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The List: Proverbs for Calculus

Bruce H. Pourciau

Department of Mathematics, Lawrence University, Wisconsin, USA
bruce.h.pourciau@lawrence.edu

Synopsis

Topics chosen from first-year calculus illustrate a number of “sayings” or “proverbs,”
the first three, for example, being: be awed, like a child; meaning before truth;
and act with intention. Many are proverbs for life as well as mathematics.

Keywords: calculus, proverbs, sayings.

0. the list

After some years of teaching, I found myself repeating certain “sayings” or
“proverbs,” each capturing one facet of the “mathematical way of thinking.”
As the years went by, the number of these proverbs grew, and eventually I
collected them in a list which I would hand out on the first day of class. They
are proverbs for any mathematics class, not just calculus. Some are proverbs
for life.

1 be awed, like a child

2 meaning before truth

3 act with intention

4 account for assumptions

5 god gives, we choose

6 make your dreams come true

7 plausibility before proof

8 princess di then atticus finch

9 guess bravely and beautifully

10 understanding is translating

11 celebrate your mistakes

12 explore the tug of war

13 too beautiful to be false

14 do you believe in magic?

15 follow the veil: be moved by mystery

16 philosophy matters
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316 The List: Proverbs for Calculus

Though a given saying might surface several times over a semester, here we
illustrate each proverb with just one calculus topic.

1. be awed, like a child

If I had influence with the good fairy... I should ask that her gift
to each child in the world be a sense of wonder so indestructible
that it would last throughout life. – rachel carson [5, page 44]

Ah, the first day of class. So much joy, excitement, and mystery ahead of us!
Do you remember the last time you felt genuine awe? Do you remember the
first time? I do. I was only six or seven, lying on my back in the grass at
night, the stars of the Milky Way spread out across the black sky. And the
next morning my dad said, “you know, the sun is a star.” Talk about having
your mind blown twice in the span of one day!

What happens to us? Where does that awe go? Do we start to worry that we
look silly with our mouths open? Does the awe get schooled out of us? Really,
shouldn’t school be filling us with awe? Especially here, now, in college?
So many classes to choose from, so many new, sexy subjects: anthropology,
classics, cognitive science, data science, economics, gender studies, linguistics,
neuroscience, psychology, religious studies, philosophy. Such potential for
awe there. But actually, the discipline with the greatest potential for awe is
not new. It’s the oldest of disciplines, the one you’ve all studied since you
were babies: mathematics.

We all know the stereotypes — the boring high school math teacher whose
monotone delivery drones the students to sleep and mathematics portrayed
as deadly dry number crunching. Yet nothing, literally nothing, could be
further from the truth:

• Mathematics, especially at the upper levels, exhibits a crystalline aes-
thetic beauty unlike any other discipline. As Bertrand Russell put it,
“Mathematics, rightly viewed, possesses not only truth, but supreme
beauty — a beauty cold and austere, like that of sculpture, without
appeal to any part of our weaker nature, without the gorgeous trap-
pings of painting or music, yet sublimely pure, and capable of a stern
perfection such as only the greatest art can show. . . .” [20, page 32]
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• Imagination and creativity abound: “There is an astonishing imagina-
tion,” said Voltaire, “even in the science of mathematics.... We repeat,
there was far more imagination in the head of Archimedes than in
that of Homer.” [7, page 126] Unconstrained by the physical universe,
the freedom of invention is extraordinary, limited only by what can be
imagined. A mathematician can imagine, define, and study intricate
and beautiful algebraic structures, higher (even infinite) dimensional
exotic spaces and geometries — all not of this world, existing only in
the human mind. “There is nothing as dreamy and poetic, nothing as
radical, subversive, and psychedelic, as mathematics. It is every bit as
mind blowing as cosmology or physics . . . and allows more freedom of
expression than poetry, art, or music . . . . Mathematics is the purest of
the arts, as well as the most misunderstood." [17, page 23]

• Unlike other disciplines, mathematics puts us in direct contact with
the infinite — sets countably and uncountably infinite, sets of infi-
nite length, area, and volume, infinite limits, infinite integrals, infinite
sequences, infinite sums, infinite “polynomials,” infinite dimensional
spaces — and even gives us the god-like powers to define precisely and
control every one of these infinite concepts and processes! “The goal of
mathematics,” writes Hermann Weyl, “is the symbolic comprehension
of the infinite with human, that is finite, means.” [26, page 12]

• Using axioms, definitions, and logic of pristine clarity, the language of
modern mathematics has no ambiguity. Mathematicians communicate
their findings across the globe in rigorous proofs with perfect precision.
There are no debates in mathematics. When a proof is extremely com-
plex and difficult — Andrew Wiles’s proof of Fermat’s Last Theorem in
1995 was 129 pages long — there may be a pause, while the mathemat-
ical community, in seminars around the world, studies the argument
looking for flaws — but in the end the final verdict is unanimous. No
debate? Perfect precision? Sound like any other discipline? No.

• Modern mathematics has great power and sophistication, and yet many,
many deep and exciting problems remain unsolved. Here’s just one: 5
and 7, 11 and 13, 17 and 19 are examples of “twin primes.” Is the
number of twin primes finite or infinite? To this day, no one knows.
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Of the seven Millennium Prize Problems set out by the Clay Mathe-
matics Institute in 2000, only one had been solved as this writing.

• “[Nature] is written in that great book which ever is before our eyes,”
wrote Galileo, “. . . but we cannot understand it if we do not first learn
the language and grasp the symbols in which it is written. The book
is written in mathematical language.” [11, page 350] Does it surprise
us that the Universe has always expressed itself in the language of
mathematics? It shouldn’t. To understand the universe, we strive to
illuminate its structures and patterns, and mathematics is the language
and study of structure and pattern! In the mathematics of Einstein’s
general theory of relativity, the universe is a four-dimensional spacetime
“surface” whose curvature, determined by mass, varies from point to
point and where light travels along “curving” paths of least length.
In more modern “string theories,” spacetime may have 10, 11, or 25
dimensions! M-theory, in particular, posits extended two-dimensional
membranes and five spatial dimensions that reside in a universe of
eleven dimensions!

• Even at our level here, in Calculus I, the fantastically varied and seem-
ingly uncountable applications come from almost every area you can
think of: acoustics, archeology, biology, business, chemistry, computer
science, ecology, economics, engineering, environmental science, gov-
ernment, health science, music theory, neuroscience, medicine, physics,
the list goes on. I’m handing out a sample list of some several hundred
applications. Let me just read a bunch of them:

predator-prey interaction

modeling climate change

firefly synchronization

credit card payment structure

spread of infectious diseases

trajectories of Martian probes

earthquake-proof buildings

detecting art forgeries

present value of an oil well

modeling whale populations

surface area of a black hole

predicting hurricane paths

algorithms for search engines

dating ancient cave paintings
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as x Ñ `8. How can we express this “behaves like” mathematically? Note
that, in each of these cases, the quotient f{g tends to a positive finite limit.

definition As xÑ c, suppose both f and g tend to `8 (or ´8 or 0). We
say f and g are asymptotic as x Ñ c and write f „ g if the quotient f{g
tends to some positive finite limit. Here c may be finite or ˘8.

The “behaves like” behavior encoded in f „ g as x Ñ c certainly does
not imply that the absolute difference f ´ g tends to zero. For example,
x2 ` x

x2
Ñ 1 as x Ñ `8, yet the difference x grows arbitrarily large. But

f „ g as xÑ c does imply that a relative difference tends to zero:
f

g
Ñ L if

and only if
f ´ Lg

g
Ñ 0.

OK, time for some examples.

(1) fpxq “
x2px´ 1q3

px` 1q3px` 2q4
„
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’

’

’

’
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px´ 1q3 as xÑ 1

´x2 as xÑ 0
´1

px` 1q3
as xÑ ´1

1

px` 2q4
as xÑ ´2

1

x2
as xÑ ˘8

Let’s first use solid curves to sketch in what these asymptotic approximations
tell us. Then we’ll complete the graph by drawing dotted curves to join those
solid portions up in the most natural way:
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Of course, we don’t know the heights of the hills nor the depths of the valleys,
but this qualitatively correct sketch is still good enough to let us predict the
number (4 and 5) of extremes (‚) and inflections (˚) as well as their (very)
rough locations. Derivative calculations can now make those rough locations
precise. Often, as in this example, dia by itself provides so much information
that decis and its derivatives just confirm and fine-tune what we already
know. And that’s a comfortable position to be in.

9. guess bravely and beautifully

. . . the feeling of mathematical beauty, of the harmony of numbers
and of forms, of geometric elegance. It is a genuinely aesthetic
feeling, which all mathematicians know. –henri poincaré [18,
page 59]

Last time we defined the integral as a limit of Riemann sums, made some
comments on that definition, and then went through a couple of examples.
Let’s spend the day doing more examples. Here’s the first one:

ż 2

1

1

t
dt «

1

1` 1
100

1

100
`

1

1` 2
100

1

100
` ¨ ¨ ¨ `

1

1` 100
100

1

100
« 0.693

Seth? That decimal reminds you of the natural log of 2? Wow, that’s a good
memory! And you’re quite right: ln 2 « 0.693, which means

ż 2

1

1

t
dt « ln 2

Now wouldn’t it be lovely if this approximation were actually an equality?
ż 2

1

1

t
dt

?
“ ln 2

Do we imagine having that 2 appear on each side is an accident? Let’s be
brave and guess that we can substitute any (positive) number x for 2:

ż x

1

1

t
dt

?
“ lnx
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Do you notice anything here? Marianne? Right, the derivative of lnx is 1
x
,

so we would have
d

dx

ż x

1

1

t
dt

?
“

1

x

Notice we now have the same reciprocal function in the integrand and on the
right hand side. What if we could replace that reciprocal function with any
function at all? Wouldn’t that be just beautiful?

d

dx

ż x

1

fptq dt
?
“ fpxq

Thinking about what would be beautiful and guessing bravely (and a bit
wildly), we have arrived at a stunning conjecture, which (if f is continuous)
turns out to be true. It’s called the first fundamental theorem of
calculus, and we shall prove it later next week! Amazing.

Early on in mathematics, probably by first grade, we learn to associate guess-
ing with ignorance: if you don’t know how to find the answer, you might as
well guess. Even in advanced mathematics, the standard textbook format —
here are some theorems, here are the proofs; here are some problems, sup-
ply the solutions — would appear to associate guessing, not with ignorance
perhaps, but with being ignored, since the format completely ignores the
role of guessing in mathematical work. Yet mathematicians themselves asso-
ciate guessing with creativity ! George Pólya, one of the great mathematical
problem solvers, put it this way:

You have to guess the mathematical theorem before you prove it:
you have to guess the idea of the proof before you carry through
the details. You have to combine observations and follow analo-
gies: you have to try and try again. The result of the mathemati-
cian’s creative work is demonstrative reasoning, a proof; but the
proof is discovered by plausible reasoning, by guessing. [19, page
vi]

The first part of our proverb, guess bravely, concerns the fear of guess-
ing instilled in us by our education. We must overcome that fear and guess
bravely — not wildly of course, not out of the blue, but based on exam-
ples, educated guessing, what Pólya calls plausible reasoning. The second
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part, guess beautifully, reminds us to let those guesses reflect our innate
belief in the underlying architectural beauty of nature, the Universe, and
mathematics.

10. understanding is translating

Would someone please remind me where we were at the end of class on
Monday? Ah, yes, thank you Gaard. We had just proved the second fun-
damental theorem of calculus (ftc ii). Here’s an alternate version
of this wonderful result:

ftc ii If F 1 is continuous on ra, bs, then
b
ż

a

F 1pxq dx “ F pbq ´ F paq.

One way to increase our understanding of this theorem, or indeed any math-
ematical statement, would be to translate that statement into a different
language. As an illustration, let’s translate ftc ii into three languages.

First, the magical language of Leibnizian infinitesimals: If dx represents the
length of the infinitely short interval rx, x ` dxs at x and dy represents the
corresponding infinitely small change F px` dxq ´ F pxq in F , then

b
ż

a

F 1pxq dx “

b
ż

a

dy

dx
dx “

b
ż

a

dy “ ypbq ´ ypaq “ F pbq ´ F paq

Next, the language of geometry:

1

b´ a

b
ż

a

F 1pxq dx “
F pbq ´ F paq

b´ a

average of all the

slopes along the graph
“ slope of the chord

Phrased this way, ftc ii seems quite surprising and pretty. And finally, the
language of physics: Given the trip of a particle along a line, the “average
velocity during the trip” has two natural interpretations, one industrious —
the average of all the instantaneous velocities during the trip — and one lazy:
the change in position over the change in time. ftc ii tells us that these
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two interpretations yield the same result. For if F ptq is the position of the
particle at time t, then

1

b´ a

b
ż

a

F 1ptq dx “
F pbq ´ F paq

b´ a

average of all the

instantaneous velocities during the trip
“

change in position

change in time

Our three translations have helped us to understand ftc ii. Here the word
“understand” suggests something distinct from and perhaps beyond just ab-
sorbing the literal meaning, something deeper, more organic, intuitive, and
contextual. Any attempt to understand a given theorem in this sense will
involve some sort of translation. Even the seemingly neutral process of study-
ing the statement and its proof, for example, is a process of translation, from
the mathematical language on the page into the mental language of our own
interior mathematical landscape. Some translations help our understanding
by simplifying down to the kernel of the assertion, say by translating the de-
tailed symbolic statement into a prose sentence. Richard Feynman suggested
stripping a concept or statement down to its essentials, ending with a verbal
description that would make sense to a child.

In the translation of a theorem — whether into the language of geometry,
physics, or simple prose — the reproduction of exact literal meaning gives
way in order to underline the fundamental sense and intention of the original.
In his essay “The Task of the Translator,” Walter Benjamin (in a literary, not
mathematical context) argued that, “as regards the meaning, the language of
translation can — in fact, must — let itself go, so that it gives voice to the
intentio of the original not as reproduction but as harmony. . . .” [3, page 79]

11. celebrate your mistakes

A man’s mistakes are his portals of discovery.1 –james joyce
[14, page 182]

1A mistaken quotation: it’s apt, but not accurate. While Google attributes this saying
to James Joyce, what Joyce has Stephen Dedalus claim in Ulysses is actually quite dif-
ferent: “A man of genius makes no mistakes. His errors are volitional and are the portals
of discovery.” One reading: knowing full well that a given approach will fail, the man of
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Where did we end up last time? Anyone remember? Emily? Ah, yes, we had
just used the integral test to investigate the convergence of a p-series.
And here’s what we found:

theorem The p-series
8
ÿ

n“1

1

np
converges if and only if p ą 1.

Let’s do some more integral test examples:

(1)
8
ÿ

n“2

1

n lnn

Now before we test the convergence of this series, why don’t we see if the in-
tuition we have developed concerning the convergence of positive-term series
leads us to a conjecture.

intuition A positive-term series
ř

pn converges when and only when the
terms pn Ñ 0 sufficiently fast.

The question then is: do the terms
1

n lnn
Ñ 0 sufficiently fast? Well, we

know that the series
8
ÿ

n“1

1

np
converges provided p ą 1, so it must be that the

terms
1

np
Ñ 0 sufficiently fast. But then

1

np
“

1

n ¨ nq
Ñ 0 sufficiently fast for

every q “ p´ 1 ą 0. Since we can make nq Ñ `8 more and more slowly by
choosing q closer and closer to 0, it seems that we should be able to make
nq Ñ `8 more slowly than lnnÑ `8 by choosing q sufficiently close to 0.

For such q,
1

n ¨ nq
would Ñ 0 sufficiently fast and consequently

1

n lnn
would

also Ñ 0 sufficiently fast. This intuitive line of thought leads to our

conjecture
8
ÿ

n“2

1

n lnn
converges.

What’s remarkable is that I still remember thinking about just this series,
following this line of thought, and making this same conjecture, from when
I took calculus way back in 1967!! I also remember how I felt when the

genius follows it anyway, knowing also that the particular way it fails will open “portals
of discovery.”
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integral test
ż `8

2

1

x lnx
dx “ lnplnxq|`82 “ `8

proved my conjecture wrong! I felt deflated, disappointed that my intuition
had led me astray. But really, looking back, I should have felt elated ! I should
have celebrated the opportunity to deepen my understanding, to sharpen my
intuition by finding where my thinking had gone wrong. And it was, of
course, in thinking that just because I could make nq Ñ `8 more and more
slowly by choosing q closer and closer to 0, that I could make nq Ñ `8 more
slowly than lnn, when, in fact, lnn Ñ `8 more slowly than any positive
power of n:

lnn

nq
Ñ 0

by L’Hôpital (really Johann Bernoulli) for any q ą 0.

My point being, celebrate your mistakes! See them as double joys, not
only signaling that our mathematical mental furniture is out of alignment
but also, once we trace our error back to its origins, placing a finger on the
particular chair, desk, or table that needs shifting. Without mistakes, we
don’t know what we don’t know.

12. explore the tug of war: cui dominetur?

The argument we gave yesterday proved the following theorem:

leibniz alternating series test The alternating series

8
ÿ

n“0

p´1qnpn,

where pn ą 0, converges if pn Ó 0.

Before we go on to look at some alternating series examples, here’s a question:
Which of our proverbs has come up the most this year, in Calculus I and II?
Rowen? explore the tug of war? Yes, I think you’re right. And why
is that? Is it the most fundamental for life? No, that honor would probably
go to be awed, like a child or meaning before truth or god gives,
we choose. But explore the tug of war is certainly a fundamental
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proverb for calculus : because calculus rests on the limit concept, because
“All interesting limits involve a tug of war,” as I’ve said so often, and because
understanding its tug of war is the key to understanding a limit.

But why, I see you all wondering, am I bringing up the tug of war proverb
now? Well, because an alternating series represents the final tug of war
category that we’ll meet in this class, which makes this the perfect time to
look back and reflect on a few of the more memorable tug of wars (tugs of
war?) we’ve seen during this past year.

(1)
1´ cosx

xn
as xÑ 0` pn “ 1, 2, 3q

1´ cosx

x
Ñ 0

1´ cosx

x2
Ñ

1

2

1´ cosx

x3
Ñ `8

Here the top and bottom both tend to 0, creating a classic tug of war,
with the top team pulling the fraction toward 0 while the bottom team
pulls the fraction toward `8. The top team wins (dominates) when
n “ 1, the bottom team wins (dominates) when n “ 3, and there’s a
tie when n “ 2. As xÑ 0`, we say 1´ cosx tends to 0 faster than x,
slower than x3, and at the same rate as x2.

In the full proverb, explore the tug of war: cui dominetur?, the
question “Which dominates?” has two distinct interpretations: (a) Which
team dominates the tug of war? and (b) Which team members dominate
their teammates? The example above illustrates just the first interpretation,
while the next example illustrates both.

(2)
2x3 ` x2 ` x

3x3 ´ x2 ` 2x
as xÑ 0 and xÑ `8

When x Ñ 0 the top team and the bottom team both tend to 0,
setting up our tug of war. But as xÑ 0, x dominates its teammates on
the top team while 2x dominates its teammates on the bottom team,
and “dividing by the dominator”

2x3 ` x2 ` x

3x3 ´ x2 ` 2x
“

2x2 ` x` 1

3x2 ´ x` 2
Ñ

1

2



Bruce H. Pourciau 343

we see that neither team dominates, for the tug of war ends in a tie.
On the other hand, when xÑ `8 the top team and the bottom team
both tend toward `8, producing a different tug of war. Since, in this
case, 2x3 dominates its teammates on the top team and 3x3 dominates
its teammates on the bottom team, we “divide by the dominator” again

2x3 ` x2 ` x

3x3 ´ x2 ` 2x
“

2`
1

x
`

1

x2

3´
1

x
`

2

x2

Ñ
2

3

to find once more that neither team dominates, as the tug of war ends
in a tie.

(3) p1`
1

n
q
n as nÑ 8

In this famous and fundamental limit, the term
1

n
pulls the expression

toward 1, while, at the same time, the exponent n pulls the expression
toward `8. As we know, this tug of war ends in a tie:

p1`
1

n
q
n
Ñ e.

(4)
fpc` hq ´ fpcq

h
as hÑ 0

Obviously, every derivative derives from a tug of war, with the top
and bottom both tending toward 0.

(5)
n
ÿ

i“1

fpciq∆xi as mesh Ñ 0

Also every integral involves a tug of war, not with opposing teams
so much as opposing forces. As the mesh tends toward 0, the size of
each term in the Riemann sum tends toward 0, while the number of
terms tends toward 8.

(6)
8
ÿ

n“1

pn ppn ą 0q
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Intuitively, the positive-term infinite series
8
ÿ

n“1

pn :“ lim
NÑ8

N
ÿ

n“1

pn

converges if and only if the pull toward convergence produced by the
terms pn tending to 0 counteracts the pull toward `8 (and hence
divergence) produced by the number N of terms tending to 8.

basic intuition A positive-term series
ř8

n“1 pn converges if and only
if its terms tend to 0 sufficiently fast.

(7)
8
ÿ

n“1

p´1qn`1pn ppn ą 0q

When the series alternates, an extra force pulls toward convergence
– the cancellation created by the alternating signs — and as a result,
to ensure convergence of the series, the force produced by the terms
tending to 0 does not need to pull as hard as it did when the terms
were all positive. In fact, the terms pn no longer need to tend toward
0 “sufficiently fast”; they just need to decrease to 0, at any rate at all,
which is where we started the class:
leibniz alternating series test The alternating series

8
ÿ

n“0

p´1qnpn,

where pn ą 0, converges if pn Ó 0.

13. too beautiful to be false

My work has always tried to unite the True with the Beautiful
and when I had to choose one or the other, I usually chose the
Beautiful. –hermann weyl [8]

As class ended on Wednesday, we had just stated a theorem on the nice
behavior of power series. We can’t prove it now, but you’ll see a proof if you
go on to the analysis course next year. Let’s get this theorem back up, on
the side board here, and take a look at some examples.
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playing with power series theorem (ppst) On the interior of its
interval of convergence, a power series acts like a polynomial : it’s infinitely
differentiable and all the basic operations (˘, ˆ, ˜, substitution,

ş

, p q1) can
be done term-by-term!

Let’s play. On the interval p´1, 1q, we have

1

1´ x
“ 1` x` x2 ` ¨ ¨ ¨

Applying the ppst, we replace x by ´x2 to see that

1

1` x2
“ 1´ x2 ` x4 ` ¨ ¨ ¨

Perhaps we should pause here. Remember that an algebraic function contains
only (and finitely many) additions, subtractions, divisions, multiplications,
rational powers, and rational roots), and a transcendental function is any
function that’s not algebraic. Thus a transcendental function “transcends”
algebra. For example, arctan is a transcendental function. In particular,
then, arctan transcends the polynomials: given any open interval, there is no
polynomial which equals arctan everywhere on that interval. But apparently,
if we allow our polynomials to go on forever, to become transcendental them-
selves, they can catch up to arctan, at least on the interval p´1, 1q: by the
ppst, we can integrate the power series representation above term-by-term
to find

arctanx
!
“ x´

x3

3
`
x5

5
´ ¨ ¨ ¨

Now we know this holds on p´1, 1q, but the ppst is mute about whether a
convergent power series ever “acts like a polynomial” even at the boundary
points of the open interval, in this case at ˘1. Just for fun, let’s see what
happens when x “ 1:

π

4
?
“ 1´

1

3
`

1

5
` ¨ ¨ ¨ !!!!

Oh, my god, this is far too beautiful to be false! Ah, you’re laughing.
I know, it sounds goofy: too beautiful to be false. But I’m really quite
serious.
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Let’s think about what just happened. We have an equality

arctanx “ x´
x3

3
`
x5

5
´ ¨ ¨ ¨

which holds for every x in p´1, 1q, and in particular, for every x just short of
the boundary at 1. It’s certainly possible that the equation also holds at 1,
and there’s some evidence that it might hold at 1, given that the statement
when x “ 1 is “arbitrarily close” to statements that are true. And at 1 we
get:

π

4
?
“ 1´

1

3
`

1

5
` ¨ ¨ ¨

a stunningly beautiful statement which lies on the “boundary of an interval
of true statements.” Would God, the architect of the universe, really be so
perverse as to make this lovely equality false? Personally, I don’t think so.
That would be like God smirking at us while singing na na na na boo boo.

Of course, we have proofs by induction, proofs by counterexample, contra-
position and contradiction, but no “proofs by beauty.” There are, however,
proofs by Abel, the wonderful Norwegian mathematician, who died so young,
at 26:

abel’s theorem If
ř8

n“0 cn converges, then spxq :“
ř8

n“0 cnx
n is continuous

on r0, 1s.

Since the alternating series 1 ´
1

3
`

1

5
` ¨ ¨ ¨ converges, we then have, by

continuity at x “ 1,

π

4
“ arctan 1 “ 1´

1

3
`

1

5
` ¨ ¨ ¨

Abel assures us that God, at least this time, has not been perverse.

Recall Hermann Weyl’s statement concerning beauty and truth at the be-
ginning of this section: “My work has always tried to unite the True with
the Beautiful and when I had to choose one or the other, I usually chose the
Beautiful.” Perhaps Weyl had in mind that choosing the Beautiful over the
True in the moment often led to a deeper truth in the end.
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14. do you believe in magic?

I don’t like magic — but I have been known to make guys dis-
appear. –mr. t [24] [leaving behind, one assumes, the ghosts of
departed quantities!]

From your reading last week in Calculus Gems [21] on Leibniz and the
Bernoulli brothers, you may remember that Leibniz employed a marvelously
productive way of thinking about calculus which involved “infinitesimals”
— quantities supposedly smaller than any other quantity yet not zero. Of
course, in our standard real number system, such infinitesimals do not exist,
since given any real number r ą 0, no matter how small, r{2 is smaller. Nev-
ertheless, Leibniz and his followers made wonderful discoveries using these
intuitive, magical, nonexistent quantities, taking mathematics on the conti-
nent well beyond the mathematics in Britain, where, due to Newton’s worries
about the lack of rigor, infinitesimals were effectively banned.

Actually, Leibniz agreed with Newton that infinitesimals did not exist. In a
letter written in 1706, he was quite clear about this: “Philosophically speak-
ing, I no more believe in infinitely small quantities than in infinitely great
ones . . . I consider both as fictions of the mind for succinct ways of speak-
ing, appropriate to the calculus. . . .” [13, page 159] He was more willing
than Newton, though, to let these infinitesimals direct not only his thinking
but also his writing about calculus problems. It seems that Leibniz believed
in the fruitfulness of his magical thinking, but not in the existence of his
magical quantities. Still fruitful even today, Leibniz’s infinitesimal intuitions
survive encoded in his flexible, evocative, and magical notations: where dx
represents the infinitesimal length of the interval rx, x` dxs at x,

dy

dx
“ the ”quotient”

fpx` dxq ´ fpxq

dx
b
ż

a

fpxq dx “ the ”sum” of all the ”products” fpxq ¨ dx from x “ a to x “ b

To see an illustration of Leibnizian magical thinking, let’s rotate the graph
G of f lying over the interval ra, bs about the x-axis to generate a surface of
revolution M . Suppose the infinitesimal portion of the graph G which lies
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over the interval rx, x ` dxs has length ds, and suppose that portion of G,
rotated about the x-axis, generates an infinitesimal strip of M having area
dA. Then we would have

lengthpGq “

b
ż

a

ds “

b
ż

a

a

dx2 ` dy2 “

b
ż

a

d

1`

ˆ

dy

dx

˙2

dx

areapMq “

b
ż

a

dA “

b
ż

a

2πfpxq ds “

b
ż

a

2πfpxq

d

1`

ˆ

dy

dx

˙2

dx

Such infinitesimal manipulations can be used, like we did here, to come up
with conjectures, which then must be established rigorously by other means,
in this case by careful Riemann sum arguments. But this magical Leibnizian
thinking can also be used in the reverse direction, not to produce a conjecture,
but to produce insight into a given expression or equation that might appear
in an advanced text or a research article on ecology, say, or biology.

For example, suppose an ecology text claims, without explanation, that the
following equation has been used to predict the population ppT q of humpback
whales along the Alaskan coastline T years from the present:

ppT q “ pp0qspT q `

ż T

0

rptqspT ´ tq dt

Here rptq is the birth rate and sptq is the “survival fraction”: given any P

humpback whales, Psptq are expected to be alive t years later. Is this a
plausible formula for ppT q? Well, thinking like Leibniz, the product rptq dt
should be the number of humpbacks born during the time interval rt, t` dts,
and by the time T only rptq dt¨spT´tq of those should still be alive. Adding up
these survivors over the interval r0, T s, we get the integral

şT

0
rptqspT ´ tq dt.

We then have to add to this the number of humpbacks alive at t “ 0 who
would be expected to survive until time T , namely pp0qspT q. So although
we may have no idea how well the given estimate for ppT q actually works to
predict the population of humpbacks, Leibnizian infinitesimals have at least
supplied the formula with some plausibility.
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15. follow the veil: be moved by mystery

There are two ways to live: you can live as if nothing is a miracle;
you can live as if everything is a miracle. The most beautiful
experience we can have is the mysterious. It is the source of all
true art and science. –albert einstein [9]

We’re going to celebrate the last day of Calculus II by talking about complex
numbers. In high school, we are told that complex numbers have the form
x` iy, where x and y are real numbers and i “

?
´1 is “imaginary.” We are

then told that we can add and multiply these complex numbers normally,
the way we do real numbers, except that we should always replace i2 by ´1.
Of course, this is all very mysterious: “The nature, mother of the eternal
diversities, or the divine spirit . . . has invented,” wrote Leibniz, “this elegant
and admirable proceeding, this wonder of Analysis, prodigy of the universe of
ideas, a kind of hermaphrodite between existence and non-existence, which
we have named imaginary root.” [15]

Let’s see if we can we lift the veil on these complex numbers. We all know
how to add points in the plane, using vector addition, and multiply points
by real numbers, using scalar multiplication. But we’ve never seen a product
of points, where the product is another point: px, yqpu, vq “ p , q. Such a
new and presumably fundamental operation, if it exists, would surely turn
the plane into a lush and fruitful plain. For think about the real line. In
its fertile soil grows so much beautiful mathematics — all the elementary
functions, limits, calculus, analysis generally, and a huge harvest of theo-
rems and applications — but take away the multiplication of real numbers
and that dark, rich earth becomes pale, desert sand. With no multiplication
of points, surely the plane must be just as barren. Yet with an appropriate
product of points, together with its vector addition and scalar multiplication,
we imagine the plane would become as fertile as the Amazon jungle, with ele-
mentary functions, derivatives, integrals, sequences, series, and power series,
all growing wildly in a tangle of stunning theorems and applications.

But how should this “appropriate” product be defined? Perhaps we should
do what mathematicians so often do in this sort of situation, where they’re
looking for the right way to define something: use the properties we would
like that something to satisfy to help us narrow the choices down to one.
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Of course, what we’d like and what’s possible are often two different things.
We might be overly optimistic in writing out our wish list, only to find that
no definition of the product will give us every property on our list. But
keeping this in mind, we certainly would like our product to be associative
and commutative, it should distribute over the vector addition, there should
be a neutral point, probably p1, 0q, for this product, and all points (except the
origin) should be invertible. Oh, and we really need the following property
as well: because points on the x-axis can be viewed both as points in the
plane and as real numbers, they can be multiplied both as points and as real
numbers, and the two products must be consistent. So however we define
the product, for points on the x-axis we must have px, 0qpu, 0q “ pxu, 0q. In
other words, our product on the plane must extend the product we already
have for points on the x-axis (viewed as real numbers).

Concentrating on this extension property, let’s think about how we multiply
real numbers. Using polar notation xr, θy, we have

´2 ¨ 3 “ ´6

x2, πy ¨ x3, 0y “ x6, πy

“ x2 ¨ 3, π ` 0y

So in a product of real numbers, the lengths multiply and the angles add!
And of course this way of multiplying real numbers, and hence this way of
multiplying points on the x-axis, extends in a totally natural way to the
entire plane:

definition Given points z “ xr, θy and w “ xρ, φy in the plane, the product
zw :“ xrρ, θ ` φy is called complex multiplication.

One can then verify that this complex multiplication satisfies every property
on our wish list!

definition By the complex plane C we mean the real plane R2 endowed
with vector addition, scalar multiplication, and complex multiplication. By
a complex number we mean any point in this complex plane.

Noting that multiplication by the point i :“ p0, 1q produces a counterclock-
wise rotation by a right angle and writing x and y for px, 0q and py, 0q, we
can relate our new definition of complex number to the mysterious x ` iy

notation:
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px, yq “ px, 0q ` p0, yq

“ px, 0q ` p0, 1qpy, 0q

“ x` iy

where i2 “ p0, 1q2 “ p´1, 0q “ ´1 !! The imaginary number i “
?
´1,

which couldn’t be found among the real numbers, has been found in a higher
dimension: it’s the point p0, 1q in the complex plane!

Having unveiled one mystery, we turn to a deeper mystery. Question: How
should we define ez when z “ px, yq “ x` iy is a complex number? However
we define ex`iy, we certainly want the basic exponential property — turning
sums into products — to still hold, which means ex`iy should equal exeiy,
but this reduces defining ex`iy to defining eiy. Now it turns out that much
of what we’ve learned in Calculus II about infinite series of real numbers
extends quite naturally to infinite series of complex numbers. Instead, for
example, of an interval of convergence, we now have a disk of convergence.
It would make sense, then, to define eiy as the sum of the exponential series:

eiy :“ 1` iy `
1

2!
piyq2 `

1

3!
piyq3 ` ¨ ¨ ¨

“ 1` iy ´
1

2!
y2 ´ i

1

3!
y3 ` ¨ ¨ ¨

“ p1´
1

2!
y2 `

1

4!
y4 ´ ¨ ¨ ¨ q ` ipy ´

1

3!
y3 `

1

5!
y5 ´ ¨ ¨ ¨ q

eiy “ cos y ` i sin y !!!

Here is the long hidden, but sometimes glimpsed, intimate connection be-
tween the exponential and trigonometric worlds, first discovered by Leonhard
Euler! [10, Chapter VIII] And when y “ π, we find:

eiπ ` 1 “ 0 !!!

Viewed by physicists and mathematicians as one of, if not the, most beautiful
equation in the world, this relationship, Euler’s equation, connects, in a
stunningly simple way, the five most fundamental mathematical constants
(1, π, 0, i, e), invented (discovered?) in very different times for very different
reasons. 1: shrouded in prehistory, π: Egypt 1850 bc, 0: Mesopotamia 3
bc, i: Heron of Alexandria 50 ce, e: Leibniz 1690. Euler’s equation should
make chills race up your mathematical spine.



352 The List: Proverbs for Calculus

Rowen? You’d rather feel chills race up your physical spine? Ah, yes, I totally
get it: containing only mathematical constants, Euler’s equation seems, well,
abstract. Let’s see if I can think of an equation that will produce the kind of
chills you’re after. Hm, how about this one: no less mysterious and at least
as deep as Euler’s equation, the following relationship involves not only the
five mathematical constants above, but also, unbelievably, eight fundamental
physical constants! It will leave your physics friends and faculty speechless:

cGhε0qeαµ0mepe
iπ
` 1q “ 0 !!!

[laughter and groans]

Of course, instead of being silly, we really should give Rowen’s reaction to
Euler’s equation the serious attention it deserves.

E “ mc2, ∇ˆ E “ ´
BB

Bt
, ∆P ∆x ě

~
2
, . . .

— the equations of physics naturally excite us, for they describe the physical
world as we know it, from black holes and pulsars to bridges and turbulence
to the interactions of elementary particles. In contrast, the equations of pure
mathematics, such as Euler’s equation, containing neither physical constants
nor physical quantities, can appear sterile and empty, the fruits of a mean-
ingless, abstract game. But mathematics is no game; it is the language and
study of abstract structures and patterns. It certainly applies, deeply and in
detail, to the “real world,” for to the extent that a physical structure or pat-
tern resembles an abstract structure or pattern, the mathematics of the latter
may be applied to approximate or model the physics of the former. This is
how mathematical modeling works: abstract mathematics models real world
phenomena.

But in a very real (or non-real) sense, mathematics also bears on immutable
and eternal truth, truths beyond and independent of the evolving and tran-
sient physical universe we happen to reside in, truths that would hold in any
universe. And Euler’s equation, eiπ ` 1 “ 0, being one such beautiful truth,
makes chills race up both my mathematical and physical spines!

16. philosophy matters (aka i’ll see it when i believe it)

Once a mathematician has seen that his perception of the “self-
evident correctness” of the law of excluded middle [bivalence] is
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nothing more than the linguistic equivalent of an optical illusion,
neither his practice of mathematics nor his understanding of it
can ever be the same. –gabriel stolzenberg [23, page 268]

Well, we finished that topic earlier than anticipated! Hmm, what to do
with the twenty minutes we have left? I know, let’s talk philosophy! Ah,
I can see the question in your faces: What’s philosophy got to do with
mathematics? After all, in philosophy the central questions have no single,
agreed upon answer, while in mathematics rigorous proofs settle questions
definitively. Philosophy is all about continuing debate; mathematics is all
about preventing debate.

Nevertheless, philosophy has a crucial role to play in mathematics, and the
philosophical choices we make can determine how mathematics is done! We
may have ignored philosophical issues in this class, but they lie at the heart
of what we’ve been doing. In fact, nearly all mathematicians follow proce-
dures sanctified by a particular philosophical stance toward mathematical
statements.

Take, for example, the procedure we use in a proof by contradiction: in or-
der to prove a mathematical statement S, we show that the negation of S
implies a contradiction. The force of this argument stems from a philosoph-
ical assumption about mathematical statements: that they are either true
or false, independent of our knowing (or being able to know) which. This
“bivalence” or “excluded middle” assumption is not one that mathematicians
make consciously. Rather it’s a background assumption, built into the way
they see mathematical statements. Why? Partly because the present-tense
language we use in mathematics — referring to sets, functions, sequences,
spaces, and so on, as if they were pre-existing shells on a beach — creates
a nearly irresistible sense of reality. Such language is then taken literally, as
referring to “things” that stand apart from us. A mathematical statement is
then quite naturally seen as a statement about these “things” and therefore,
taken this way, a mathematical statement will be seen as having to be either
true or false, from which then follows, in particular, the force of an argument
by contradiction: if the negation of a statement S implies a contradiction,
then that negation cannot be true, and hence (using bivalence) S must be
true.



354 The List: Proverbs for Calculus

i’ll see it when i believe it: if we believe in the existence of these math-
ematical “things” that stand apart from us, we then see any mathematical
statement, since it refers to such “things,” as being obviously true or false
independent of our knowing.

But there are other quite natural ways of viewing a mathematical statement.
Such an assertion could be seen, for instance — and here I’ll read from a
delightfully meticulous paper by Gabriel Stolzenberg –

as an announcement, or signal, that one is in possession of
a certain piece of [mathematical] knowledge . . . knowledge that
one is in a position to share; for example, by using language to
specify certain procedures that are to be followed in order to
attain this knowledge. From this standpoint, to inquire about
some statement whether ”it might be true, independent of our
knowing it” is merely idle talk, devoid of substance. For there are
not literally “things” as “statements,” only acts “of stating.” [23,
page 245]

Nouns have become verbs : mathematics as the study of mathematical “things”
has morphed into mathematics as the study of mathematical “acts.” This
philosophical stance stems from the belief that the foundations of mathe-
matics, that most rational and precise of disciplines, ought to rest, not on
talk, but on knowledge, knowledge that one can share.

Under this view, when would it be correct to assert a given mathematical
statement S? “Since such a statement,” continues Stolzenberg, “is supposed
to be a signal that one knows that S is true, it is correct to assert it when one
does know that S is true and it is incorrect when one does not.” And again,
one “knows that S is true” when “one is in possession of a certain piece of
[mathematical] knowledge . . . knowledge that one is in a position to share.”
Now observe that taking this (quite natural) philosophical stance completely
blunts the force of an argument by contradiction: proving that the negation
of the assertion S implies a contradiction provides certainty that no one will
ever be in a position to assert the negation of S, but does not in general
provide that “certain piece of [mathematical] knowledge,” that piece being a
proof, required to assert correctly that S is true!
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Switching from the view that a mathematical statement refers to “things”
that stand apart from us (the “bivalence view”) to the view that asserting a
mathematical statement signals that one possesses a proof of that statement
(the “signal view”) alters not just the force of an argument by contradiction,
but so much more. The meanings of existence, negation, and disjunction,
what counts as a legitimate method of proof, what counts as a legitimate
definition, the meanings of theorems, what counts as a theorem, what ques-
tions should be asked, what problems should be investigated — all of this
changes!

philosophy matters: The philosophical stance we take toward mathemat-
ical statements shapes the landscape of mathematics !

Before we run out of time, we’ll look at one small part of that mathematical
landscape, first from the “bivalence view” and then from the “signal view.”
We’ve mentioned twin primes before: 3 and 5, 5 and 7,11 and 13, and so on.
At the present time, no one know whether there are an infinite number of
twin primes or a finite number. Now, set

n :“

#

1 if there are infinitely many twin primes

0 if there are finitely many twin primes
p‹q

and ask: Does this assignment p‹q define an integer? If T stands for the
assertion, “there are infinitely many twin primes,” then under the “bivalence
view” of mathematical statements, T is either true or false, so that n is
definitely either 1 or 0, we just don’t know which. Hence the assignment p‹q
defines an integer. But under the “signal view” of mathematical statements,
to assert that n “ 1 or n “ 0 is to signal that one is in possession of a proof
that there are infinitely many twin primes or one is in possession of a proof
that there are finitely many twin primes. Because, at the present time, no
one has either, the assignment p‹q does not define an integer.

The answer to that most fundamental, gut-level mathematical question –
“What is an integer?” — has been altered dramatically by a change in phi-
losophy. philosophy matters!

Uh-oh, I see by the clock that we’ve gone into overtime. Sorry, got carried
away!
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But before you go, let me leave you with one final thought on this philosophy
business. One of our proverbs has surfaced so often this semester that it
could be seen as a theme for the course: meaning before truth. And
it surfaces here as well, in a truly basic way: the meaning of the statement
“the assignment (‹) defines an integer” must come before its truth.

And so too in life: Agree on meaning before debating truth.
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