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FINDING ZEROS OF RATIONAL QUADRATIC FORMS

JOHN SHAUGHNESSY

Abstract. In this thesis, we introduce the notion of quadratic forms and

provide motivation for their study. We begin by discussing Diophantine equa-

tions, the field of p-adic numbers, and the Hasse-Minkowski Theorem that
allows us to use p-adic analysis to determine whether a quadratic form has a

rational root. We then discuss search bounds and state Cassels’ Theorem for

small-height zeros of quadratic forms over Q. We end with a proof of Cassels’
Theorem and suggestions for further reading.

1. Introduction

To the uninitiated, those who pursue math appear to be doing little more than
the calculation of equations using numbers, matrices, and geometric shapes. For
those who see past its surface, however, the pursuit of proofs becomes a much more
pleasurable and enlightening experience. Andrew Wiles, who in 1995 completed
the proof of Fermat’s Last Theorem after mathematicians sought the answer since
1637, said this of mathematics:

“Perhaps I can best describe my experience of doing mathematics in terms of a
journey through a dark unexplored mansion. You enter the first room of the man-
sion and it’s completely dark. You stumble around bumping into the furniture, but
gradually you learn where each piece of furniture is. Finally, after six months or so,
you find the light switch, you turn it on, and suddenly it’s all illuminated. You can
see exactly where you were. Then you move into the next room and spend another
six months in the dark. So each of these breakthroughs, while sometimes they’re
momentary, sometimes over a period of a day or two, they are the culmination of
(and couldn’t exist without) the many months of stumbling around in the dark that
precede them.”

The purpose of this paper is to allow the curious undergraduate to step inside
the mansion of quadratic forms and explore a few of its rooms. The reader is ex-
pected to know a bit about linear algebra, geometry, and in general feel comfortable
reading and manipulating mathematical symbols. As this is intended to be a sur-
vey, however, the reader is encouraged to continue even if sections of the paper are
incomprehensible to her at this time.

1.1. Polynomial Equations.
A Diophantine equation

F (x1, x2, · · · , xn) = 0

2010 Mathematics Subject Classification. Primary 11G50, 11E12, 11E39.
Key words and phrases. heights, quadratic forms.
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is a homogeneous polynomial equations in two or more unknowns with integer
coefficients. When working with a Diophantine equation, we commonly ask:

Does it have any nontrivial solutions in integers? By nontrivial, we mean that
~x 6= 0.
Are there finitely many integral solutions or infinitely many?
Is it theoretically possible to find all such solutions? How easy or difficult is it to
do using computers?

Polynomial equations vary by the degree of their monomial terms. If all of the
monomials are of the same degree, we say the polynomial is homogeneous and call
it a form. Forms of degree 1, 2, 3, and 4 are called linear, quadratic, cubic, and
quartic forms, respectively. In this paper we focus on quadratic forms, but the
algebraic theory of quadratic forms extends well beyond what is presented in our
limited scope.

For most of this paper, we will discuss equations with coefficients taken from Q,
as it is easier to solve equations over a field (where one may take inverses) than
over the integers. We will also have to rely on an unfamiliar family of fields called
the p-adic numbers.

1.1.1. Diophantus.
Diophantine equations have been studied since Diophantus of Alexandria intro-

duced symbolism to algebra while studying such equations. Though his memory
has been obfuscated by time, Diophantus contributed to mathematics by writing
Arithmetica, a text in which he tried to solve 130 algebra problems. His interest
in these types of equations paved the way for many mathematicians after him, not
least of whom was Fermat.

1.1.2. Fermat’s Last Theorem.
One particular Diophantine equation that shaped the course of mathematics is

xn + yn = zn

where x, y, and z are all non-zero integers. When n = 2, integer solutions to this
equation are Pythagorean triples, but for n > 2 it feels impossible to find a solution.

In 1637 French mathematician Pierre de Fermat wrote that he believed that
none could be found. In the margins of his copy of Arithmetica, he claimed that he
could prove it:

“It is impossible to separate a cube into two cubes, or a fourth power into two
fourth powers, or in general, any power higher than the second, into two like powers.
I have discovered a truly marvelous proof of this, which this margin is too narrow
to contain.”

But Fermat never wrote his marvelous proof. In fact, it is commonly believed
that he could not have possessed a proof except for the case when n = 4 and perhaps
for when n = 3. The answer did not come for over 300 years, during which time
the search for a proof led to new areas of study that have become widely-explored
branches of mathematics in their own right. In 1995, British mathematician Andrew
Wiles provided the final piece of the puzzle and showed that when n > 2, no integral
solutions to the equation xn + yn = zn exist (besides x = y = z = 0).

1.2. How do we solve Diophantine equations?
If no solution presents itself in an obvious way, it is difficult to know where to

begin. If we exhaust ourselves by plugging in numbers by hand or on a computer,
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we may begin to suspect that no solution exists. But how are we to decide that?
This is the first task when solving a Diophantine equation - to determine whether
it has a solution.

Helmut Hasse’s local-to-global principle, introduced in 1921, can be applied as
a means to determine whether a quadratic form had a solution or not. Cassels’
Theorem provides a method (and algorithm) for finding nontrivial zeros of quadratic
forms over Q.

It is a common problem for a mathematician to know that a solution to a problem
exists without having any idea how to find such a solution. Sometimes, we need to
shift perspectives entirely before we can see our problem clearly. For Diophantine
equations, we have invented a trick.

Given a single solution to a linear form, we can find infinitely more along the same
line. When we generalize this principle, we find a way to translate our numerical
perspective to a geometric perspective and try to attack the problem with geometric
techniques. This switch lets us take advantage of both algebra and geometry.
Thanks Hermann Minkowski’s “Geometry of Numbers,“ a set of results from 1910,
we may view the set of solutions of a quadratic form as a space or a shape and then
analyze the geometry of such an object.

1.3. Quadratic Forms. An integral quadratic form is a homogeneous polynomial
of degree 2. Thus, any quadratic form f(x) can be written as

f(x1, x2, · · · , xn) =

N∑
i=1

N∑
j=1

fijxixj

where fif ∈ Z for all 1 < i, j < N .
There are numerous examples of quadratic forms, such as x2 +y2 = n where n is

an integer, which allows us to tell whether n is expressible as a sum of two square
integers. In 1749, Euler showed that this equation has a solution if and only if no
prime p that is equivalent to 3 (modulo 4) divides n to an odd power.

In Section 2 we build up our intuition by showing a few more examples and by
presenting three equivalent ways to define a quadratic form.

1.4. Hilbert’s 10th Problem.
In the year 1900, Hilbert announced and published 23 problems that helped shape

the 20th century of mathematics. Of these, the 10th is our focus: “Does there exist
an algorithm to determine whether or not a Diophantine Equation has an integer
solution¿‘ Before we get to the answer, we try to understand the significance of
such a question.

An algorithm is a terminating, deterministic procedure designed to carry out
some function. In this case, Hilbert is asking whether such a sequence of steps
could tell us if a solution existed for an arbitrary Diophantine Equation. In 1970,
however, Matiyasevich famously proved that a general algorithm like this could not
exist. For specific families of Diophantine Equations, however, the question is still
more interesting.

1.5. Search Bounds.
Consider a system M of polynomials in multiple variables with integer coeffi-

cients:

P1(x) = b1
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P2(x) = b2

· · ·

PM (x) = bM .

Suppose we could prove that if this system has a solution, then a solution must
exist with

|x|max := max
1≤i≤n

xi ≤ C

for some constant C that depends on the coefficients. Since any compact set in Rn

has finitely many integral points, we then reduce this problem to a trivial check of
finitely many possibilities for the vector x. Such a constant C is called a search
bound.

Much is known about search bounds for whole systems of linear forms, but we
omit these results at the present and instead direct the curious reader to Bombieri
and Vaaler’s paper, “On Siegel’s Lemma”.

Suppose now that we have a single quadratic form:

f(x) =

N∑
i=1

N∑
j=1

fijXiXj ∈ Z[X].

Cassels’ Theorem gives us an explicit search bound and hence provides a way to
find zeros of the quadratic form over Q. This will be the primary result of this
paper, but first we will build up some machinery to get us there. This result has
been generalized in a number of ways, and the last chapter will mention these
generalizations and touch on a few open problems.

Little is known for cubic forms and it has been shown by J. P. Jones that whether
a general Diophantine equation of degree four or larger has a solution in the positive
integers is undecidable. Still less is known for (non-homogeneous) polynomials of
degree four or larger.

1.6. Overview of the Paper.
This paper is intended to be accessible to any curious undergraduates with some

exposure to Algebra and Geometry. Nothing presented here is beyond the scope of
a simple Wikipedia search, so the reader is encouraged to look up the words she
does not know and read until it makes sense. With that said, we will present the
most relevant background information in Sections 2, 3, and 4.

1.6.1. Quadratic Forms.
Quadratic forms are homogeneous polynomials of degree 2, and they have been

studied for a wide variety of reasons. For our purposes, we will give a few examples
of quadratic forms and discuss multiple viewpoints from which we can approach
the formal definition. When the quadratic form f(~x) = 0 has a nontrivial rational

solution (one in which ~x 6= ~0), we say that f is isotropic over Q.

1.6.2. Absolute Values and p-adic Numbers.
Although equations are solved most frequently over the integers (Z), it was

realized that equations are many times easier to solve when the coefficients are
taken over a field (like Q or R) rather than from Z. Studying the properties of
the familiar absolute value allows us to define an unfamiliar completion of the
rationals called the p-adic numbers. By completing Q under this different notion
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of “closeness“, the p-adic numbers allow us to determine whether a quadratic form
has a solution over Q.

The Hasse-principle is a fascinating result that says that our form F is isotropic
(has a nonzero solution) over Q if and only if it is isotropic over every completion
of Q (namely the reals and the p-adics, due to a theorem of Ostrowski from 1916).
This ineffective solution provides further insight into why Cassels’ theorem is such
a nice result.

1.6.3. Search Bounds.
Suppose we could prove that if a form has a nontrivial integral solution, then

there must be an integral solution within a certain radius about the origin. Since
it is often easier to prove that a form has a nontrivial zero than it is to find one
specifically, this would be helpful in the search for a specific solution. If we knew
the radius by which some solution is bounded, and we know that only finitely many
integral points are within that radius, we’ve simplified the problem to one that we
can solve with a computer in finite time. Furthermore, if the bounds we get on
the size of our nontrivial zero are known, than we can tell whether a form has a
solution by simply checking all the points within the bounds. Overall, this would
be a powerful tool. In our case, this is precisely what Cassels’ Theorem allows us
to do:

Theorem 1.1 (Cassels’ Theorem). Let

f(x) =

N∑
i=1

N∑
j=1

fijxixj ∈ Z[x
¯

]

be an isotropic integral quadratic form in N ≥ 2 variables, then there exists x ∈
ZN \ {0} such that f(x) = 0 and

(1) max
1≤i≤N

|xi| ≤

3

N∑
i=1

N∑
j=1

|fij |


N−1

2

.
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2. Quadratic Forms

Quadratic Forms are the primary mathematical objects of our present study. We
repeat the (standard) definition here. We say that F is an integral quadratic form
if it is a homogeneous polynomial of degree 2 whose coefficients are taken in Z:

f(x) =

N∑
i=1

N∑
j=1

fijXiXj ∈ Z[X].

We define a rational quadratic form similarly. Some sources define a form to
be integral (or rational) if every solution is integral (or in Q). The distinction
is sometimes called being classically integral or integer-valued. Our forms will be
classically integral (or classically rational).

2.1. Examples of Quadratic Forms.
The first obvious quadratic form one might be interested in is

f(x, y, z) = x2 + y2 − z2.

Then solutions to the equation f(x, y, z) = 0 give the side-lengths of right-angled
triangles. Hence if we find integral solutions, we are finding Pythagorean Triples.
Note that we might also write this form as f : Z→ Z:

f(~x) = f(x1, x2, x3) = (1)x2
1 + (1)x2

2 + (−1)x2
3

to make it clear that the coefficients are (1,1,-1).
Another example of a quadratic form that has been of historical interest is

f(x, y, z) = x2 + y2 − 2z2

which, when solved for f(x, y, z) = 0 yields the squares x2, z2, y2 in arithmetic
progression (i.e. y2 − z2 = z2 − x2).

Not all homogenous quadratic equations have integral solutions. Consider x2 +
y2 = −3. Clearly there is no hope of finding a (rational) solution.

Sometimes, we are more interested in congruences than in equivalence. For
example, any number squared is either 1 or 0 mod 4 (x2 = 0 or 1 (mod 4) for all
x). Hence if a is the sum of two squares then a 6≡ 3 (mod 4).

Although equations are solved most frequently over the integers (Z), it was
realized that equations are many times easier to solve when the coefficients are
taken over a field (like Q or R) rather than from Z. With this in mind, we study
Quadratic forms with Q-coefficients as Minkowski and Hasse put forward in the
1880s and in 1921, respectively.

2.2. Three Definitions of a Quadratic Form.
We build some intuition about Quadratic Forms by giving three ways to think

about them and show that each bears the same mathematical object.

Theorem 2.1 (Three ways to think about quadratic forms). For n ∈ Z+, there
are canonical bijections between the following sets:

(i) The set of homogeneous quadratic polynomials q(t) = q(t1, · · · , tn)

(ii) The set of symmetric bilinear forms on Qn

(iii) The set of symmetric n× n matrices on Qn
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Proof: To see how to get (ii) from (i), we prove that fq has the following prop-
erties:

(a) For all α ∈ K, fq(αx) = α2fq(x).
(b) Let Bf (x, y) := 1

2 (fq(x+y)−fq(x)−fq(y)). Then for all x, y, z in Kn and α in K
(1) Bf (x, y) = Bf (y, x)
(2) Bf (αx+ y, z) = αBf (x, z) +Bf (y, z)

We can prove (a) with a one-line proof:

fq(αx) =
∑

1≤i≤j≤n

aij(αxi)(αxj) =
∑

1≤i≤j≤n

α2aij(xi)(xj) = α2fq(x)

To prove (b), all we need to do is expand via the definition of Bf (x, y):

(1) The form is symmetric:

Bf (x, y) =
1

2
(fq(x+ y)− fq(x)− fq(y))

=
1

2
(fq(y, x)− fq(y)− fq(x))

= Bf (y, x)

(2) The form is bilinear :

Bf (αx+ y, z) =
1

2
(fq(αx+ y + z)− fq(αx+ y)− fq(z))

=
1

2
(α2fq(x+ z + y)− α2fq(x+ y)− fq(z))

= α
1

2
(fq(x+ z)− fq(z)− fq(z)) +

1

2
(fq(y + z)− fq(y)− fq(z))

= αBf (x, z) +Bf (y, z)

Note that the bilinear form and the function determine one another, so that fq
and Bf carry the same information:

Bf (x, x) =
1

2
(fq(2x)− 2fq(x)) =

1

2
(4fq(x)− 2fq(x)) = fq(x)

To see that (iii) follows from (ii), we notice that we may write the form

f(x) =

N∑
i=1

N∑
j=1

fijXiXj ∈ Z[X]

as xtβx where xt is a column vector and β is the matrix of entries fij . Clearly β is
symmetric since fij = fji. �

It is useful in many cases to switch from one mode of thinking to another while
working with quadratic forms. For the purposes of this paper, we introduce this
concept without exploring it in great detail. Instead, we navigate toward p-adic
numbers in order to arrive at the Hasse-Minkowski theorem.
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3. The p-adic Numbers

The p-adic number systems are extensions of Q that will allow us to determine
whether a zero of a quadratic form exists in Q without having to find one specif-
ically. We begin with basic operations on numbers represented in base p to build
an intuition for a new notion of size (the p-adic valuation). We then sketch the
construction of the p-adic numbers and contrast them with real numbers in an
example. Lastly, we introduce Hensel’s Lifting Lemma and end by stating the
Hasse-Minkowski principle without proof.

3.1. Rationals in Base p.
Given a nonzero integer n and a prime p, we can write n in base p by using the

unique set of integers, a0, · · · , ak with 0 ≤ ai < p for all i that satisfy

n = a0 + a1p+ a2p
2 + · · · akpk

and ak 6= 0. We normally use the base 10 representation of integers. In other words,
if n = n0 + n1(10) + n2(100) + · · ·+ ns(10s) with 0 ≤ ni < 10 for each i, we have

(nsns−1 · · ·n1n0)(Base 10) = (akak−1 · · · a0)(Base p).

We call a0, · · · , ak the p-adic digits of n.

We can extend this representation to the rationals. Let
u

v
∈ Q where

u = u0 + u1p+ · · ·+ ukp
s

and

v = v0 + v1p+ · · ·+ vkp
t

in base p. We represent
u

v
in the form

a−tp
−t + a−(t−1)p

−(t−1) + · · ·+ a−1p
−1 + a0 + a1p+ a2p

2 + · · · ,

where we write 0 · pi whenever ui = vi and vip
−i whenever ui = 0. There is no

simply way to handle the case when 0 6= ui 6= vi 6= 0, and we must allow infinite
expansion to the left in order to include all rationals. For the sake of simplicity, we
will stick to integers for now.

If we want to add or subtract two integers in base p, the algorithm is the same
as for integers in base 10:

1 2 3 (base 7)
+ 4 4 (base 7)

2 0 0 (base 7)
,

which is to say that

(1 ∗ 72 + 2 ∗ 7 + 3 ∗ 1) + (4 ∗ 7 + 4 ∗ 1) = 2 ∗ 72

and
1 2 3 (base 7)

- 4 4 (base 7)
0 4 6 (base 7)

or

(1 ∗ 72 + 2 ∗ 7 + 3 ∗ 1)− (4 ∗ 7 + 4 ∗ 1) = 4 ∗ 7 + 6 ∗ 1.
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The same is true when we multiply by a rational or when we multiply two
numbers in base 7:

1 2 3 (base 7)
* 4 4 (base 7)

1 1 2 5 (base 7)
+ 1 1 2 5 0 (base 7)

1 2 4 0 5 (base 7).

There are some oddities for numbers written in base p. To show that division is
not as straightforward as it is under normal representation, for instance, consider
dividing 1 in half. This is the number 1

2 , but its base 7 representation is · · · 3334
(with 3’s repeating to the left), since twice this is · · · 001, which is equal to 1. (If this
is unclear, compare this to following the proof that .999 · · · = 1: Let x = .999 · · · .
Then 10x = 9.999 · · · so that 9x = 9. Hence x = 1.)

3.2. Intuition.
When thinking about the “size“ of a rational number, it is natural to consider

how many “steps away from zero“ it is. Describing this as a function || from the
field Q to R≥0, is simple:

|x| =

{
x when x ≥ 0

−x when x < 0

Objectively, however, there is no reason this ought to be the only way to think
about size. And as we shall see, it’s not.

3.3. Absolute Values.
The notion of size can be defined formally as an absolute value of a field. Con-

cretely, given a field k, an absolute value on k is any function | | : k → R≥0 that
satisfies the following properties:

(1) |x| = 0 if and only if x = 0

(2) |xy| = |x||y| for all x and y in k

(3) |x+ y| ≤ |x|+ |y| for all x and y in k

It easy to see that the usual absolute value on Q satisfies these three conditions.
A fourth condition that some absolute values maintain is

(4) |x+ y| ≤ max {|x|, |y|} for all x and y in k,

which is a stronger condition than (3). (In other words, (4) =⇒ (3).)
An absolute value that satisfies condition (4) is said to be a non-archimedean

absolute value. Otherwise, it is archimedean. It is easy to see that the trivial
absolute value,

|x| =

{
0 if x = 0

1 otherwise

is non-archimedian. Notice that since any nonzero element of a finite field can
be raised to some power to yield 1, the trivial absolute value is the only possible
absolute value on a finite field.
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3.4. p-adic Valuation.
We are now ready to understand a p-adic valuation, which we will use in the

definition of a p-adic absolute value. Let p be a prime number. The p-adic valuation
is the function vp : Z \ {0} → R defined as follows:

n = pvp(n)n′ with p 6 |n′

In other words, the valuation vp of a number n is the highest power of p that
divides n. For example v3(18) = 2 since 18 = 32 ∗ 2. We extend this valuation to

Q by defining vp

(a
b

)
= vp(a)− vp(b).

The following lemma captures two basic properties of the valuation:

3.4.1. Lemma.

(i) vp(xy) = vp(x) + vp(y).
(ii) vp(x+ y) ≥ min {vp(x), vp(y)} (when we define vp(0) =∞).

Proof: First, (i) is obvious because

vp(xy) = pvp(x)x′ ∗ pvp(y)y′ = pvp(x)+vp(y) ∗ x′y′

with p - x′y′. Next, we leave (ii) to the reader and suggest factoring out common
powers of p.

Notice that (i) is similar to condition (2) of absolute values except that a prod-
uct has been replaced by the sum. Also, (ii) is related to property (4) (the non-
archimedean replacement of the triangle inequality) in an odd way. Before con-
tinuing, can you guess what to do with vp in order to define a non-archimedean
absolute value on Q? (Hint: Think about the rules of exponents and logarithms.)

3.5. p-adic Absolute Value.
We now define the p-adic absolute value and use it to hand-wave our way to the

p-adic numbers.

3.5.1. p-adic Absolute Value. Let x be a rational number and p, a prime. Then the
p-adic absolute value of x is defined to be

|x|p =

{
p−vp(x) if x 6= 0

0 if x = 0

It is easy to check that | |p is a non-archimedean absolute value on Q, as it follows
from the lemma. We compute some examples over Q with p = 7:

|35|7 = 7−1 =
1

7∣∣∣∣56

12

∣∣∣∣
7

= 7−(v7(56)−v7(12)) = 7−(1−0) =
1

7

|177553|7 = 1∣∣∣∣ 3

686

∣∣∣∣
7

= 343

Notice that our intuition for whether one number is “larger” than another (35

versus
3

686
) will lead us astray.
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3.6. p-adic Completion of Q.
We sketch the construction of the p-adic numbers. For a more complete descrip-

tion of this construction, see Gouvêa’s p-adic Numbers: An Introduction.
Let C be the set of all Cauchy sequences in Q with respect to a particular p-adic

absolute value. Then if (a) and (b) are elements of C, we can define the operations
+ and ∗ on C pairwise to give C a ring structure:

(a) + (b) = (a1 + b1, a2 + b2, · · · )

(a)(b) = (a1b1, a2b2, · · · ).
Next, let S = {c ∈ C : limn→∞(c) → 0} be the set of all sequences whose limit

is 0. This set turns out to be a maximal ideal in C, so that the quotient group C/S
is a field. We call C/S the p-adic numbers, and use the notation Qp. Although we
do not do so presently, the next steps involve showing that Qp is complete and that
Q is dense in Qp.

We can extend the p-adic absolute value on Q to Qp by defining the p-adic
absolute value of x ∈ Qp as the limit of the sequence (|x1|p, |x2|p, · · · ). Note that if
u ∈ Q, the sequence (u, u, · · · ) is also in Qp, so that Q and Z are embedded in Qp.

Next we define the p-adic integers, Zp, to be those elements of Qp whose absolute
value is bounded by 1:

Z := {x ∈ Qp : |x|p ≤ 1}.
In particular, these are all of the elements of Qp that converge to a number whose
base p representation has no p-adic digits after the dot. A regular integer always
has a finite number of digits to the left of the dot and only 0’s to the right. An
element of Zp may have a non-terminating sequence of digits to the left of the dot,
but still has only 0’s to the right.

We now look at a surprising difference between R (otherwise known as Q∞ for
historical reasons) and Qp.

3.7. Surprisingly Convergent Series in Zp.
In calculus we had a variety of tests to tell whether a series converges in R.

We will show that the infinite series 1 + p+ p2 + · · · (which clearly diverges in R)
converges in Qp.

First, let us recall the definition of a Cauchy sequence. A sequence of numbers
is called a Cauchy sequence if for any ε > 0 there exists an N such that n ≥ N
implies |sn − sn+k| < ε for all k. Notice that here | | can mean | |∞ when we are in
R and | |p when we are in Qp.

The series 1 + p + p2 + · · · can be thought of as the limit (should one exist) of
the partial sums

sn = 1 + p1 + · · ·+ pn−1 =
1− pn

1− p
.

At this point, 1−pn diverges in the reals but goes to zero with respect to the p-adic
absolute value since

|pn|∞ = pn →∞
but

|pn|p = p−n → 0

as n tends to ∞. Hence not only does the sequence 1 + p+ p2 + · · · converge in Qp

but it even converges to the rational number
1

1− p
.
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3.8. Hensel’s Lemma.
Hensel’s Lifting Lemma is one of the most important results when using p-

adic numbers. Essentially, Hensel’s Lemma gives you a method to test whether a
polynomial has roots in Zp (the p-adic integers). We state the Lemma without its
proof:

Theorem 3.1 (Hensel’s Lemma). If f(x) = a0 +a1X+a2X
2 + · · ·+anXn ∈ Zp[X]

and there exists an a ∈ Zp such that

f(a) ≡ 0 (mod p), and f ′(a) 6≡ 0 (mod p),

then there exists a unique p-adic integer b ∈ Zp with f(b) = 0 and b ≡ a (mod p).

Hensel’s Lemma is a powerful result. It is a fundamental tool in p-adic analysis
and makes many problems simpler than they would be with real analysis.

3.8.1. Hensel’s Lemma and Quadratic Reciprocity.
We can use our knowledge of Hensel’s Lemma and of quadratic reciprocity to

tell whether a given number n has a root in Zp. Let p be an odd prime and n be
an integer such that p - n. First we look at the equation

x2 − n = 0

considered in Zp[x]. We reduce this to get

x2 − n′ ≡ 0 ( mod p)

considered in Fp[x] with 0 ≤ n′ < p.
This has a solution if n′ is a square (mod p), so that we have reduced the problem

to one that we know how to solve. If by using the Legendre symbol

(
n′

p

)
we find

that n′ is not a square (mod p), then we are done and can conclude that

x2 − n = 0

considered in Zp[x] has no solution.
If on the other hand we find that n′ is a square (mod p), we need to find out

whether the root to the equation is simple or not by taking the derivative. Doing
so yields

2x ≡ 0 (mod p)

which has only the trivial root, 0. Hence n is a square in Zp if and only if it is a
square (mod p).

We do an example to illustrate this process. Suppose we were given the equation
x2 + 5 = 0 and were asked to find a p such that it has a solution in Zp. This is the
case if and only if x2 ≡ −5 (mod p) has a simple root. In other words, we need a

p with

(
p− 5

p

)
= 1. We try p = 23 (so that p− 5 = 18) and we get(

18

23

)
=

(
3

23

)2(
2

23

)
=

(
2

23

)
= 1.

Hence 18 is a square (mod 23), which means that there exists a solution to the
relation x2 ≡ −5 (mod 23). Furthermore, we know that the equation x2 ≡ −5
(mod 23) has a simple root since the only solution to 2x ≡ 0 (mod 23) is 0 (mod
23). By Hensel’s Lemma we can conclude that the root lifts; that is, there must
exist a solution to x2 + 5 = 0 in Z23.
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Finally we are ready to connect our exploration of p-adic numbers back to the
topic at hand: their involvement in the theory of quadratic forms.

3.9. Local to Global Principle.
The idea behind the Local-Global principle is that we can study solutions in Q

(called global solutions) of Diophantine equations by observing whether the equa-
tion has solutions in Qp (local solutions). This is not the case for all Diophantine
equations, but the Hasse-Minkowski theorem is a miraculous case where the prin-
ciple holds.

Theorem 3.2. Hasse-Minkowski Theorem Let F (X1, X2, · · · , Xn) ∈ Q[X1, X2, · · · , Xn]
be a quadratic form. The equation F (X1, X2, · · · , Xn) = 0 has nontrivial solutions
in Q if and only if it has nontrivial solutions in Qp for each p ≤ ∞.

This theorem helps us find out whether a rational solution exists, but it does
not provide a method of finding such a solution.
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4. Cassels’ Theorem

In the previous section, we found that the Hasse-Minkowski theorem allows us
to use p-adic analysis to find out whether a quadratic form is isotropic over Q - that
is, whether it has a nontrivial, rational zero. Next, we introduce Cassels’ Theorem
so that we may find a zero that is not “too big“.

Cassels’ Theorem states that if f is isotropic in Z[x1, · · · , xn] then it must have
a nontrivial zero whose absolute value is bounded by a constant. The bound given
by Cassels’ Theorem is called a search bound, as it lets us search through finitely
many integer points (those who absolute value is less than the bound) in order to
find a zero of small height.

The search bound given by Cassels’ Theorem has been improved for forms over
different fields or with special properties. It has also been generalized to accommo-
date new notions of height and absolute value, but for our purposes we stick to a
proof using the absolute value

| | : Zn → R, |~a| = max
1≤i≤n

|~ai|

In order to prove Cassels’ Theorem, we need to borrow a few ideas from the
Geometry of Numbers, an approach to number theory studied most effectively by
Minkowski, his pupil Hasse, and later by Witt. Here, we rely only on Minkowski’s
Linear Forms Theorem and a corollary.

4.1. Minkowski’s Linear Forms Theorem.
By now the reader ought to be familiar with a quadratic form as a homogeneous

polynomial of degree 2. A linear form, on the other hand, is simply a homogeneous
polynomial of degree 1. Minkowski’s Linear Forms Theorem allows us to find a
non-zero ~a ∈ Zn such that the height of the form at ~a is bounded (essentially) by
the determinant of the form. We state the theorem without proof:

Theorem 4.1 (Minkowski’s Linear Forms Theorem). Let Lj(x) (1 ≤ j ≤ n) be
real linear forms in n variables (i.e. ~x = (x1, · · · , xn)) with determinant D 6= 0.
Let tj > 0 (1 ≤ j ≤ n) satisfy

(2) t1 · · · tn ≥ |D|.

Then there is a non-zero ~a ∈ Zn such that

(3) |L1(~a)| ≤ t1

and

(4) |Lj(~a)| < tj | for (2 ≤ j ≤ n).

We record a useful corollary to the theorem.

Corollary 4.2. Let n ≥ 1, M > 1 be integers and let θ1, · · · , θn be real numbers.
Then there is an integer m in 0 < m < M and integers l1, · · · , ln such that

|mθj − lj | ≤M−
1
n =

1
n
√
M

We will take advantage of the corollary when we prove Cassels’ Theorem.
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4.2. Cassels’ Theorem.
Hilbert’s 10th problem is one of decidability : it asks whether an algorithm to

solve Diophantine equations could exist. In the case of quadratic forms, Cassels’
Theorem gives us an effective solution - that is, provides us an explicit algorithm.
It allows us to place an upper bound on the size of an integral solution should one
exist, which reduces our problem of finding a zero to a process of checking finitely
many possibilities. Since we can find the bound by summing the coefficients, our
algorithm is simply one that checks every integral point less than the bound.

We are now ready to prove our main result.

Theorem 4.3 (Cassels’ Theorem). Let

(5) f(x) =
∑

fijxixj ∈ Z[x1, · · · , xn]

be an isotropic form in n variables. Then there is an

(6) ~a ∈ Zn,~a 6= ~0

with

(7) f(~a) = 0

such that

(8) max
1≤≤n

|aj | ≤ (3F )
n−1
2

where

(9) F =
∑
i,j

|fij |

Here | | denotes the absolute value.

Since the proof is lengthy, we provide a few words about the way it works. (1)
We begin by setting ~a to be the smallest solution to the form. (2) We then use the

corollary above to construct a point ~b that is definitely not zero and definitely not

a solution. (3) A clever linear combination of ~a and ~b gives us a point ~a∗ that is
another solution to the form. (4) Finally, we show that we can bound the size of ~a∗

such that ||~a∗|| ≤ 3F
n−1
2 . Since ~a ≤ ~a∗, this completes the proof. The defining idea

behind the proof is geometric in nature: the point ~a∗ is a reflection of ~a over the

hyperplane orthogonal to ~b, where orthogonality is with respect to the symmetric
bilinear form f .

Proof:
(1) Since f is isotropic, it has at least one nontrivial solution. We let ~a be the

solution whose absolute value ||~a|| = max1≤j≤n |aj | is minimal. In other words,
we start with the smallest vector ~a with respect to the absolute value on Zn that
associates to each vector its largest coordinate (in the Euclidean sense).

If ||~a|| > (3F )
n−1
2 then we are going to find a different vector, ~a∗ for which

f(~a∗) = 0 (it is a solution) and ||~a∗|| < ||~a||, which will contradict the minimality
of ~a.

To simplify our thinking, it will help if a1, the first coordinate of ~a, is both
positive and equal to ||~a|| (which means that a1 ≥ ai for 2 ≤ i ≤ n). We may have
to permute the indices of ~a and take −~a instead of ~a in order for this condition to
hold. This does not change the problem because f(~a) = f(−~a) = 0 and the order
of indices is arbitrary.
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As a final simplifying step, we note that there is nothing to prove if a1 = 1, so
we may suppose that a1 ≥ 2.

(2) If θ1, · · · , θn are any real numbers, then (by the corollary above) there exists
integers b1, · · · , bn such that 0 < b1 < a1 and

|b1θ − bj | ≤ a
−1

(n−1)

1

for (2 ≤ j ≤ n). If we set θj =
aj
a1

then by the triangle inequality we have

|bj | ≤ |b1θj |+ a
−1
n−1

1 ≤ b1 + a
−1
n−1

1 ≤ b1 + 1

so that ~b has absolute value strictly less than ~a:

||~b|| = max
j
|bj | = b1 < ||~a||.

We know that ~b is not zero because we chose 0 < b1 < a1 and we know that it
cannot be a solution to the equation because it would contradict the minimality of
||~a||. Hence f(b) 6= 0.

(3) Now we take a clever linear combination of ~a and ~b to get a vector ~a∗. Let

~a∗ = λ~a+ µ~b where λ = f(~b) ∈ Z(6= 0) and µ = −2f(~a,~b) ∈ Z.
The first thing we show about ~a∗ is that f(~a∗) = 0 :

f(~a∗) = f(λ~a+ µ~b)

= λ2f(~a) + 2λµf(~a,~b) + µ2f(~b)

= 2λµf(~a,~b) + µ2f(~b)

= 2(f(~b))(−2f(~a,~b))f(~a,~b) + (−2f(~a,~b))2f(~b)

= −4f(~a,~b)2f(~b) + 4f(~a,~b)2f(~b)

= 0

So that ~a∗ is a solution.
Next, we know that ~a∗ 6= 0 because its definition, ~a∗ = f(~b)~a − 2f(~a,~b)~b would

then imply that f(~b) = f(~a) = 0, which is a contradiction to the fact that f(~b) 6= 0.
We have found a nonzero solution to the form, which means that by the mini-

mality of ||~a||,
||~a|| ≤ ||~a∗||.

The final thing we must do is bound the absolute value of ~a∗. That is, we must
show

||~a∗|| ≤ (3F )
n−1
2 .

(4) We want to express ~a∗ in a way that will allow us to approximate the size of
~a∗ by comparing it only to the size of ~a. We will do so by writing the coordinates

of ~b as

bj = φaj + δj

where where φ = b1
a1

, d1 = 0, and |dj | ≤ a
−1
n−1

1 for all (2 ≤ j ≤ n). Hence ~b = φ~a+~δ.
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We observe that

f(~a,~b) = f(~a, φ~a+ ~δ)

= φf(~a) + f(~a, ~δ)

= f(~a, ~δ),

and that

f(~b) = f(φ~a+ ~δ)

= 2φf(~a+ ~δ) + f(~δ).

Using this, we can write

~a∗ = f(~b)~a− 2f(~a,~b)~b

= f(φ~a+ ~δ)~a− 2f(~a, φ~a+ ~δ)(φ~a+ ~δ)

= f(~δ)~a− f(~a, ~δ)~δ.

In this form, crude estimation is enough to show

||~a∗|| ≤ 3F ||~a||||~δ||2.

Since ||~a|| is minimal, ||~a∗|| ≥ ||~a|| and 3F ||~δ||2 ≥ 1. But since we defined ~δ with

d1 = 0 and |dj | ≤ a
−1
n−1

1 for all (2 ≤ j ≤ n), we have

||~δ|| ≤ a
−1
n−1

1 = ||~a||
−1
n−1 .

Hence ||~a|| ≤ (3F )
n−1
2 , as we desired to show.

This concludes the proof of Cassels’ Theorem. This proof is essentially the same
as the one Cassels’ gives in his Quadratic Forms Over The Rationals (Chapter 6).
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5. Conclusion

Quadratic forms are a particularly interesting set of polynomials, and we have
discussed a method to finding zeros of a quadratic form f . The Hasse-Minkowski
theorem tells us that the quadratic equation f(x) = 0 will have a global solution
(a root in Q) if and only if it has solutions in every local field (in Qp for all primes
p and in R). This fact is not at all true for most forms, but the quadratic case is
a special one. If we know f is isotropic over Q, then Cassels’ theorem provides us
with an explicit search bound within which a root can definitely be found.

Cassels’ theorem is the first of many explicit search bounds found over fields. For
particular quadratic forms, our search algorithm for rational or integral solutions
can be improved. Cassels’ theorem is very interesting in that it applies a geometric
argument to accomplish its goals, making use of the geometry of numbers put forth
by Minkowski, Hasse, and Witt. If the reader is interested in the same result over
a field different from rationals, L. Fukshansky’s paper Heights and quadratic forms:
Cassels’ theorem and its generalizations is a great resource.

5.1. Further Reading.
A more thorough discussion of the topics mentioned here, as well as many other

interesting topics, can be found in J.W.S. Cassels’ Rational Quadratic Forms. An-
other great resource for general information on Quadratic Forms and Bilinear Alge-
bra is K. Szymiczek’s Bilinear Algebra: An Introduction to the Algebraic Theory of
Quadratic Forms. In it, Szymiczek explains everything from the basics of bilinear
spaces to Witt’s results (Decomposition Theorem, Witt’s invariant, Witt ring) and
beyond. Denis Simon’s paper listed in the section below provides an algorithm to
efficiently solve any general ternary quadratic equation over Q.

For a friendly introduction to p-adic numbers, consider Gouvêa’s p-adic Num-
bers: An Introduction. This is a great resource for self study and is accessible to
intermediate undergraduate math students.

We provide a list of resources that have been used in preparation of this thesis,
as well as suggestions for further reading in the references section below.
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