
Claremont Colleges
Scholarship @ Claremont

CMC Senior Theses CMC Student Scholarship

2014

Colormoo: An Algorithmic Approach to
Generating Color Palettes
Joshua Rael
Claremont McKenna College

This Open Access Senior Thesis is brought to you by Scholarship@Claremont. It has been accepted for inclusion in this collection by an authorized
administrator. For more information, please contact scholarship@cuc.claremont.edu.

Recommended Citation
Rael, Joshua, "Colormoo: An Algorithmic Approach to Generating Color Palettes" (2014). CMC Senior Theses. Paper 975.
http://scholarship.claremont.edu/cmc_theses/975

http://scholarship.claremont.edu
http://scholarship.claremont.edu/cmc_theses
http://scholarship.claremont.edu/cmc_student
mailto:scholarship@cuc.claremont.edu

Pomona College
Department of Computer Science

Colormoo: An Algorithmic Approach to Generating
Color Palettes

Joshua Rael

April 27, 2014

Submitted as part of the senior exercise for the degree of
Bachelor of Arts in Computer Science

Patrick McNally, Art Lee, advisors

Copyright c© 2014 Joshua Rael

The author grants Pomona College the nonexclusive right to make
this work available for noncommercial, educational purposes, pro-
vided that this copyright statement appears on the reproduced
materials and notice is given that the copying is by permission
of the author. To disseminate otherwise or to republish requires
written permission from the author.

Abstract

Selecting one color can be done with relative ease, but this
task becomes more difficult with each subsequent color. Col-
ormoo is an online tool aimed at solving this problem. We im-
plement three algorithms for generating color palettes based
off of a starting color. Data is collected for each palette that
is generated. Our analysis reveals two of the algorithms are
preferred, but under different circumstances. Furthermore,
we find that users prefer palettes containing colors that are
compatible, but not too similar. With refined heuristics, we
believe these techniques can be extended and applied beyond
the field of graphic design alone.

i

ii

Acknowledgments

This work was done in collaboration with the Computer Sci-
ence departments at both Pomona and Claremont McKenna
College. We would like to thank all those involved through-
out the development of this research. In particular, we would
like to acknowledge Professor Rhett Bull for his early guid-
ance, Professor Art Lee for his support and suggestions, and
especially Professor Patrick McNally for his patience and en-
couragement at each step of this project.

iii

iv

Contents

Abstract . i
Acknowledgments . iii
List of Figures . vii

1 Introduction 1

2 Background 3
2.1 Color Representation . 3
2.2 Color Compatibility Algorithms 5
2.3 Application of Color Compatibility Algorithms 7

3 Colormoo 11
3.1 The User Flow . 11
3.2 Three Color Palettes . 11

4 Methodology 17
4.1 Technology . 17
4.2 Data Collection . 18

5 Results 21
5.1 Results by Component . 21
5.2 Discussion . 23

6 Future Work 25
6.1 Refinement . 25
6.2 Industry Application . 26

7 Conclusion 27

A Selected Source Code 29

v

Bibliography 35

vi

List of Figures

2.1 The HSL Color Model . 4

3.1 Colormoo Screenshot . 12
3.2 Hue Templates . 13
3.3 Equidistant Colors Example 15

5.1 Hue Across Palettes . 22
5.2 Saturation of Starting Color 23
5.3 Lightness of Starting Color 24

vii

viii

Chapter 1

Introduction

While the way that designers have interacted with color has evolved through-
out the history of graphic design, the problem of choosing colors continues
to be a difficult task. Fortunately there are many resources available to
aid in the process, though their number alone is enough to suggest there is
no perfect solution. Color choice sits at a peculiar point between intuition
and experience. A color may be chosen because it conforms to established
set of rules or simply because the absence of it would leave more to be
desired. One approach to finding compatible colors is by consensus. As
such, modern tools have positioned themselves on the internet where they
can be part of a much larger feedback loop. Two popular websites, Adobe
Kuler and COLOURLovers, have developed forums through which users can
create color palettes and submit them for public appraisal. On these two
sites alone, more than two million palettes have been generated by tens of
thousands of users [OAH11].

A designer may select a color for any number of reasons, but the value
of that color often cannot be established until it sits alongside other colors.
Herein lies the essence of this problem: picking one color can be done with
relative ease, but the task becomes more difficult with each subsequent color.
Despite all the excitement around seeking compatible colors, little has been
done in exploration of this subproblem.

The goal of this research is to evaluate three different algorithms that
produce color themes, i.e., a set of six compatible colors. We built an appli-
cation that measures which algorithms are preferred and under what condi-
tions. On Colormoo, designers can input a color of their choice, generate a
series of themes, and select their favorite. We collect data for each palette
that users select. Ultimately, we observe that two algorithms come out on

1

top and the properties of the user’s starting color will make one approach
more favorable than the other. These results, along with general observa-
tions of color preference, can provide helpful insight into future explorations
of this problem, especially as it becomes relevant beyond the field of graphic
design alone.

2

Chapter 2

Background

The problem of finding compatible colors is rooted in the different ways
colors can be represented. Color experts manipulate these representations
to create patterns which have been implemented in various online tools for
generating color palettes.

2.1 Color Representation

Colors are represented numerically according to an underlying color model.
This specification defines a point in the color space and can be used to
determine how one color is related to another. Though there are several
color models that have been developed in the study of color, we examine
three for the way they are used in various graphics applications.

2.1.1 RGB

The red-green-blue (RGB) color model defines how screens emit colored
light. This is the model computer monitors use to determine the color of
each individual pixel. A color is represented by the amount of red, green, and
blue required to produce it, each within the range of 0 to 255. These colors
are typically represented by a three-tuple or by their hexadecimal (HEX)
variant in base 16. For example, white light is represented as (255,255,255)
where black is (0,0,0). Although, RGB is not the most intuitive way for
humans to think about color, this is a popular format for referencing a
particular color. HEX colors, for example, are used in stylesheets to display
colors online.

3

Figure 2.1: The three different components of the HSL color space [Vir14].

2.1.2 HSL

The hue-saturation-lightness (HSL) model more closely represents the way
we think about color (Figure 2.1). Hue is typically what people think when
they hear the word color [Jac13]. It represents the rainbowed spectrum of
light from red to violet. Hue is measured in degrees because it is commonly
displayed as a color wheel. For example, red colors sit around 0 and 360
degrees, while blues are more in the 175-220 range. Saturation is the per-
centage of color intensity. Really vibrant colors will be highly saturated.
Dull colors will have closer to 0% saturation. Finally, lightness is used to
define a color on the darker or lighter end of the spectrum. Lightness is also
measured on a percentage scale.

2.1.3 CIE LAB

Where HSL may be closer to the way that humans think about colors, CIE
LAB is more akin to the way that humans perceive colors. In this model, the
L stands for lightness, A for the red-green range, and B for the blue-yellow
range. It is one of two systems accepted by the Comission Internationale
de I’Eclairage (International Commission on Illumination) as a perceptually
uniform color space [Inc00]. This is the idea that colors each have different
weight associated with them. For example, regardless of how light or dark
it is, a blue color is going to stick out more than a yellow color. While
this is a valuable property of this model, working with CIE LAB is a little
more difficult than working with RGB or HSL. CIE LAB is a much larger
color space that is capable of representing colors not present in the other
models. However, only a subset of the colors in CIE LAB are accessible to
the human eye [Mac09]. These perceptual intricacies result in an irregular
geometry that requires a more accounting on behalf of the user, especially
as it relates to the problem of color selection.

4

2.2 Color Compatibility Algorithms

Finding compatible colors is not a problem unique to one audience. Ar-
chitects, engineers, publishers, artists, and designers all use color every day.
Each has their own toolset for color use in their respective fields. We explore
a few of these techniques and observe how they are implemented in different
consumer facing applications.

2.2.1 Color Theory

Isaac Newton was one of the first to organize colors geometrically. In 1704,
Newton observed the relationships between different wavelengths of light
and organized them as a circle of hue. He was then able to identify differ-
ent patterns that arose out of this representation. This would become the
foundation of the color wheel and modern color theory [Mac09].

Fixed rotations about the color wheel can be used to define a set of
compatible colors or hue templates [OAH11]. These are the colors that are
still taught in art and design classes today. They include, for example, com-
plimentary colors that sit on opposite ends of the color wheel or analogous
colors that reside next to one another in the color wheel. Figure 3.2 displays
the templates that we use in Colormoo. Though designers typically only
use hue templates as a starting point [OAH11], this approach has survived
the test of time as the tried and true way to generate color palettes. Fur-
thermore, it enables users to quickly find a set of colors that are compatible
with some starting color.

2.2.2 Equidistant Colors

Graphics Editor Gregor Aisch offers a unique method of sampling color
palettes that can be used with any color space [Ais11]. Specifically, Aisch
recognizes the value in using equidistant colors. Equidistant colors are colors
that are the same distance from each other when plotted out in a color space.
To show this, Aisch performs a two-dimensional transformation of a three-
dimensional color space. Two of the components define the x and y axis
and the third component is held constant, respectively. One can sample
equidistant colors along a straight line drawn in this space. For example, we
might transform HSL to display saturation on the x-axis, lightness on the
y-axis, and keep hue constant. Doing so would allow us to draw a line in
the saturation-lightness space that would result in a monochromatic color
scheme. This mapping could be very useful for representing data points

5

in statistics. Our implementation will keep lightness constant to give the
user more control over the hue component. An example of this technique
can be seen in our implementation in Figure 3.3. Regardless, this technique
is a relatively simple way to produce a variety of different palettes and
previous studies confirm that colors along a line drawn this kind of space
are harmonious [OAH11].

2.2.3 K-Means Clustering

Mathieu Jacomy of the Sciences-Po Medialab took a more algorithmic ap-
proach to generating qualitative color palettes for data visualization. Ja-
comy explains that a data scientist wants to avoid distracting colors (avoid-
ing neon colors, for example) and to keep homogeneity (making sure the
colors are compatible with one another) [Jac13]. It is also very important
that each color is distinct. With his web application, I Want Hue, he utilizes
k-means clustering and force vectors to create clusters of colors that satisfy
these requirements. Users can select the number of colors they need for their
project. This defines the number of clusters that will be used to partition
the color space. Users also have the freedom to adjust different parameters
to determine which colors they want to compose their palette.

Jacomy used this approach with the HSL color space, but found better
results with RGB. Ultimately he ended up using CIE LAB because “the dis-
tance in this space as perceptive distance... distant colors will be perceived
[is] distinct.” [Jac13] This property allows for a more even distribution of
colors and therefore better clustering results.

2.2.4 Color Quantization

Another approach is to generate color palettes from images. This tech-
nique is called color quantization. There is a dissonance between the color
capture capabilities of cameras and the color display capabilities of comput-
ers. Traditionally this approach is used to generate a palette of colors to
more accurately display images on computer monitors [HLT09]. However,
that palette can be used a little more generally. Oftentimes people admire
photographs because they contain an appealing set of colors. A color quan-
tization algorithm can identify the most prominent colors in a photo and to
create a color theme [OAH11]. This method can be used on anything from
photos of 20th century paintings to a quick snapshot of the sunset from a
mobile phone.

6

Color quantization produces reliable results [OAH11]. It has the addi-
tional freedom of allowing users to sample colors from any image they find
aesthetically pleasing. Tools that utilize this method are great for deriving
new and fresh palettes. However, the palette will always be constrained to
the colors present in that image. If the user already has a color that they
would like to use in their design this may not be the best way to derive a
color theme.

2.3 Application of Color Compatibility Algorithms

2.3.1 Representing Data

Much research in finding compatible colors can be found in the context
of statistics and data visualization. In this field, color is used to create
meaning and add dimensionality to a dataset. Colors help to better display
trends and identify the intensity or scarcity in data. Since each color is used
to represent a different data point, it is important that the color remains
distinct from the other colors in the palette.

Significant interest in producing better color palettes for data visualiza-
tion started with with ColorBrewer [HB03]. Their primary concern was that
federal agencies and nonprofits very frequently produce thematic maps to
communicate their research to the public. These maps are widely distributed
and convey important insight into their work. Though their software gener-
ally includes default color schemes, there is little guidance on the effective
use of that color and oftentimes they do not have time to develop a better
color palette to represent their data. The team addresses this problem with
a web application entitled ColorBrewer that provides more attractive color
schemes based off of three primary use cases.

For data with a clear order to it, the ColorBrewer team implemented
a set of sequential color schemes in which each color represents a step into
a different range of values. For data that sits between two well defined
extremes, they have a set of divergent color schemes. Thirdly, they created
a set of qualitative colors that “rely primarily on differences in hue to create
a colour scheme that does not imply order, merely a difference in kind”
[HB03]. These are the schemes that most relate to the type of color themes
we explore in this project.

It is important to note that none of these color palettes are generated
dynamically on the site. Each was selected as a well saturated palette con-
structed by sampling colors along an arc drawn in a color space [HB03].
The user only has control insofar that they can choose the number of col-

7

ors present in the palette (between 3-12, though not all schemes can be
expanded to 12 colors). Ultimately this means sacrificing a little artistic
freedom when it comes to creating a color palette.

Jacomy’s I Want Hue is a little more elegant in this regard. The same
kind of palettes for data visualization can be created by restricting the color
space using the input sliders on the site. These schemes are successful with-
out relying on hard coded color values.

2.3.2 Color Themes

Color use in graphic design is a much more open problem. The goals of each
project vary and, unlike more quantitative fields, taste is much more of a
factor in deciding whether or not a color should be used. For this reason,
the colors do not necessarily need to be distinct. In fact, themes with too
many distinct colors tend to be rated lower than simpler themes that utilize
fewer hues [OAH11]. That said, it is important to have some variation to
retain visual interest.

The COLOURLovers site (www.colourlovers.com) is a popular destina-
tion for professionals and amateurs seeking this kind of color palette. Users
can submit hand-picked color palettes for others to use. The most popular
of the submissions rise to the top. Users are constantly taking the themes
and modifying them for different artistic purposes, often merging with or
incorporating other colors found on the site. Furthermore, users can search
for palettes by defining a range of color that they would like to use in their
designs. It is unsurprising that COLOURLovers produces such popular color
themes because of the invaluable human input that goes into each palette.

To approach this concept from a different direction, we observe a trend
on portfolio sites like Dribbble (www.dribbble.com), a social network for de-
signers, where designers post the color palette they used alongside the work
that incorporated it. This idea of visual DNA is appealing to many users
of the site. An otherwise indifferent color palette becomes a lot more inter-
esting when paired with an example of how it might be used. Additionally,
since each image is tagged with these colors, search capabilities allow users
to see how different artists use the same color in their work. As a result,
sites like Dribbble have become a color palette tool in their own right.

Finally, there are several tools that leverage color theory and hue tem-
plates. Popular among them is Adobe Kuler (www.kuler.adobe.com). Like
COLOURLovers, Kuler allows users to create and share color themes. Users
can see the themes others have created and rate them on a five point scale.
O’Donovan et al. performed an analysis of color compatibility by sampling

8

data from the two sites. An important difference between the two services
is that the Kuler interface encourages the use of hue templates while the
COLOURLovers interface does not. In comparing the two services, they
found that users would not typically create themes based on hue templates
unless encouraged to by the interface [OAH11]. Furthermore, they did not
find a correlation between a high rating and a theme whose colors closely
matched a hue template. However, when users did utilize hue templates,
they found themes with complementary and analogous colors to be the most
highly rated.

9

10

Chapter 3

Colormoo

Our research culminates in the development of Colormoo (Figure 3.1), an
online tool for generating color palettes. The site is live and can be viewed
at www.colormoo.com. The goal of this site was to evaluate different algo-
rithms for generating color themes from a starting color.

3.1 The User Flow

Colormoo takes a starting color as input and outputs three color palettes
based on that color. The user can input the starting color with a color
specification or by manipulating the HSL sliders to dynamically select a
color. The chosen color is visually displayed on the left-hand side of the
input box. When the user clicks the generate button, the system presents
the three different color palettes. When the user has selected the color
palette they like best, Colormoo displays the numerical specifications for
each color in three different formats: HEX, RGB, and HSL. At this point,
the user can take these colors for use in their designs or start over to generate
another set of palettes.

3.2 Three Color Palettes

Each palette uses a different algorithm to create five colors that are com-
patible with the user’s starting color. To rid of any bias associated with the
way each palette is generated, we randomize both the order of the palettes
as they appear, as well as the individual colors within that palette.

11

Figure 3.1: Colormoo enables users to input a color with a color specification
or with the color sliders to generate three color palettes.

12

Figure 3.2: These three color wheels demonstrate the hue templates used in
the theory palette. From left: complementary colors, analogous colors, and
triadic colors. [Col12]

3.2.1 The Theory Palette

Like most tools that allow users to generate color themes based off of a start-
ing color, the first palette is generated using color theory and hue templates.
With the Grapefruit color conversion Python library, hue templates can be
based on one of two underlying color wheels. The first is the conventional
RGB color wheel in which colors are created by combining different levels
of the three component colors. However, artists of more traditional media
use red, yellow, and blue as primary colors. A more accurate color wheel
for this case, often called the “artist’s color wheel,” is the Red-Yellow-Blue
wheel. Since it is based on irregular physical properties pigment, it is gener-
ally believed that the RYB wheel is less scientifically accurate [Mac09]. For
our hue templates, we use the RGB wheel to stay true to the properties of
light, especially given that this tool will be used exclusively online.

We use a combination of complementary, analogous, and triadic hue
templates to implement this palette (Figure 3.2). O’Donovan et al. found
themes that incorporated complementary and analogous templates were
among the most highly rated on Kuler [OAH11]. To add a little more vari-
ety, we also include the triadic template, where the colors are evenly spaced
around the color wheel. This brings the total number of colors to five: one
complimentary, two analogous, and two triadic colors.

3.2.2 The Random Palette

The second palette is comprised of five random colors. In this case, we utilize
the RGB space by choosing a random number from 0 to 255 to represent each

13

of the color’s associated RGB components. However, even to the untrained
eye, it is unlikely that five random colors are going to look good together.
Furthermore, there is no correlation between the derived colors and the
starting color. Not only would the resulting palette be an unsatisfactory
solution to the problem, but it would also appear too random. Users might
be able to recognize it as random and, as such, be biased against it.

To account for this we first played with the idea of “mixing” the start-
ing color with each random color. After creating a random color’s RGB
components, we add the corresponding component from the starting color
and divide the sum by two. The result is a color whose RGB components
are an average of the two colors. This is a better algorithm than purely
random colors because it allows the user’s choice to impact the resulting
theme. However, while averaging proved to work well for some colors, if the
starting color was too red, too blue, or too green (that is, having a high R,
G, or B value) then the resulting palette was tinted as such. When placed
next to the theory palette, for example, it was still fairly obvious that two
different algorithms had been used. It wouldn’t necessarily be interpreted
as a random assortment of colors, but it was certainly distinct from the
other palettes. Finally, it may be argued that the tinted theme contained
colors that go well together, but the colors may be a little too similar to
be considered a solution to this problem. Much like the theory palette, we
want colors that go well together and offer variety.

Inspiration for a better solution came from Erica Schoonmaker on Dribb-
ble [Sch11]. In one of her posts, Schoonmaker reveals that her secret for a
cohesive color palette is to overlay a sixth color over a five color palette. She
recommends the photoshop mask “soft light,” but the idea is to add a very
slight tint to the rest of the color palette. The result is a palette of different
colors that subtly channel this outside color to become a little more united.
We incorporate this idea into our previous solution. We were mixing the
random color and the starting color evenly. Instead, we will decidedly use
less of the starting color to let more of the random color shine through. Our
final colors will be 10% the starting color and 90% the random color. These
colors do not stick out from the other palettes as much as the previous itera-
tion. Starting colors with high RGB components did not overwhelm the rest
of the palette and, much like Schoonmaker’s post, the colors in this palette
appeared to be more consistent.

14

Figure 3.3: This is an example of our Pygame instance during the refine-
ment of the equidistant palette. The x-axis represents hue and the y-axis is
saturation. We sample colors evenly spaced along this line to create a color
palette.

3.2.3 The Equidistant Palette

The third palette is generated using the technique demonstrated by Gregor
Aisch (Figure 3.3). As mentioned earlier, the use of color in data visualiza-
tion does not exactly match the goals of this project since we are not trying
to find the best colors for representing data. However, by establishing a
few heuristics and sampling more colors, this approach can also be used to
create a palette for artistic purposes as well.

The value of equidistant colors is that they are evenly spaced in a way
that makes sense to the human eye [Ais11]. For this reason, we use HSL
rather than RGB because it is a more intuitive way for humans to think
about color.

The key to Aisch’s technique is determining which components to use on
the x and y axis and which to hold constant. Since the hue component is

15

what we generally think of when we use the word “color,” and therefore the
component users will want control over, we can rule it out as the component
that we should hold constant. However, deciding between keeping satura-
tion or lightness constant is a little more difficult. If we keep saturation
constant, the palette could very easily become divergent as the line plunges
into the darker or lighter end of the space. If we keep lightness constant,
the resulting color palette is a little more consistent. This is the option we
ultimately settled on. Our transformation consists of hue along the x-axis
and saturation on the y-axis. When the user selects a color, we use the
lightness value of the starter color selected by the user.

Drawing a straight line in the space is done by using the starting color
as the start point and randomly selecting a second color to serve as the
end point. We define a couple heuristics to ensure that the line is ideal
for deriving a good color palette. Specifically, we want to ensure the line
spans across enough hues. If the line is too short, we might only sample red
and yellow colors, for example. We enforce a restriction by calculating the
distance between the two points and limiting it to a length of at least 180
units. In the same vein, we don’t want a line that is too vertical because then
we would sample colors with the same hue at various levels of saturation.
To account for this we restrict the slope to being within the range of -1 and
1. For some colors this restriction may be a little conservative, however the
results are still varied enough that this is not too much of a problem.

With two points on a line, we can use simple algebra to determine colors
equidistant along the line. In theory we could find any number of equidistant
points along this line, but after a certain point the colors become too similar.
Their relationship to one another becomes more obvious as the sample begins
to resemble a gradient between the two endpoints. Five points might be the
maximum number of colors we can generate and still have variety, especially
given the number of restrictions we have already placed on the kinds of
palettes we can generate. Fortunately, for our case, that is all we need.

16

Chapter 4

Methodology

With Colormoo, our goal is to determine which, if any, of the algorithms
produces the most favorable results. This chapter outlines the technology
used in creating the web application and the data that was collected to
justify our results.

4.1 Technology

The logic behind the palette generation is a single Python file that imple-
ments the algorithms described in Chapter 3. This file can be viewed in
Appendix A. This file primarily utilizes Grapefruit, a Python library for
performing basic color conversions between color spaces. Grapefruit was
also used to calculate the hue templates for the theory palette and mix the
colors used in the random palette.

Initial experimentation was done locally using the Pygame gaming frame-
work. The first prototypes supported a command line interface for selecting
colors whose corresponding palettes would be generated in the Pygame in-
stance. It was in this stage of development that the heuristics for each
palette were refined. An example of this prototyping environment can be
seen in Figure 3.3.

With the logic written, we worked to bring the functionality online in or-
der to test it with more users than we could locally. By publishing Colormoo
online, we also hoped to create a tool that users could refer to later as part
of their design workflow. This was done with a combination of the Django
Python web framework and Heroku, a platform for web applications. We
chose Django to avoid porting the logic to another language like Javascript.
Django is also very well documented and tightly integrated with Heroku.

17

Heroku was chosen because it abstracts the complicated process of deploy-
ing an application on a remote server. This made it relatively easy to setup
a development environment with the correct dependencies and enabled us
to quickly push new changes to the site as necessary.

The frontend of Colormoo was implemented with Django’s templating
system, with standard HTML and CSS. The Zurb Foundation front-end
framework is lightly utilized for creating the layout and improving the overall
aesthetics of the interface. Most of the interactivity of the site is afforded
by JQuery and Javascript. In particular, the color selecting interface is
a JQuery plugin offered by Virtualsoft [Vir14]. This plugin was chosen
because it offers both the color sliders and the color specification interfaces
for selecting a color. It is also very customizable, which in our case allowed
us to change the appearance to fit with the rest of the site.

We set up a Postgres database on Heroku to collect data on palette
preference. From the site we use Django’s database API to push data to the
server. This is essentially a Python wrapper for the Postgres commands.
We record each palette selection with a JQuery post request to an empty
Django view. This view processes the request and pushes necessary figures
to the database.

4.2 Data Collection

Upon visiting the site, users are instructed to select their favorite of three
palettes generated from the starting color of their choice. Data is collected
on both the palette they select (theory, random, or equidistant) and the
color they used to generate that palette.

Our data is stored in two tables. The first is the choices table. It has a
row for each of the three theme generating algorithms. It has three columns,
the palette id, the palette’s name, and a count for the number of times that
the palette is selected. The second table is where we store the starting
colors. We write to this table when the user has selected their favorite
palette. Therefore, the number of rows is representative of the number of
times the site was used effectively. It contains five columns: an id, the
corresponding palette’s id, and the associated hue, saturation, and lightness
values of the color. We use this information to understand the relationship
between the color and the selected palette. It is worth noting that we do
not collect any data on unique visits to our site, therefore our data is only
representative of the number of times that our site was used.

18

4.2.1 Users

Colormoo was shared on a number of websites where people might be inter-
ested in generating color palettes. We attribute most visits to the Hacker
News (www.news.ycombinator.com) and Designer News (www.news.layervault.com)
communities. These are forums where professional web developers and de-
signers share techniques and offer insight into their workflow. For this rea-
son, we believe our users are primarily concerned with the usefulness of
colors as they relate to user interface and visual design. They may not be
color experts, but we expect that they are approaching this problem with
an experienced eye.

4.2.2 Postprocessing

The data required some postprocessing before we could begin analysis. Ev-
ery time the app is loaded, the starting color is initially set to a pink color.
To account for this oversight, we had to toss much of the data that included
these initial component values. We also had to clean the data where it ap-
peared that users were testing the capabilities of the application. This was
made evident by duplicate rows of data in which the only difference was a
single column value. This anomaly can be attributed to the lack of context
that is provided for the application on the forums where it was published.
Users may have repeatedly generated the same results to determine how to
use the site. It could also be that users liked more than one of the palettes
and wanted the color specifications for both. Unfortunately, with the current
implementation, there is no other way to support this kind of behavior. To
account for this potentially extraneous data, we only take the first instance
of the repeated trials.

19

20

Chapter 5

Results

Colormoo was published online where it experienced traction as a result of
being posted in two design-focused forums. In total, the app was used 1875
times. From the data collected in those sessions we are able to make conclu-
sions about user color palette preference. Contrary to our initial hypothesis,
there was no algorithm that was a clear favorite. Instead, users seemed to
prefer both the theory and random palettes equally. The theory palette was
chosen 663 times with the random palette close behind at 660. The equidis-
tant palette was the least popular with a total of 552 votes. With such a
close tie between the theory and random palettes, it makes sense to look at
the different circumstances under which each palette was chosen.

5.1 Results by Component

5.1.1 Hue

There does not seem to be any correlation with the hue of a color and
whether or not users preferred a particular palette. As we see in Figure 5.1,
each palette is appropriately represented across all the hues that were gen-
erated on the site. On the one hand, this is a characteristic that we would
like to have present in a good theme generating algorithm. If there is a
situation in which hue is the only property we care about, any one of the
three algorithms would be a good choice. On the other hand, this result
prevents us from crafting an optimal algorithm that uses one technique for
one range of hues and another technique for the remaining range.

While we can’t speak to palette preference, this data does offer inter-
esting insight into hue preference. In aggregate, the most popular hues sit
in the 180-220 range, which represent blue colors. There is a large spike

21

Figure 5.1: While there is no correlation between hue and a specific color
palette, we can observe user preference for red and blue colors.

around pure red at 0 degrees, but this could also be attributed to red being
located at the end of the slider. However, these results are consistent with
previous studies of color preference that found a general preference for reds
and blues [OAH11]. The least popular colors sit above 252 degrees. These
represent violet and magenta respectively.

5.1.2 Saturation

When we look at the saturation of the starting colors selected by the user
(Figure 5.2), we see more variation across the different palettes than we see
with hue. In particular, as the starting color becomes more saturated, users
tend to prefer the theory palette. This is most noticeable with levels of
saturation above 70%. However as the starting color becomes less saturated
the random palette becomes more popular. These two observations hold true
especially for the most extreme values of saturation. When the starting color
has 0% saturation, there is an overwhelming support for the random palette.
Likewise, when the starting color has 100% saturation the theory palette is
very clearly the favorite.

5.1.3 Lightness

Similar to saturation, there is more of a preference for one palette over the
other for different values of lightness (Figure 5.3). With a lighter starting
color, users preferred the theory palette. With the exception of the lightest
colors in the 88-100% range, the theory palette was preferred for every color

22

Figure 5.2: The theory palette is more popular with highly saturated colors.

above a 48% lightness value. Everything below that point was favored by
the random palette.

5.2 Discussion

Intuitively it makes sense that for more saturated colors, users prefer the
theory palette and for less saturated colors prefer the random palette. Sat-
uration is essentially a measure of how dull or intense a color appears. In
other words, saturation is the amount of color present in a particular color.
When there is a lot of color present, it makes sense that users would recog-
nize theoretical color relationships and prefer the palette that best utilizes
that color intensity. When there is very little color present, users might
appreciate the additional intensity afforded by a random set of colors.

The lightness results are a little more surprising. When users select
a light starting color, the results imply that they are trying to produce a
lighter color palette, such as the one generated using color theory. In this
case the result is usually a pastel palette. However, when users select a dark
color, the data suggests they are not trying to create a dark palette. Instead,
as with less saturated colors, they choose the random palette which tends
to be a brighter and more vibrant. Previous studies found a preference for
brighter palettes [OAH11]. Our data supports these findings.

These two results indicate that the preferred palette does not contain
colors that are too similar. A desaturated color will generate a desaturated
theory palette. The palette appears muted because its colors are not visually
distinct. The same effect can be observed with a dark starting color. The

23

Figure 5.3: The theory palette is more popular with lighter colors while the
random palette is preferred for darker colors.

random palette is a reasonable choice in these cases because it is the only
algorithm that generates a palette with more variety. O’Donovan et al.
found that palettes were more highly rated when they contained colors that
weren’t too distinct [OAH11]. If this is true, our data would suggest that
the ideal palette is neither too distinct nor too similar.

We attribute most of our data to two web development and design com-
munities online. We reasonably conclude that these findings are representa-
tive of the palettes most useful individuals of these professions. The value in
a tool like Colormoo is that it defines a set of colors that can be used with a
base color. Oftentimes designers work with clients that designate the use of
a color or colors that are unique to their brand. Our data can offer guidance
for successful use of those colors. For example, if a mandated color is a dark
color, our data suggests incorporating brighter colors. Alternatively, if the
mandated color is highly saturated, it might be safer to use a hue template
rather than eye-balling it with an unrelated color.

24

Chapter 6

Future Work

There are several ways in which Colormoo can be improved. There are also
different avenues in which these concepts can be applied outside the context
of graphic design.

6.1 Refinement

Gregor Aisch actually advises against using equidistant colors with the HSL
color space [Ais11]. The problem is that, though the colors are mathemati-
cally the same distance from each other when plotted out in the transformed
color space, the colors may not necessarily be perceived to be equidistant by
the human eye. In some cases the jump from one color to the next may seem
larger than the subsequent jump. Aisch recommends using a more percep-
tually uniform color space like CIE LAB. While we experimented with it,
this approach was omitted from Colormoo because CIE LAB contains gaps
to account for the intricacies of human vision. It was difficult to develop a
good set of heuristics and account for these gaps such that we could consis-
tently offer a fourth palette. Future work might explore this concept a bit
further. Perhaps the equidistant palette performed the worst because of the
minor perceptual inconsistencies associated with HSL.

With the initial data on palette preference for different color values, we
can further explore how adding heuristics might improve the experience. It
might also help to consider the different ways in which these palettes are
used. For example, in design work, it is not very often that each color
is used the same amount. To generate a more useful palette, it might be
worth exploring a way to determine which colors in the palette should be
the principal colors and which colors should be secondary or only used as

25

accents.

6.2 Industry Application

A popular feature in hardware e-commerce is to allow the consumer to cus-
tomize their product with the colors of their choice. With the growing
production capabilities and increasing interest in 3D printing, it is not in-
conceivable that manufacturers will soon be able to produce a product in
any color. While vendors want to leverage the utility that consumers de-
rive from this feature, they do not necessarily want to allow consumers to
choose any color that they want. Doing so has the potential to damage the
brand. Instead, they might allow users to select one color for customization
purposes and then make recommendations for additional colors that could
also be used. As this trend becomes more widely accepted, the problem of
finding compatible colors will become more of a concern and there will be a
demand for algorithms similar to those used throughout this project.

26

Chapter 7

Conclusion

There are many ways to derive a set of colors that are compatible with one
another. Color experts across a variety of professions each have their own
solutions to this problem. We wanted to measure the circumstances under
which each technique was most successful.

We built Colormoo to evaluate three algorithms for generating color
palettes based off of a starting color. We found that the palette based on
color theory was most popular with highly saturated and light colors. When
the starting color is less saturated or dark, users prefer the random palette.
This may be because it produces palettes with more visually distinct colors.
Designers can take advantage of these findings by ensuring that their work
incorporates colors that are compatible, but not too similar.

We also note a general preference for red and blue colors as they were the
ones most frequently input as the starting color. More extensive research
needs to be done to determine how this might fit into a solution to the
problem of generating color palettes.

Our work provides a starting point for future exploration of the topic.
We believe that with refined heuristics and a better understanding of the
way humans perceive color, these algorithms can be improved and extended
such that they can be applied beyond the field of graphic design.

27

28

Appendix A

Selected Source Code

Included here is the main python file for generating the three color palettes
used on Colormoo. The only dependency is the python Grapefruit color
conversion library. This code is provided ”as is” without warranties or con-
ditions of any kind.

import sys

import random

import grapefruit

import pdb

import ast

import math

random.seed(542)

color1 = grapefruit.Color.NewFromHsl(30, 1, .5)

def generateRandomColor(mix):

""" Averages the RGB values of a random color and the input to

effectively ’mix’ the two colors

"""

red = random.uniform(0,255)

green = random.uniform(0,255)

blue = random.uniform(0,255)

red = (red + mix.rgb[0]) / 2

green = (green + mix.rgb[1]) / 2

blue = (blue + mix.rgb[2]) / 2

29

newColor = grapefruit.Color.NewFromRgb(red, green, blue)

return newColor

def RGBconvertToHTML(color):

""" Takes a grapefruit color in RGB and converts it to HTML"""

r = color.rgb[0] / 255

g = color.rgb[1] / 255

b = color.rgb[2] / 255

return grapefruit.Color.RgbToHtml(r,g,b)

def averaged(myColor):

create dictionary of colors

d = {}

d["one"] = RGBconvertToHTML(generateRandomColor(myColor))

d["two"] = RGBconvertToHTML(generateRandomColor(myColor))

d["three"] = RGBconvertToHTML(generateRandomColor(myColor))

d["four"] = RGBconvertToHTML(generateRandomColor(myColor))

d["five"] = RGBconvertToHTML(generateRandomColor(myColor))

return d

def generateBlendedColor(myColor):

red = random.uniform(0,255)

green = random.uniform(0,255)

blue = random.uniform(0,255)

randomColor = grapefruit.Color.NewFromRgb(red, green, blue)

newColor = myColor.Blend(randomColor, 0.1)

return newColor

def blended(myColor):

create dictionary of colors

d = {}

d["one"] = RGBconvertToHTML(generateBlendedColor(myColor))

d["two"] = RGBconvertToHTML(generateBlendedColor(myColor))

d["three"] = RGBconvertToHTML(generateBlendedColor(myColor))

d["four"] = RGBconvertToHTML(generateBlendedColor(myColor))

d["five"] = RGBconvertToHTML(generateBlendedColor(myColor))

return d

def theory(myColor, myMode=’rgb’):

30

a1, a2 = myColor.AnalogousScheme(angle=30, mode=myMode)

t1, t2 = myColor.TriadicScheme(angle=120, mode=myMode)

c = myColor.ComplementaryColor(mode=myMode)

create dictionary of colors

d = {}

d["one"] = a1.html

d["two"] = a2.html

d["three"] = t1.html

d["four"] = t2.html

d["five"] = c.html

return d

def blendedTheory(myColor, myMode=’rgb’):

a1, a2 = myColor.AnalogousScheme(angle=30, mode=myMode)

t1, t2 = myColor.TriadicScheme(angle=120, mode=myMode)

c = myColor.ComplementaryColor(mode=myMode)

a1b = myColor.Blend(a1, 0.07)

a2b = myColor.Blend(a2, 0.07)

t1b = myColor.Blend(t1, 0.07)

t2b = myColor.Blend(t2, 0.07)

cb = myColor.Blend(c, 0.07)

create dictionary of colors

d = {}

d["one"] = a1b.html

d["two"] = a2b.html

d["three"] = t1b.html

d["four"] = t2b.html

d["five"] = cb.html

return d

##

HSL COLOR SPACE CODE

##

360/250 = 1.44

hue = [x*1.44 for x in range(250)]

sat = [x*0.4 for x in range(250)]

31

def distance(x0,y0,x1,y1):

return math.sqrt((float(x1-x0)**2) + ((y1-y0)**2))

def slope(x0,y0,x1,y1):

if (x1-x0) == 0: return float("inf")

return float(y1-y0)/(x1-x0)

def midpoint(x0,y0,x1,y1):

return (x0+x1)/2, (y0+y1)/2

def newRandomColor(mix):

""" Generates a new color with the lightness of the input color

"""

h,s,l = mix.hsl

hue = random.uniform(0,360)

sat = random.random()

lineColor = grapefruit.Color.NewFromHsl(hue, sat, l)

return lineColor

def validColor(original, chosen):

""" Returns true if the chosen color meets the distance and slope requirements

relative to the original color

"""

oh, os, ol = original.hsl

ch, cs, cl = chosen.hsl

dist = distance(oh, os, ch, cs)

m = slope(oh, os, ch, cs)

if dist >= 180:

if -1 < m < 1: return True

else: return False

else: return False

def genNewColor(myColor):

""" Returns a valid random color relative to the input color

"""

lineColor = newRandomColor(myColor)

while not (validColor(myColor, lineColor)):

lineColor = newRandomColor(myColor)

32

return lineColor

def fiveColors(myColor):

endColor = genNewColor(myColor)

oh, os, ol = myColor.hsl

ch, cs, cl = endColor.hsl

find the midpoint color

midHue, midSat = midpoint(oh, os, ch, cs)

middleColor = grapefruit.Color.NewFromHsl(midHue, midSat, ol)

find the second color (midpoint of first and the newly generated midpoint)

sndHue, sndSat = midpoint(oh, os, midHue, midSat)

sndColor = grapefruit.Color.NewFromHsl(sndHue, sndSat, ol)

find the fourth color

frthHue, frthSat = midpoint(midHue, midSat, ch, cs)

frthColor = grapefruit.Color.NewFromHsl(frthHue, frthSat, ol)

create dictionary of colors

d = {}

d["one"] = myColor.html

d["two"] = sndColor.html

d["three"] = middleColor.html

d["four"] = frthColor.html

d["five"] = endColor.html

return d

def generate(hue, sat, light):

myColor = grapefruit.Color.NewFromHsl(hue, sat, light)

d = {}

d["original"] = myColor.html

d["averaged"] = averaged(myColor)

d["blended"] = blended(myColor)

d["theory"] = theory(myColor)

d["blendedTheory"] = blendedTheory(myColor)

d["equidistant"] = fiveColors(myColor)

return d

33

34

Bibliography

[Ais11] Gregor Aisch. How to avoid equidistant hsv colors. http://vis4.
net/blog/posts/avoid-equidistant-hsv-colors/, 2011.

[Col12] Tiger Color. Color harmonies. http://www.tigercolor.com/

color-lab/color-theory/color-harmonies.htm, 2012.

[HB03] Mark Harrower and Cynthia A. Brewer. Colorbrewer.org: An
online tool for selecting colour schemes for maps. Cartographic
Journal, 40(1):27 – 37, 2003.

[HLT09] Y-C. Hu, M-G. Lee, and P. Tsai. Colour palette generation
schemes for colour image quantization. Imaging Science Journal,
57(1):46 – 59, 2009.

[Inc00] Adobe Systems Incorporated. Color models: Cielab. http://dba.
med.sc.edu/price/irf/Adobe_tg/models/cielab.html, 2000.

[Jac13] Mathieu Jacomy. I want hue. http://tools.medialab.

sciences-po.fr/iwanthue/theory.php, 2013.

[Mac09] Bruce MacEvoy. The geometry of color perception. http://www.
handprint.com/HP/WCL/color2.html, 2009.

[OAH11] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann.
Color compatibility from large datasets. ACM Trans. Graph.,
30(4):63:1–63:12, July 2011.

[Sch11] Erica Schoonmaker. My secret for color schemes. https://

dribbble.com/shots/166246-My-Secret-for-Color-Schemes,
2011.

[Vir14] Virtuosoft. jquery color picker sliders. http://www.virtuosoft.
eu/code/jquery-colorpickersliders/, 2014.

35

	Claremont Colleges
	Scholarship @ Claremont
	2014

	Colormoo: An Algorithmic Approach to Generating Color Palettes
	Joshua Rael
	Recommended Citation

