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Twisting the Cube:

Art-Inspired Mathematical Explorations

Lingguo Bu

School of Education, Southern Illinois University Carbondale, Illinois, USA
lgbu@siu.edu

Synopsis

A cube can be twisted in a playful manner for visual and algebraic insights. The
twisting process and the resulting ruled surfaces can be demonstrated using 3D
modeling tools (e.g., GeoGebra R© and Autodesk Fusion 360 R©) or elastic cords
on a 3D-printable scaffold. The twisted cube is aesthetically appealing, posing
interesting questions that are worthwhile at multiple levels. Algebraically, the
volume of the twisted cube is shown to be two-thirds of the reference cube. The
twisted faces are parts of hyperbolic paraboloids, whose implicit and paramet-
ric equations can be established from diverse perspectives in support of further
dynamic explorations and discussions about the surface area.

Keywords: cube, quadric surface, ruled surface, twisting, algebraic analysis,
3D modeling.

1. Introduction

The cube affords an intriguing world of art and mathematics. In everyday life,
it is the base for numerous mathematical puzzles and toys. In school mathe-
matics, the cube also serves as a fundamental reference for three-dimensional
geometry, supporting the development of a variety of mathematical struc-
tures. A cube can be dissected, flattened, or spun for aesthetic and mathe-
matical explorations.1

1 I have written on various interesting ways one can manipulate the cube in other
papers. In [1], I explored a historical cube dissection. Three other papers complement this
current one in various ways: [2] on using technology to visualize cube rotations; [3] on a
“volume invariant twist”, and [4] on the diagonal spin and its algebraic analysis.
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In a mathematical art project, I decided to give the cube a twist and thus
came to know both the geometric and algebraic nature of the twisted cube.
In the literature, however, there is very little discussion about twisting the
cube and its artistic and mathematical consequences. In a related context
decades ago, Steinhaus briefly described surfaces made of straight lines across
a skew quadrilateral and the resulting saddle-shaped hyperbolic paraboloid
[10]. Today, we can take advantage of emerging 3D design and dynamic
modeling technologies, such as Autodesk Fusion 360 R© and GeoGebra R©, to
approach the processes and outcomes of cube twisting and further delve into
the art and mathematics around the twisted cube.

(a) (b)

Figure 1: Twistable cube model made of rigid top and bottom and four elastic
faces around. 3D printable models are accessible at https://www.thingiver
se.com/thing:5195134, last accessed on January 22, 2022.

To start with, let us imagine a cube that has a rigid top and a rigid bottom
with four elastic faces around, as shown in Figure 1a. We then hold the
bottom steady and twist the top 90 degrees clockwise or counterclockwise,
without changing the distance between the top and bottom faces. The twist-
ing process can be conveniently approached using 3D printable models and
elastic cords (Figure 1) or modeled virtually using GeoGebra (Figure 2). The
physical model can be 3D designed and printed for hands-on demonstrations
alongside the elastic cord model (Figure 3). Both are visually appealing and
mathematically inviting.

Among a host of questions about the twisted cube, we pose and aim to answer
the following that are particularly interesting:

https://www.thingiverse.com/thing:5195134
https://www.thingiverse.com/thing:5195134
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(a) (b)

Figure 2: A cube in the first octant is twisted 90 degrees clockwise (created
with GeoGebra R©).

(i) What has happened to the four square faces around the cube?

(ii) What is the volume of the twisted cube?

(iii) What is the area of each of the four twisted faces?

(iv) What is the algebraic nature of the twisted faces?

(a) (b)

Figure 3: Two models for the twisted cube: A 3D printed shell and an
elastic-cord cage.
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2. Twisted Faces As Ruled Surfaces

Let us first look at the four twisted surfaces, which are flat square faces before
the 90-degree twist. There are two ways to conceptualize the twisting if we
do not make any distinction between clockwise and counterclockwise twists.
As shown in Figure 4a, a twisted face is a ruled surface [6] formed by a face
diagonal (CF or BE), namely, the ruling. Alternatively, we can view the
twisted face as a ruled surface swept out by a cube edge (BC or EF ) moving
from the bottom to the top or vice versa (Figure 4b).

(a) (b)

Figure 4: Either a face diagonal or an edge can be used as a ruling for the
twisted surface (created with GeoGebra R©).

In the following sections, we develop algebraic descriptions of the ruled sur-
face using both perspectives and eventually calculate its area.

3. Volume of the Twisted Cube

The twisted cube does not retain the original volume of the cube. It is much
smaller, as seen in the virtual and physical models. To find the volume of the
twisted cube, we position a cube of edge length L in the first octant of the 3D
Cartesian System, as shown in Figure 5, and consider the square intersection
MNM1N1 between a horizontal plane z = z0 (0 ≤ z0 ≤ L) and a family of
four face diagonals. On line BE in the xz-plane, M = (L−z0, 0, z0). Also, the
center of square MNM1N1, O = (L

2
, L
2
, z0). Thus, |OM |2 = (L

2
− z0)

2 + (L
2
)2.

Further, since4MNO is a right triangle with OM ∼= ON , the area of square
MNM1N1 is |MN |2 = 2|OM |2 = 2

(
(L
2
− z0)

2 + (L
2
)2
)
.
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Figure 5: The volume of the twisted cube is the integration of the square
area over the height of the cube (created with GeoGebra R©).

Therefore, the volume of the twisted cube is

V = 2

∫ L

0

((
L

2
− z

)2

+

(
L

2

)2
)

dz

=
2

3
L3, (3.1)

which means, surprisingly, that the twisted cube has a volume that is two-
thirds of the original. Specifically, if the cube edge is L = 5, the volume of
the twisted cube is approximately 83.33 cubic units.

4. Implicit Equation for the Twisted Face

Let us again position a cube of edge length L in the first octant of the 3D
Cartesian System, as shown in Figure 6, where vertex A is at the system
origin, with B = (L, 0, 0), E = (0, 0, L), C = (L,L, 0), and G = (L,L, L). In
the xz-plane, the face diagonal BE is algebraically

z = −x + L, (4.1)
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Figure 6: Seeking an implicit equation for the twisted face of the cube (cre-
ated with GeoGebra R©).

and in the plane x = L (that is, the plane BCGF ), the face diagonal CF is

z = −y + L. (4.2)

We now consider a horizontal plane z = z0 with 0 ≤ z0 ≤ L, which intersects
with BE and CF at M and N , respectively. Hence, M = (L− z0, 0, z0) and
N = (L,L− z0, z0).

In the horizontal plane z = z0, line MN has a slope of m = L−z0
z0

and a

y-intercept of b =
−z20+2Lz0−L2

z0
. Thus, line MN has the algebraic form of

y =

(
L− z0
z0

)
x +
−z20 + 2Lz0 − L2

z0
, (4.3)

which, when z0 is replaced with z for the general case, yields

yz = Lx− xz − z2 + 2Lz − L2, (4.4)

or
xz + yz + z2 − Lx− 2Lz + L2 = 0. (4.5)
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For example, when L = 5, Equation (4.5) becomes

xz + yz + z2 − 5x− 10z + 25 = 0, (4.6)

which can be readily plotted and visually manipulated in GeoGebra 3D
Graphics (or any other similar 3D graphing environments).

5. Parametric Equation for the Twisted Face: Cube Edge As the
Ruling

To establish a parametric function for the twisted cube face and thus calculate

its area, we consider the vector
−→
AP in Figure 7, where P is on the ruling

MN . It follows from the previous discussion in Section 4 that

−→
AP = 〈x, L− z

z
x +
−z2 + 2Lz − L2

z
, z〉, (5.1)

where 0 ≤ z ≤ L, L− z ≤ x ≤ L, as shown in Equations (4.1) and (4.3).

Figure 7: Seeking a parametric function for the twisted face of the cube
(created with GeoGebra R©).

Following the convention of parametric surfaces, we use u for x, v for z, and
rewrite Equation (5.1) as

r(u, v) =
−→
AP = uî +

(
−uv − v2 + Lu + 2Lv − L2

v

)
ĵ + vk̂, (5.2)

where 0 ≤ v ≤ L, L− v ≤ u ≤ L.
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When L = 5, we have r(u, v) = uî +
(

−uv−v2+5u+10v−25
v

)
ĵ + vk̂, which can

be graphed in GeoGebra R© using the following Surface command:

Surface((u, (-uv-v^2+5u+10v-25)/v, v), u, 0, 5, v, 0, 5)

Taking the partial derivatives of r(u, v) with respect to u and v, respectively,
we get

ru(u, v) = î +

(
L− v

v

)
ĵ + 0k̂, (5.3)

and

rv(u, v) = 0̂i +

(
−v2 − Lu + L2

v2

)
ĵ + k̂. (5.4)

The magnitude of the cross product ru × rv is thus∥∥∥∥∥∥
i j k
1 L−v

v
0

0 −v2−Lu+L2

v2
1

∥∥∥∥∥∥ =

√
1 +

(
−Lu
v2

+
L2

v2
− 1

)2

+

(
L

v
− 1

)2

. (5.5)

Therefore, the surface area of one twisted cube face is

SA =

∫∫
R

‖ru × rv‖ dudv

=

∫ L

0

∫ L

L−v

√
1 +

(
−Lu
v2

+
L2

v2
− 1

)2

+

(
L

v
− 1

)2

dudv. (5.6)

When L = 5, for example, the integral in (5.6) becomes

SA =

∫ 5

0

∫ 5

5−v

√
1 +

(
−5u

v2
+

25

v2
− 1

)2

+

(
5

v
− 1

)2

dudv, (5.7)

which is approximately 22.5178 square units.

6. Parametric Equation for the Twisted Face: Face Diagonal As
the Ruling

A parametric equation for the twisted cube face can also be established on
the basis of a dynamic face diagonal. As shown in Figure 8, Q is a point on
the moving face diagonal ST .
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Figure 8: Parametric equation based on a dynamic face diagonal (created
with GeoGebra R©).

Let t = |SF | = |TC|, where 0 ≤ t ≤ L, be the first parameter. Then,
S = (L− t, 0, L), and T = (L,L− t, 0) in the context of Figure 8, and vector
−→
ST = 〈t, L− t,−L〉.

The parametric equation of line ST , using S as a starting point and
−→
ST as

the direction, is

−→rST = 〈L− t, 0, L〉+ s〈t, L− t,−L〉
= 〈L− t + st, Ls− st, L− Ls〉, where 0 ≤ s ≤ 1, 0 ≤ t ≤ L. (6.1)

The parametric equation for the surface swept by ST is therefore

q(s, t) =
−→
AQ = (L− t + st)̂i + (Ls− st)ĵ + (L− Ls)k̂, (6.2)

where 0 ≤ s ≤ 1, 0 ≤ t ≤ L.

When L = 5, for example, q(s, t) = (5 − t + st)̂i + (5s − st)ĵ + (5 − 5s)k̂,
which can be graphed in GeoGebra R© using the following Surface command:

Surface((5 - t + s t, 5s - s t, 5 - 5s), s, 0, 1, t, 0, 5)}

as shown in Figure 9.
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Figure 9: Parametric surface based on a sweeping face diagonal (created with
GeoGebra R©).

Using Equation (6.2), the surface area of one twisted face is thus

SA =

∫∫
R

‖qs × qt‖ dsdt

=

∫ L

0

∫ 1

0

√
(L− Ls− t)2 + (L− Ls)2 + L2s2) dsdt. (6.3)

Note that Equation (6.2) is equivalent to Equation (5.2), although they use
different parameters. As can be proven, when they have the same î and
k̂ components, they also have the same ĵ component. Specifically, if u =
L − t + st and v = L − Ls, then t = L2−Lu

v
and s = L−v

L
. Thus, the ĵ

component of Equation (6.2) is Ls − st = −uv−v2+Lu+2Lv−L2

v
, which is the ĵ

component in Equation (5.2).

Similarly, an implicit equation for the twisted cube face can be derived from
Equation (6.2). Let x = L − t + st and z = L − Ls, then s = L−z

L
and

t = L(L−x)
z

, and
y = Ls− st

= L− z − (L− z)(L− x)

z

=
−xz − z2 + Lx + 2Lz − L2

z
, (6.4)

which is equivalent to equation (4.5).
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7. Dynamic Modeling and 3D Designs

The twisted cube can be dynamically modeled in GeoGebra R© 3D Graphics
using the Trace tool, as shown in Figures 2b, 4a, and 4b. There are also
multiple 3D design environments where the cube can be twisted for hands-on
modeling. In Autodesk Fusion 360 R©, the cube can be twisted using the Loft

function in the Surface workspace. Starting with a cube, we further sketch
the face diagonals. According to our previous discussions, there are two ways
to create the twisted cube faces. We can loft two corresponding top and
bottom edges, using the face diagonals as rails or, alternatively, loft two
adjacent face diagonals while defining the bottom and top edges as rails.
Figure 10 shows three different views of the resulting surfaces.

(a) (b) (c)

Figure 10: Three different views of the twisted cube (created with Autodesk
Fusion 360 R©).

Further 3D manipulations can be performed to create a twisted solid or a hol-
low cup. The two-piece twistable model can be designed from a cube with a
connector at the center allowing 90-degree rotations (Figure 1b). Both the 3D
solid and the elastic cord models are visually appealing and playful, inviting
rich mathematical conversations and offering problem posing opportunities.

8. Conclusion

The cube is one of the most common mathematical objects in everyday life
and school mathematics. Yet it provides endless opportunities for genera-
tive mathematical conversations about shapes and geometric transformations
[7]. In twisting the cube, we put into practice the art of problem posing
and mathematical play in the context of dynamic modeling and 3D design,
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“coming to know” [5, page 2] both the visual appeal of the resulting solid
and a rich and motivating world of mathematical connections [8, 9, 11]. As
is shown by the deceptively simple example of the cube and its myriad ma-
nipulations, the integration of emergent modeling technologies holds a fresh
promise for operationalizing mathematical aesthetics, allowing educators to
be responsive to students diverse needs for hands-on manipulation, intellec-
tual inquiry, and expressive facility.

As I already mentioned in Footnote 1, over the years, I have revisited the
cube from various perspectives, inspired by the curiosity, often spontaneous
in nature, of both young children and college students alike. In the open
manipulations of the cube, my students and I have created surprisingly at-
tractive physical artifacts, which subsequently led us to the re-discovery of
elegant mathematical ideas and structures. All throughout, the cube has
served as a tool of student engagement and a mathematical scaffold, af-
fording a sense of playfulness, ownership, and accessibility regarding some
foundational mathematical processes.

In a classroom, the cube can be twisted at multiple levels, where a what-if
thought experiment might be an engaging starting point. With elementary
students, the two-piece model can be printed and used with elastic cords for
students to feel and see the surface taking shape. Interestingly, the length of
the cord can be a great question to pose, too. If the reference cube is known
to be 50mm in all three dimensions and each top or bottom edge has eleven
holes, how much cord do we need to loop all round the cube while taking
into account all the twists and turns? The answer is another surprise — it
is approximately eight feet!

In the middle grades, GeoGebra R© and 3D design environments can be uti-
lized to construct a cube for virtual simulation and solid generation, where
the visual processes and artifacts allow rich mathematical talks. At the sec-
ondary level and above, all the multimodal aspects of the twisted cube can be
examined for geometric and algebraic insight, using GeoGebra R© for problem
setups and computational confirmations. Surprisingly, the twisted cube loses
one-third of its volume; each twisted face is part of a hyperbolic paraboloid
across a quadrilateral made of two cube edges and two face diagonals, losing
about 10% of the area of a cube face. There are two rulings for each twisted
surface and two equivalent parametric equations.



364 Twisting the Cube

There are certainly many more questions we can pose about the twisted cube,
and, more importantly, there are many ways we can re-imagine mathematics
teaching and learning as we reflect on the traditions and further experiment
with new modeling technologies.

Acknowledgments

The author would like to thank the Southern Illinois University STEM Ed-
ucation Research Center and the University Foundation for providing 3D
printers and printing materials in support of the present and related projects
in exploring mathematical arts in STEM teacher education and K–12 out-
reach. All views, findings, and potential mistakes belong to the author and
do not necessarily represent those of the project sponsors.

References

[1] Lingguo Bu, “Exploring Liu Hui’s Cube Puzzle: From Paper Folding to
3-D Design,” Convergence, (January 2017).
doi:10.4169/convergence20170102

[2] Lingguo Bu, “Spinning the Cube with Technologies,” The Mathematics
Teacher, Volume 112 Issue 7 (2019), pages 551–554.
doi:10.5951/mathteacher.112.7.0551

[3] Lingguo Bu, “Volume Invariant Cube Twisting: GeoGebra Modeling
and Algebraic Explorations,” North American GeoGebra Journal, Vol-
ume 9 (2020), pages 11–21; available at https://mathed.miamioh.edu/
index.php/ggbj/article/view/183, last accessed January 22, 2022.

[4] Lingguo Bu, “The Spinning Cube: An Algebraic Excursion,” The Math-
ematics Enthusiast,Volume 18 Issue 1–2 (2021), pages 39-48.
doi:10.54870/1551-3440.1512

[5] Stephen I. Brown and Marion I. Walter, The Art of Problem Posing, 3rd

edition, Lawrence Erlbaum, Mahwah NJ, 2005.

[6] David Hilbert and Stephan Cohn-Vossen, Geometry and the Imagination
(trans. P. Nemenyi), Chelsea Publishing Company, New York NY, 1952.

http://dx.doi.org/10.4169/convergence20170102
http://dx.doi.org/10.5951/mathteacher.112.7.0551
https://mathed.miamioh.edu/index.php/ggbj/article/view/183
https://mathed.miamioh.edu/index.php/ggbj/article/view/183
http://dx.doi.org/10.54870/1551-3440.1512


Lingguo Bu 365

[7] Marjorie Senechal. “Shape,” pages 139–181 in On the Shoulders of Gi-
ants: New Approaches to Numeracy, edited by L. A. Steen (National
Academy Press, Washington DC, 1990).

[8] Nathalie Sinclair, Mathematics and Beauty: Aesthetic Approaches to
Teaching Children, Teachers College Press, New York NY, 2006.

[9] Nathalie Sinclair, “Aesthetic considerations in mathematics,” Journal
of Humanistic Mathematics, Volume 1 Issue 1 (January 2011), pages
2–32. doi:10.5642/jhummath.201101.03

[10] Hugo Steinhaus, Mathematical Snapshots (3rd American Edition), Ox-
ford University Press, New York NY, 1969.

[11] David Tall, How Humans Learn to Think Mathematically: Exploring the
Three Worlds of Mathematics, Cambridge University Press, New York
NY, 2013.

http://dx.doi.org/10.5642/jhummath.201101.03

	Twisting the Cube: Art-Inspired Mathematical Explorations
	Recommended Citation

	Introduction
	Twisted Faces As Ruled Surfaces
	Volume of the Twisted Cube
	Implicit Equation for the Twisted Face
	Parametric Equation for the Twisted Face: Cube Edge As the Ruling
	Parametric Equation for the Twisted Face: Face Diagonal As the Ruling
	Dynamic Modeling and 3D Designs
	Conclusion

