other words, if you give me a
computable number ε > 0 and a computable real x, I’ll give you a (rational)

14We use subscript notation FX to represent the result of F when applied to X instead
of functional notation F (X) so we can write FX(k) instead of F (X)(k).
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number δ > 0 such that |f(x) − f(y)| < ε for all computable y for which
|x− y| < δ.

To begin, given ε > 0, I can choose a K ≥ 0 such that 1/10K < ε/4. Given
x with associated machine X, I’m going to run the machine FX with the
argument K until it stops and returns FX(K) that satisfies∣∣∣∣FX(K)

10K
− f(x)

∣∣∣∣ < 1

10K
. (6)

If the machine FX when applied to K never evaluates X for any k, then
FX(K) = FY (K) for any machine Y for a computable real y. Using formula
(6) for both f(x) and f(y) shows that

|f(x)− f(y)| =
∣∣∣∣f(x)− FX(K)

10k
+
FY (K)

10k
− f(y)

∣∣∣∣
≤
∣∣∣∣f(x)− FX(K)

10k

∣∣∣∣+

∣∣∣∣FY (K)

10k
− f(y)

∣∣∣∣
<

1

10K
+

1

10K
=

2

10K
< ε

(7)

for all y.

Otherwise, let’s denote by K ′ the largest value of k for which FX evaluates
X(k) when running the machine FX applied to K. We’ll also compute the
interval

(a, b) =

(
LK′

10K′ ,
UK′

10K′

)
=

K′⋂
k=0

(
X(k)− 1

10k
,
X(k) + 1

10k

)
from (3). Then for any y in (a, b), the machine Y , defined by Y (k) = X(k)
for k = 0, . . . , K ′ and Y (k) = Y (k) for k > K ′, is a valid machine for y and
FX(K) = FY (K)! Using (7) again, we see that

|f(x)− f(y)| < 2

10K
< ε, (8)

but we don’t yet have our δ.

Both a and b, the endpoints of our interval, are computable, with associated
machines A and B. So we can find FA(K) satisfying∣∣∣∣FA(K)

10K
− f(a)

∣∣∣∣ < 1

10K
,

with the same for f(b).
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The machine FA applied to K evaluates A for finitely many m, so let M be
the largest value for which FA evaluates A, and let M ′ = max(M,K ′). Then
for any computable y that satisfies |y − a| < 1/10M

′
, the machine Y with

Y (m) =

{
A(m), 0 ≤ m ≤M ′,

Y (m), M ′ < m,

is valid for y15 and satisfies FY (K) = FA(K), so by (7), for all such y

|f(a)− f(y)| < 2

10K
. (9)

A similar argument shows that there is a nonnegative integer N ′ such that
for all computable y satisfying |y − b| < 1/10N

′
, |f(y)− f(b)| < 2/10K .

Combining these inequalities shows that if

|y − x| < min
( |b− a|

4
,

1

10M ′ ,
1

10N ′

)
= δ,

we have:

1. If a+δ ≤ x ≤ b−δ, then for all |y−x| < δ, y ∈ (a, b), so |f(x)−f(y)| <
2/10K < ε by (8).

2. If a < x < a+δ, then for those y ∈ (a, x+δ), |f(x)−f(y)| < 2/10K < ε
by (8). And for those y ∈ (x− δ, a], we have by (9)

|f(y)− f(x)| < |f(y)− f(a)|+ |f(a)− f(x)| < 2

10K
+

2

10K
< ε.

3. A similar argument holds when b− δ < x < b.

4.15. A real application

The routine that multiplies integers of arbitrary size in the Gambit implemen-
tation of Scheme [5] relies on computing Fast Fourier Transforms of vectors
of complex floating-point numbers, and is based on a result of Colin Percival
[12].

15This is because a is an integer over a power of 10.
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Such a routine needs a table of complex floating-point approximations to

eiθ = cos(θ) + i sin(θ), θ =
jπ

2N
, j = 0, . . . , 2N−1,

for a positive integer N . Percival’s paper requires very specific accuracy of
the entries of this table.

I used my computable real routines both to build this table and to determine
its accuracy.16 I won’t give details here, but I needed two things: (a) a rou-
tine to correctly round computable reals to floating-point numbers (which
is, in general, noncomputable, but I was careful to call it only on irrational
computable real arguments for which it is guaranteed to work) and (b) com-
putable versions of the complex exponentials

eπi/2
k

= cos
( π

2k

)
+ i sin

( π
2k

)
, k = 1, . . . , N,

for some integer N . When k = 1, eπi/2
1

= i, and subsequent values are
computed using square roots; for example, for k = 2,

eπi/2
2

=
√
eπi/21 =

√
2

2
+ i

√
2

2
, etc.

If a and b are computable real numbers, we can find computable x and y
such that a+ ib = (x+ iy)2 as follows. We have

a+ ib = (x+ iy)2 = x2 − y2 + i(2xy),

so a = x2 − y2 and b = 2xy, or y = b/(2x). Using this expression for y, we
get

a = x2 − b2

4x2
or 4x4 − 4ax2 − b2 = 0.

This is a quadratic in x2, so the quadratic formula gives

x2 =
4a±

√
16a2 + 16b2

8
=
a

2
± 1

2

√
a2 + b2.

We choose the + of ± because x2 is nonnegative, and then another square
root gives us x. Then we set y = b/(2x) (when x 6= 0).

Beyond the operations that have already been given, we need only figure out
how to multiply and divide computable real numbers; suitable algorithms
can be found in Section 4.5 of [7].

16This can also easily be achieved with existing software libraries, e.g., MPFR [6].
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5. Postscript

I won’t argue that the current approach of teaching Real Analysis for math
majors in university be replaced with the computable real approach — I
don’t know enough about the computable reals to make that argument. The
computable approach leads to conclusions that students might generally find
difficult; for example, the function f(x) = 0 for x < 0 and f(x) = 1 for x ≥ 0
is not a computable function (because of the comparisons).

As I hope I’ve made clear, however, studying the computable reals had quite
a number of benefits to me personally.

First, it gave me added perspective on the statement attributed to Leopold
Kronecker that “God made the integers, all else is the work of man”—all op-
erations here are on integers, with the rational numbers and the computable
reals being built on top of such things. It gave me a better understanding
of Turing’s ideas. It integrated my evolving sense of number as a child with
my professional understanding as an adult.

Second, it drove home to me how beautiful mathematical theories can be built
by noncomputable or nonconstructive approaches, but with perhaps little
practical significance. It seems in some cases to lead to almost a personal
belief (a religious faith?) in things that cannot be constructed: that all vector
spaces have bases, that every bounded linear functional on a closed subspace
of a Banach space can be extended to the whole space, that some sets are
not Lebesgue measurable. Beautiful (and sometimes strange) results—many
with constructive counterparts [1]—that range from curiosities to the bases
of even more grandiose and beautiful theories.

Finally, the computable real approach, with guaranteed accuracy of final re-
sults, helped me as a professional mathematician find accurate solutions to
highly sensitive problems. Accurate final answers are definitely not guar-
anteed by the popular approach of fixing ahead of time the precision of
intermediate results to 50 or 100 digits, say, and then hoping that this will
guarantee 15 digits accuracy in the final result.

I would argue that students should be exposed to these ideas in real analysis
class, in the same way that a digital electronics design class would have a
laboratory component.

Acknowledgments. I thank Kyle Dahlin for carefully reading an early
draft of this document, and Leonard Lipshitz, with whom I’ve discussed
these issues over many years.
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Appendix: Some routines for the computable reals

We use the programming language Scheme, and we identify the computable
number x with its procedure x. We’ll not explain the language here, ex-
cept to say that (a) all operations use prefix notation, the operator goes
first, followed by the arguments, so if x is a procedure for a computable
real x, the programming notation for x(k) is (x k), (b) lambda is nota-
tion to return a procedure, so the definition of the procedure x taking an
argument k might begin (lambda (k) ...), and (c) exact-integer-sqrt,
when given a nonnegative integer x, returns two nonnegative integers s and
r with s2 ≤ x < (s + 1)2 and x = s2 + r. The names we give functions that
operate on computable real numbers begin with c-. Comments begin with
a semicolon. The procedures run under Gambit Scheme [5].
We first define the procedures round and isqrt from Section 4.5. Next we
write a routine to convert rational numbers to computable numbers, from
Section 4.6. Addition, negation, subtraction, and dividing by an integer are
then defined as in Section 4.7. Our little library is completed with the routine
for square root from Section 4.9.
Finally, we compute the example in Section 4.10, showing that x(k) is a
relation, not a function.

https://www.youtube.com/watch?v=nAZvUnWbS8c
http://www.trillia.com/zakon1.html
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;;; Round a rational number to an integer

(define (round x)

(floor (+ x 1/2)))

;;; Compute the integer square root of the nonnegative integer x

(define (isqrt x)

(call-with-values

(lambda ()

(exact-integer-sqrt x))

(lambda (s r)

(if (< s r) (+ s 1) s))))

;;; Convert the rational number r to a computable number

(define (r->c r)

(lambda (k) (round (* r (expt 10 k)))))

;;; Add x and y

(define (c-+ x y)

(lambda (k) (round (/ (+ (x (+ k 1)) (y (+ k 1))) 10))))

;;; Negation and subtraction

(define (c-- x #!optional (y #f))

(if (not y)

(lambda (k) (- (x k))) ;; Negate x

(c-+ x (c-- y)))) ;; Add x to negative y

;;; Divide x by the nonzero integer N

(define (c-/-by-N x N)

(lambda (k) (round (/ (x k) N))))

;;; Compute the square root of x

(define (c-sqrt x)

(lambda (k) (isqrt (x (* 2 k)))))

;;; The example that illustrates that computable reals

;;; determine relations, not functions.

(define (test N K)

(let ((x-bar (c-/-by-N (c-sqrt (r->c N)) N))

(x-hat (c-sqrt (r->c (/ 1 N)))))

(do ((k 0 (+ k 1)))

((= k K))

(let ((x-bar_k (x-bar k))

(x-hat_k (x-hat k)))

(if (not (= x-bar_k x-hat_k))

(pretty-print (list 'N= N 'k= k

'x-bar_k= x-bar_k 'x-hat_k= x-hat_k

'x-bar-x-hat_k= ((c-- x-bar x-hat) k))))))))

(test 2 15)

;;; The output is

;;; (N= 2 k= 13 x-bar_k= 7071067811866 x-hat_k= 7071067811865 x-bar-x-hat_k= 0)
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