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In Search of Star Clusters:

An Introduction to the K-Means Algorithm
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Synopsis

This article is a gentle introduction to K-means, a mathematical technique of
processing data for further classification. We begin with a brief historical intro-
duction, where we find connections with Plato’s Timæus, von Linné’s binomial
classification, and the star clustering concept of Mary Sommerville and collabo-
rators. Artificial intelligence algorithms use K-means as a classification method-
ology to learn about data in a very accurate way, because it is a quantitative
procedure based on similarities.

Keywords: K-means, clustering, machine learning, stars.

1. Background

Clustering algorithms have become more visible and more important in day-
to-day applications [2] as machine learning and data science have become es-
tablished as core techniques in processing large volumes of data. Clustering
is a computational technique that divides variables in a dataset into groups
(clusters). K-means is one such technique, a mathematical technique of pro-
cessing data for further classification, proposed by the American psychologist
and mathematician James Buford MacQueen (1929–2014) in 1967 [10].

There are two types of clustering methods: hierarchical and non-hierarchical.
The first repeatedly links pairs of data forming the first clusters until every
data object is included in order. This method resembles a tree viewed from
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244 K-Means Star Cluster

its roots, growing upwards, or viewed downwards. In nonhierarchical clus-
tering, such as the K-means algorithm, the relationship between groups is
undetermined. Both types of algorithms are useful to classify things.

We can view classifying as a way of thinking that has been used since ancient
times, a way of grouping objects by means of their similarities — a task for
the first humans to survive.

From a literary point of view, the partitioning and classification problem
can be traced back to the Book of Genesis 9:2, when God granted to Noah
dominion over “every living creature on the earth, every bird of the air, every
creature that crawls on the ground, and all the fish of the sea” (Figure 1).
In Leviticus 11:2 one finds painstaking detail classifying animals according
to whether they may be eaten.

If we are interested in scientific origins, it is possible to cite the Greek philoso-
pher Plato (c. 428–348 BCE), who classified living creatures in nature in
his masterpiece Timæus, separating them into two life forms: animals and
plants. This work also presented, perhaps for the first time, how the world
is intelligible using a scientific view. Many view this as a breakpoint in hu-
man history, when logic, a mathematical tool mastered by ancient Greeks,
was applied to better understand the world in animated and non-animated
forms.

The next most important scientific step in the classification and naming of
organisms was made by the Swedish botanist, zoologist, and physician Carl
von Linné (or Carolus Linnæus, 1707–1778), with his binomial nomenclature.
He is known as the “father of modern taxonomy”, due to his groundbreaking
Systema Naturæ [8], where he considered three classical kingdoms: animal,
vegetable and mineral. In his work it is also possible to find the first concep-
tual dendrogram, a systematic procedure to cluster objects (“Clavis System-
atis Sexualis” or the “Sexual Key System” of all plants, separated into 24
groups), which gained immense influence around the world.

von Linné divided living beings into groups taking into account five criteria:
kingdom, class, order, genus and species, following a type of hierarchical clus-
tering [8]. After 1974, new modifications and insertions were made, following
the hierarchy of the major taxonomic ranks: domain, kingdom, phylum, class,
order, family, genus and species [11]. The first criterion is more general, and
as the criteria advance, a more specific analysis is made, obtaining a better
classification.
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Figure 1: The Morgan Picture Bible, also known as Morgan Crusader’s Bible
or Maciejowski Bible (c. 1240). Morgan Library & Museum, New York:
www.themorgan.org. MS M.638, folium 2v. There are Latin, Persian, and
Hebrew inscriptions. In this page, following Genesis 6 to 9 and in obedience
to the Lord, Noah built a huge ark, classified animals for salvation. After the
storm, Noah searched for a dry land by releasing a dove and a raven. Then,
on Mount Ararat, Noah, his family and all animals descend to promised
land. Grateful, Noah’s family offered sacrifices to the Lord, starting a new
beginning. Public domain image from Wikipedia.

http://www.themorgan.org
https://commons.wikimedia.org/wiki/File:Maciejowski_Bible_-_Morgan_Library_%26_Museum_MS_M.638,_fol._2v.jpg
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The next step to deal with qualitative aspects of clustering, using distance
as a similarity measure, was taken by the Scottish science writer and poly-
math Mary Somerville (née Fairfax, 1780–1872, Figure 2a). In her “Mech-
anism of Heavens” (1831) [13], she wrote on the relevant problem of star
clusters, which had been discovered by the German amateur astronomer Jo-
hann Abraham Ihle (1627-c.1699) in 1665: “in some parts of the heavens,
the stars are so near together as to form clusters, which to the unassisted
eye appear like thin white clouds”. Somerville was a close friend of the
German astronomers Caroline Lucretia Herschel (1750–1848), his brother
Friedrich Wilhelm Herschel (1738–1822, also a brilliant composer), as well
as the English polymath John Frederick William Herschel (1792–1871, Wil-
helm’s son).1 Wilhelm wrote many catalogues of nebulae and star clusters
(the first in 1786 [5]) and coined the term “globular cluster” three years
later [6]. This procedure seems to be close to a nonhierarchical clustering.

The first paper on clustering, still dealing with qualitative aspects, was pub-
lished by the American anthropologists Harold Edson Driver (1907–1992)
and Alfred Louis Kroeber (1876–1960, Figure 2b) in 1932 [3]. And the first
book on cluster analysis was written by the American psychologist Robert
Choate Tryon (1901–1967, Figure 2c) in 1939 [16]. They analyzed complex
human aspects and tried to classify them. It is remarkable that the first paper
and book on this subject were written by anthropologists and a psychologist,
respectively, before any mathematical contributions.

2. A Gentle K-Introduction

The human eye has a keen sense of pattern, and we are good at classify-
ing things roughly, but we are prone to various human shortcomings. The
K-means technique reduces possible human subjectivity due to its precise
mathematical algorithm. Its modelling is a feasible and efficient procedure
when there are variations of certain characteristics among classes. It is an ex-
ploratory clustering method that partitions data into K-clusters where each
group is nucleated by a medoid mk (some authors prefer centroid) [4, 7].

1 Editor’s note: See “The Taste of Mathematics: Caroline Herschel at 31,” a poem
by Laura Long on the two siblings, published in the Journal of Humanistic Mathematics in
July 2013 (Volume 3 Issue 2, page 148), available at https://scholarship.claremont.
edu/jhm/vol3/iss2/14.

https://scholarship.claremont.edu/jhm/vol3/iss2/14
https://scholarship.claremont.edu/jhm/vol3/iss2/14
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Figure 2: a) Mary Somerville (née Fairfax, 1780–1872), Scottish science
writer and polymath. Portrait by the English painter John Jackson (1778–
1831). b) Alfred Louis Kroeber (1876–1960), American anthropologist. c)
Robert Choate Tryon (1901–1967), American psychologist. d) W ladys law
Hugo Dionizy Steinhaus (1887–1972), Polish mathematician. All pictures
are in the public domain; see Acknowledgments for source information.
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A medoid can be viewed as a special case of a mean, or average, of a cluster.
In fact, MacQueen defined K-means as: “thus at each stage the K-means
are, in fact, the means of the groups they represent (hence the term K-
means)” [10].

Conceptually, K-means is actually quite simple: in each iteration, every
datum is associated with the cluster that it is nearest to in terms of the
cluster center. That center changes as new data are associated with the
cluster until a convergence occurs.

How does one find the partition of a set? A division by two, halving, or
mediation is a simple mathematical procedure. But mathematicians have
other proposals to do the same, using for example the notion of distance as
a similarity tool for classification.

Many sorts of data sets support K-means, but in the following we use exam-
ples specially selected so as to clarify and simplify the algorithm.

As our first example, let us partition the numbers between 1 and 6 into two
clusters A and B (K = 2). Begin with our six elements:

X 1,6: 1 2 3 4 5 6

For this example, a monodimensional data set, Xi,p , is presented, where i is
one (just one observation or case) and p, the number of labels (or variables,
properties, or characteristics), is six, distributed by K = 2 groups.

The basic procedure would be to pick two numbers from the data (called seeds
or medoids) and to calculate the numerical distances between these seeds
from original data. Taking for example 1 and 6 as medoids, the distances of
the elements to the medoids are:

x distance to 1 distance to 6

1 |1− 1| = 0 |1− 6| = 5
2 |2− 1| = 1 |2− 6| = 4
3 |3− 1| = 2 |3− 6| = 3
4 |4− 1| = 3 |4− 6| = 2
5 |5− 1| = 4 |5− 6| = 1
6 |6− 1| = 5 |6− 6| = 0

Elements 1, 2, and 3 are closest to 1, while 4, 5, and 6 are closest to 6.
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Therefore the first clusters A and B are

A = {1, 2, 3}
B = {4, 5, 6}

The next medoids would be a simple average between 1 to 3 (that is, m1 = 2)
and between 4 to 6 (that is, m2 = 5). Calculating new distances from the
original data considering these new medoids would give the same clusters A
and B, giving the final result.

A = {1, 2, 3} 2 as medoid

B = {4, 5, 6} 5 as medoid

The simple algorithm we used was inspired by original work proposed by
MacQueen [10], and can be applied to larger data sets [4, 7].

Others proposed similar algorithms independently, such as the Polish mathe-
matician W ladys law Hugo Dionizy Steinhaus (1887–1972, Figure 2d) in [14],
and the American physicist Stuart Phinney Lloyd (1923–2007) in [9], both
in 1957. However, due to confidentiality provisions in his contracts, Lloyd
could only publish his results in 1982.

Let us now suppose a two-dimensional data described by pairs like stars in
the sky. The five elements are

{(1,3), (2,3), (1,5), (5,3), (6,2)}.

Taking (1,3) and (6,2) as the first seeds (medoids), the distances to the
elements can be calculated as follows:

For m1 = (1,3) as initial medoid:

distance of (1,3) from m1 is

√
(1− 1)2 + (3− 3)2 = 0.00,

distance of (2,3) from m1 is

√
(2− 1)2 + (3− 3)2 = 1.00,

distance of (1,5) from m1 is

√
(1− 1)2 + (5− 3)2 = 2.00,

distance of (5,3) from m1 is

√
(5− 1)2 + (3− 3)2 = 4.00,

distance of (6,2) from m1 is

√
(6− 1)2 + (2− 3)2 = 5.10.
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For m2 = (6,2) as initial medoid:

distance of (1,3) from m2 is

√
(1− 6)2 + (3− 2)2 = 5.10,

distance of (2,3) from m2 is

√
(2− 6)2 + (3− 2)2 = 4.12,

distance of (1,5) from m2 is

√
(1− 6)2 + (5− 2)2 = 5.83,

distance of (5,3) from m2 is

√
(5− 6)2 + (3− 2)2 = 1.41,

distance of (6,2) from m2 is

√
(6− 6)2 + (2− 2)2 = 0.00.

The minimum value between the respective distances defines the first clusters,
named A and B.

A = {(1, 3), (2, 3), (1, 5)}
B = {(5, 3), (6, 2)}

The next medoids would be a simple average over clusters A (that is, m1 =
(1.33,3.67)) and B (that is, m2 = (5.50,2.50)). At this point, the distances
can be recomputed.

For m1 = (1.33,3.67) as initial medoid, we get the following distances:√
(1− 1.33)2 + (3− 3.67)2 = 0.75√
(2− 1.33)2 + (3− 3.67)2 = 0.94√
(1− 1.33)2 + (5− 3.67)2 = 1.37√
(5− 1.33)2 + (3− 3.67)2 = 3.73√
(6− 1.33)2 + (2− 3.67)2 = 4.96

For m2 = (5.50,2.50) as initial medoid, we get the following distances:√
(1− 5.50)2 + (3− 2.50)2 = 4.53√
(2− 5.50)2 + (3− 2.50)2 = 3.54√
(1− 5.50)2 + (5− 2.50)2 = 5.15√
(5− 5.50)2 + (3− 2.50)2 = 0.71
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√
(6− 5.50)2 + (2− 2.50)2 = 0.71

These new distances give the same clusters A and B, illustrated in Figure 3.

Figure 3: Two-dimensional K-means cluster distribution example.

There are also ways to choose an optimal K from a data set. As far as I know,
the first way to do this was proposed by the American psychologist Robert
Ladd Thorndike (1910–1990) in 1953 [15]. This is the a posteriori method,
named today as elbow or critical point procedure, that was labeled as such by
Thorndike based on an old science fiction TV show named Captain Video and
His Video Rangers. This show aired in the United States between 1949 and
1955 [15]. Thorndike discussed clustering in terms of family members, looking
for ideal grouping numbers. More precisely, he had in mind the ratings of
each of twelve Air Force job categories with respect to nineteen dimensions
(or categories). He observed that the average within-cluster distance changed
for different numbers of clusters but did not explain the reason, waiting for
next episodes of Captain Video and its characters [15]. Now there is a vast
literature about procedures to decide on the optimal K; see for example
[4, 7].
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However, Thorndike’s conclusion is not surprising in exploratory analysis.
For instance, in 2015, Raphael Silberzahn (b. 1984) and Eric Luis Uhlmann
(b. 1978) recruited twenty-nine research teams and asked them to answer
the same research question with the same data set [12]. The question was
the following: “are football (soccer) referees more likely to give red cards to
players with dark skin than to players with light skin?” Using different ex-
ploratory techniques, of the twenty-nine teams, twenty found a statistically
significant correlation between skin colour and red cards. Thus, results and
conclusions were not the same. This is a simple way to note that no conver-
gence occurred. But, that’s OK: classification is a huge task since Plato and
Linné, still in progress [1].

3. Final Words

Historically, clustering was used to solve complex problems by philosophers
as Plato, physicians as Linné, astronomers as Sommerville, anthropologists
as Driver and Kroeber, psychologists as Tryon, Thorndike, and MacQueen,
and then many mathematicians and physicists, as Steinhaus and Lloyd, for
example.

Today, artificial intelligence and machine learning algorithms use classifica-
tion methodologies such as K-means to learn about data in a very accurate
way, because these offer a quantitative procedure based on similarities. As
explained by Pedro Morais Delgado Domingos (b. 1965) in his interesting
book The Master Algorithm [2], computer machines learn quite similarly to
humans, considering lots of lessons (or data) from last decades (and even
centuries) by trial and error but faster.

As far as I know, Sommerville was the first to note the mathematical problem
related to stars that are close enough to one another to form clusters. She
anticipated by a century and half the promise of distance as a similarity tool.

Inspired by local astronomical observations, some national flags display cer-
tain constellations. For example, the Southern Cross or Crux, visible in the
Southern Hemisphere, is represented in Australia, New Zealand, Papua New
Guinea, and Samoa flags. However, there is one, the Brazilian flag, that rep-
resents more that just one constellation. One can observe five star clusters,
including the Crux, Canis Major, Hydra, Triangulum Australe, and Scorpius
(Figure 4), that can be grouped by machines using K-means clustering in
the same way the first humans did so long ago.
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Figure 4: The Gold-Green Flag of Brazil. Public domain image from
Wikipedia. All stars represent the sky at Rio de Janeiro, the second Brazilian
capital, at 8:30 a.m. on 15 November 1889, the Proclamation of the Repub-
lic Day. There are five-star clusters (Canis Major, Hydra, Crux, Triangulum
Australe and Scorpius), where each star represents all 26 Brazilian states
plus the Federal District. This is also the unique flag with an inscription, or
lemma: Order and Progress.

As an interpretative tool, one would also find different clusters from the
Brazilian flag using the K-means routine. This is still fine because the as-
tronomical groups were first determined arbitrarily, including cultural, social
and historical contexts. This is the power and the curse of some exploratory
tools—they can sometimes give us a new answer, or at least a new way to
think about the problem in an interesting way.

Acknowledgments. Many thanks to the Brazilian physicist A. P. Ricieri,
who introduced the author to this subject by means of his course at the
Prandiano Museum (http://www.prandiano.com.br). This work was sup-
ported by the National Council for Scientific and Technological Development
(CNPq), contracts 304705/2015-2, 404004/2016-4 and 305331/2018-3.

https://pt.wikipedia.org/wiki/Bandeira_do_Brasil#/media/Ficheiro:Flag_of_Brazil.svg
http://www.prandiano.com.br
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Readers can find the originals of the images used in Figure 2a at https://

artuk.org/discover/artworks/mary-somerville-17801872-as-a-young-

-woman-223448; Figure 2b at https://alchetron.com/Alfred-L-Kroeber;
Figure 2c at https://www.gf.org/fellows/all-fellows/robert-choate-
tryon/; and Figure 2d at https://alchetron.com/Hugo-Steinhaus.
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