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Abstract
Network Attached Storage (NAS) and Virtual Ma-

chines (VMs) are widely used in data centers thanks
to their manageability, scalability, and ability to con-
solidate resources. But the shift from physical to vir-
tual clients drastically changes the I/O workloads seen
on NAS servers, due to guest file system encapsula-
tion in virtual disk images and the multiplexing of re-
quest streams from different VMs. Unfortunately, cur-
rent NAS workload generators and benchmarks produce
workloads typical to physical machines.

This paper makes two contributions. First, we studied
the extent to which virtualization is changing existing
NAS workloads. We observed significant changes, in-
cluding the disappearance of file system meta-data op-
erations at the NAS layer, changed I/O sizes, and in-
creased randomness. Second, we created a set of ver-
satile NAS benchmarks to synthesize virtualized work-
loads. This allows us to generate accurate virtualized
workloads without the effort and limitations associated
with setting up a full virtualized environment. Our ex-
periments demonstrate that the relative error of our virtu-
alized benchmarks, evaluated across 11 parameters, av-
erages less than 10%.

1 Introduction
By the end of 2012 almost half of all applications run-
ning on x86 servers will be virtualized; in 2014 this
number is projected to be close to 70% [8,9]. Virtualiza-
tion, if applied properly, can significantly improve sys-
tem utilization, reduce management costs, and increase
system reliability and scalability. With all the benefits
of virtualization, managing the growth and scalability of
storage is emerging as a major challenge.

In recent years, growth in network-based storage has
outpaced that of direct-attached disks; by 2014 more
than 90% of enterprise storage capacity is expected to be
served by Network Attached Storage (NAS) and Storage
Area Networks (SAN) [50]. Network-based storage can
improve availability and scalability by providing shared
access to large amounts of data. Within the network-
based storage market, NAS capacity is predicted to in-
crease at an annual growth rate of 60%, as compared to
only 22% for SAN [43]. This faster NAS growth is ex-
plained in part by its lower cost and its convenient file
system interface, which is richer, easier to manage, and
more flexible than the block-level SAN interface.

The rapid expansion of virtualization and NAS has
lead to explosive growth in the number of virtual disk

images being stored on NAS servers. Encapsulating file
systems in virtual disk image files simplifies the imple-
mentation of features such as migration, cloning, and
snapshotting, since they naturally map to existing NAS
functions. In addition, non-virtualized hosts can co-exist
peacefully with virtualized ones that use the same NAS
interface, which permits a gradual migration of services
from physical to virtual machines.

Storage performance plays a crucial role when ad-
ministrators select the best NAS for their environment.
One traditional way to evaluate NAS performance is to
run a file system benchmark, such as SPECsfs2008 [38].
Vendors periodically submit the results of SPECsfs2008
to SPEC; the most recent submission was in Novem-
ber 2012. Because widely publicized benchmarks such
as SPECsfs2008 figure so prominently in configuration
and purchase decisions, it is essential to ensure that the
workloads they generate represent what is observed in
real-world data centers.

This paper makes two contributions: an analysis of
changing virtualized NAS workloads, and the design and
implementation of a system to generate realistic virtu-
alized NAS workloads. We first demonstrate that the
workloads generated by many current file system bench-
marks do not represent the actual workloads produced by
VMs. This in turn leads to a situation where the perfor-
mance results of a benchmark deviate significantly from
the performance observed in real-world deployments.
Although benchmarks are never perfect models of real
workloads, the introduction of VMs has exacerbated the
problem significantly. Consider just one example, the
percentage of data and meta-data operations generated
by physical and virtualized clients. Table 1 presents the
results for the SPECsfs2008 and Filebench web-server
benchmarks that attempt to provide a “realistic” mix of
meta-data and data operations. We see that meta-data
procedures, which dominated in physical workloads, are
almost non-existent when VMs are utilized. The reason
is that VMs store their guest file system inside large disk
image files. Consequently, all meta-data operations (and

NFS Physical clients Virtualized
procedures (SPECsfs2008/Filebench) clients
Data 28% / 36% 99%
Meta-data 72% / 64% <1%

Table 1: The striking differences between virtualized and
physical workloads for two benchmarks: SPECsfs2008 and
Filebench (Web-server profile). Data operations include READ
and WRITE. All other operations (e.g., CREATE, GETATTR,
READDIR) are characterized as meta-data.
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indeed all data operations) from the applications are con-
verted into simple reads and writes to the image file.

Meta-data-to-data conversion is just one example of
the way workloads shift when virtual machines are in-
troduced. In this paper we examine, by collecting
and analyzing a set of I/O traces generated by current
benchmarks, how NAS workloads change when used
in virtualized environments. We then leverage multi-
dimensional trace analysis techniques to convert these
traces to benchmarks [13, 40]. Our new virtual bench-
marks are flexible and configurable, and support single-
and multi-VM workloads. With multi-VM workloads,
the emulated VMs can all run the same or different ap-
plication workloads (a common consequence of resource
consolidation). Further, users do not need to go through
a complex deployment process, such as hypervisor setup
and per-VM OS and application installation, but can in-
stead just run our benchmarks. This is useful because
administrators typically do not have access to the pro-
duction environment when evaluating new or existing
NAS servers for prospective virtualized clients. Finally,
some benchmarks such as SPECsfs cannot be usefully
run inside a VM because they do not support file-level
interfaces and will continue to generate a physical work-
load to the NAS server; this means that new benchmarks
can be the only viable evaluation option. Our bench-
marks are capable of simulating a high load (i.e., many
VMs) using only modest resources. Our experiments
demonstrate that the accuracy of our benchmarks re-
mains within 10% across 11 important parameters.

2 Background
In this section, we present several common data ac-
cess methods for virtualized applications, describe in
depth the changes in the virtualized NAS I/O stack (VM-
NAS), and then explain the challenges in benchmarking
NAS systems in virtualized environments.

2.1 Data Access Options for VMs
Many applications are designed to access data using a
conventional POSIX file system interface. The methods
that are currently used to provide this type of access in a
VM can be classified into two categories: (1) emulated
block devices (typically managed in the guest by a local
file system); and (2) guest network file system clients.

Figure 1 illustrates both approaches. With an emu-
lated block device, the hypervisor emulates an I/O con-
troller with a connected disk drive. Emulation is com-
pletely transparent to the guest OS, and the virtual I/O
controller and disk drives appear as physical devices to
the OS. The guest OS typically formats the disk drive
with a local file system or uses it as a raw block device.
When an emulated block device is backed by file-based
storage, we call the backing files disk image files.

Emulated

Disk

Disk image file on NAS

VM

Guest OS

Local On−disk 
File System File System

1a

1c

1d

2

Hypervisor

1b

Files on NAS

in this paper
Case analyzed

Disk image file on DAS

Disk image file on SAN

Pass−through to DAS or SANI/O Controller

Emulated

Driver for
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Network−based

Figure 1: VM data-access methods. Cases 1a–1d correspond
to the emulated-block-device architecture. Case 2 corresponds
to the use of guest network file system clients.

2.1.1 Emulated Block Devices
Figure 1 shows several options for implementing the
back end of an emulated block device:
1a. A file located on a local file system that is deployed
on Direct Attached Storage (DAS). This approach is
used, for example, by home and office installations of
VMware Workstation [39] or Oracle VirtualBox [44].
Such systems often keep their disk images on local file
systems (e.g., Ext3, NTFS). Although this architecture
works for small deployments, it is rarely used in large
enterprises where scalability, manageability, and high
availability are critical.
1b. A disk image file is stored on a (possibly clus-
tered) file system deployed over a Storage Area Network
(SAN) (e.g., VMware’s VMFS file system [46]). A SAN
offers low-latency shared access to the available block
devices, which allows high-performance clustered file
systems to be deployed on top of the SAN. This archi-
tecture simplifies VM migration and offers higher scal-
ability than DAS, but SAN hardware is more expensive
and complex to administer.
1c. A disk image file stored on Network Attached Stor-
age (NAS). In this architecture, which we call VM-NAS,
the host’s hypervisor passes I/O requests from the virtual
machine to an NFS or SMB client, which in turn then ac-
cesses a disk image file stored on an external file server.
The hypervisor is completely unaware of the storage ar-
chitecture behind the NAS interface. NAS provides the
scalability, reliability, and data mobility needed for ef-
ficient VM management. Typically, NAS solutions are
cheaper than SANs due to their use of IP networks, and
are simpler to configure and manage. These properties
have increased the use of NAS in virtual environments
and encouraged several companies to create solutions for
disk image files management at the NAS [6, 36, 41].
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Figure 2: VM-NAS I/O Stack: VMs access and store virtual
disk images on NAS.

1d. Pass-through to DAS or SAN. In this case, vir-
tual disks are backed up by a real block device (not a
file), which can be on a SAN or DAS. This approach is
less flexible than disk image files, but can offer lower
overhead because one level of indirection—the host file
system—is eliminated.

2.1.2 Network Clients in the Guest
The other approach for providing storage to a virtual ma-
chine is to let a network-based file system (e.g., NFS)
provide access to the data directly from the guest (case
2 in Figure 1). This model avoids the need for disk im-
age files, so no block-device emulation is needed. This
eliminates emulation overheads, but lacks many of the
benefits associated with virtualization, such as consistent
snapshots, thin provisioning, cloning, disaster recovery.
Also, not every guest OS supports every NAS protocol,
which fetters the ability of a hypervisor and its storage
system to support all guest OS types. Further, cloud
management architectures such as VMware’s vCloud
and OpenStack do not support this design [32, 42].

2.2 VM-NAS I/O Stack
In this paper we focus on the VM-NAS architecture,
where VM disks are emulated by disk image files stored
on NAS (case 1c in Section 2.1.1 and in Figure 1). To the
best of our knowledge, even though this architecture is
becoming popular in virtual data centers [43, 50], there
has been no study of the significant transformations in
typical NAS I/O workloads caused by server virtualiza-
tion. This paper is a first step towards a better under-
standing of NAS workloads in virtualized environments
and the development of suitable benchmarks for NAS to
be used in industry and academia.

When VMs and NAS are used together, the corre-

sponding I/O stack becomes deeper and more complex,
as seen in Figure 2. As they pass through the layers, I/O
requests significantly change their properties. At the top
of the stack, applications access data using system calls
such as create, read, write, and unlink. These sys-
tem calls invoke the underlying guest file system, which
in turn converts application calls into I/O requests to the
block layer. The file system maintains data and meta-
data layouts, manages concurrent accesses, and often
caches and prefetches data to improve application per-
formance. All of these features change the pattern of
application requests.

The guest OS’s block layer receives requests from the
file system and reorders and merges them to increase
performance, provide process fairness, and prioritize re-
quests. The I/O controller driver, located beneath the
generic block layer, imposes extra limitations on the re-
quests in accordance with the virtual device’s capabili-
ties (e.g., trims requests to the maximum supported size
and limits the NCQ queue length [51]).

After that, requests cross the software-hardware
boundary for the first time (here, the hardware is emu-
lated). The hypervisor’s emulated controller translates
the guest’s block-layer requests into reads and writes
to the corresponding disk image files. Various request
transformations can be done by the hypervisor to op-
timize performance and provide fair access to the data
from multiple VMs [18].

The hypervisor contains its own network file system
client (e.g., NFS), which can cache data, limit read and
write sizes, and perform other request transformations.
In this paper we focus on NFSv3 because it is one of the
most widely used protocols. However, our methodology
is easily extensible to SMB or NFSv4, and we plan to
perform expanded studies in the future. In the case of
NFSv3, both the client and the server can limit read- and
write-transfer sizes and modify write-synchronization
properties. Because the hypervisor and its NFS client
significantly change I/O requests, it is not sufficient to
collect data at the block layer of the guest OS; we col-
lect our traces at the entrance to the NFS server.

After the request is sent over a network to the NAS
server, the same layers that appear in the guest OS are
repeated in the server. By this time, however, the origi-
nal requests have already undergone significant changes
performed by the upper layers, so the optimizations ap-
plied by similar layers at the server can be consider-
ably different. Moreover, many NAS servers (e.g., Ne-
tApp [20]) run a proprietary OS that uses specialized
request-handling algorithms, additionally complicating
the overall system behavior. This complex behavior has
a direct effect on measurement techniques, as we discuss
next in Section 2.3.
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Figure 3: Physical and Virtualized NAS architectures. With physical clients, applications use a NAS client to access the NAS
appliance directly. With virtualized clients, applications access the NAS appliance via a virtualized block device.

2.3 VM-NAS Benchmarking Setup
Regular file system benchmarks usually operate at the
application layer and generate workloads typical to one
or a set of applications (Figure 2). In non-virtualized
deployments these benchmarks can be used without
any changes to evaluate the performance of a NAS
server, simply by running the benchmark on a NAS
client. In virtualized deployments, however, I/O re-
quests can change significantly before reaching the NAS
server due to the deep and diverse I/O stack described
above. Therefore, benchmarking these environments is
not straightforward.

One approach to benchmarking in a VM-NAS setup is
to deploy the entire virtualization infrastructure and then
run regular file system benchmarks inside the VMs. In
this case, requests submitted by application-level bench-
marks will naturally undergo the appropriate changes
while passing through the virtualized I/O stack. How-
ever, this method requires a cumbersome setup of hyper-
visors, VMs, and applications. Every change to the test
configuration, such as an increase in the number of VMs
or a change of a guest OS, requires a significant amount
of work. Moreover, the approach limits evaluation to the
available test hardware, which may not be sufficient to
run hypervisors with the hundreds of VMs that may be
required to exercise the limits of the NAS server.

To avoid these limitations and regain the flexibility
of standard benchmarks, we have created virtualized
benchmarks by extracting the workload characteristics
after the requests from the original physical benchmarks
have passed though the virtualization and NFS layers.
The generated benchmarks can then run directly against
the NAS server without having to deploy a complex in-
frastructure. Therefore, the benchmarking procedure re-
mains the same as before—easy, flexible, and accessible.

One approach to generating virtualized benchmarks
would be to emulate the changes applied to each request

as it goes down the layers. However, doing so would
require a thorough study of the request-handling logic
in the guest OSes and hypervisors, with further verifi-
cation through multi-layer trace collection. Although
this approach might be feasible, it is time-consuming,
especially because it must be repeated for many dif-
ferent OSes and hypervisors. Therefore, in this paper
we chose to study the workload characteristics at a sin-
gle layer, namely where requests enter the NAS server.
We collected traces at this layer and then characterized
selected workload properties. The information from a
single layer is enough to create the corresponding NAS
benchmarks by reproducing the extracted workload fea-
tures. Workload characterization and the benchmarks
that we create are tightly coupled with the configuration
of the upper layers: application, guest OS, local file sys-
tem, and hypervisor. In the future, we plan to perform a
sensitivity analysis of I/O stack configurations to deduce
the parameters that account for the greatest changes to
the I/O workload.

3 NAS Workload Changes
In this section we detail seven categories of NAS work-
load changes caused by virtualization. Specifically, we
compare the two cases where a NAS server is accessed
by a (1) physical; or (2) a virtualized client, and describe
the differences in the I/O workload. These changes are
the result of migrating an application from a physical
server, which is configured to use an NFS client for di-
rect data access, to a VM that stores data in a disk im-
age file that the hypervisor accesses from an NFS server.
Figure 3 demonstrates the difference in the two setups,
and Table 2 summarizes the changes we observed in the
I/O workload. The changes are listed from the most no-
ticeable and significant to the least. Here, we discuss
the changes qualitatively; quantitative observations are
presented in Section 4.

First, and unsurprisingly, the number and size of files

4
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# Workload Property Physical NAS Clients Virtual NAS Clients
1 File and directory count Many files and directories Single file per VM

Directory tree depth Often deeply nested directories Shallow and uniform
File size Lean towards many small files Multi-gigabyte sparse disk image files

2 Meta-data operations Many (72% in SPECsfs2008) Almost none
3 I/O synchronization Asynchronous and synchronous All writes are synchronous
4 In-file randomness Workload-dependent Increased randomness due to guest file system encapsula-

tion
Cross-file randomness Workload-dependent Cross-file access replaced by in-file access due to disk im-

age files
5 I/O Sizes Workload-dependent Increased or decreased due to guest file system fragmenta-

tion and I/O stack limitations
6 Read-modify-write Infrequent More frequent due to block layer in guest file system
7 Think time Workload-dependent Increased because of virtualization overheads

Table 2: Summary of key I/O workload changes between Physical and Virtualized NAS architectures.

stored in NAS change from many relatively small files
to a few (usually just one) large file(s) per VM—the
disk image file(s). For example, the default Filebench
file server workload defines 10,000 files with an average
size of 128KB, which are spread over 500 directories.
However, when Filebench is executed in a VM, there
is only one large disk image file. (Disk image files are
usually sized to the space requirements of a particular
application; in our setup the disk image file size was set
to the default 16GB for the Linux VM, and to 50GB
for the Windows VM, because the benchmark we used
in Windows required at least 50GB.) For the same rea-
son, directory depth decreases and becomes fairly con-
sistent: VMware ESX typically has a flat namespace;
each VM has one directory with the disk image files
stored inside it. Back-end file systems used in NAS
are often optimized for common file sizes and direc-
tory depths [2, 30, 31, 34], so this workload change can
significantly affect their performance. For example, to
improve write performance for small files, one popu-
lar technique is to store data in the inode [16], a fea-
ture that would be wasted on virtualized clients. Fur-
ther, disk image files in NAS environments are typically
sparse, with large portions of the files unallocated, i.e.,
the physical file size can be much smaller than its logi-
cal size. In fact, VMware’s vSphere—the main tool for
managing the VMs in VMware-based infrastructures—
supports only the creation of sparse disk images over
NFS. A major implication of this change is that back-
end file systems for NAS can lower their focus on opti-
mizing, for example, file append operations, and instead
focus on improving the performance of block allocation
within a file.

The second change caused by the move to virtualiza-
tion is that all file system meta-data operations become
data operations. For example, with a physical client
there is a one-to-one mapping between file creation and
a CREATE over the wire. However, when the applica-
tion creates a file in a VM, the NAS server receives a

series of writes to a corresponding disk image: one to
a directory block, one to an inode block, and possibly
one or more to data blocks. Similarly, when an applica-
tion accesses files and traverses the directory tree, phys-
ical clients send many LOOKUP procedures to a NAS
server. The same application behavior in a VM pro-
duces a sequence of READs to the disk image. Current
NAS benchmarks generate a high number of meta-data
operations (e.g., 72% for SPECsfs2008), and will bias
the evaluation of a NAS that serves virtualized clients.
While it may appear that removing all meta-data opera-
tions implies that application benchmarks can generally
be replaced with random I/O benchmarks, such as IO-
zone [11], this is insufficient. As shown in Section 5,
the VM-NAS I/O stack generates a range of I/O sizes,
jump distances, and request offsets that cannot be mod-
eled with a simple distribution (uniform or otherwise).

Third, all write requests that come to the NAS server
are synchronous. For NFS, this means that the stable
attribute is set on each and every write, which is typ-
ically not true for physical clients. The block layers
of many OSes expect that when the hardware reports a
write completion, the data has been saved to persistent
storage. Similarly, the NFS protocol’s stable attribute
specifies that the NFS server cannot reply to a WRITE
until the data is persistent. So the hypervisor satisfies the
guest OS’s expectation by always setting this attribute on
WRITE requests. Since many modern NAS servers try
to improve performance by gathering write requests into
larger chunks in RAM, setting the stable attribute invali-
dates this important optimization for virtualized clients.

Fourth, in-file randomness increases significantly
with virtualized clients. On a physical client, access pat-
terns (whether sequential or random) are distinct on a
per-file basis. However, in virtualized clients, both se-
quential and random operations are blended into a single
disk image file. This causes the NAS server to receive
what appears to be many more random reads and writes
to that file. Furthermore, guest file system fragmenta-
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tion increases image file randomness. On the other hand,
cross-file randomness decreases, as each disk image file
is typically accessed by only a single VM; i.e., it can be
easier to predict which files will be accessed next based
on their status, and to differentiate them by how actively
they are used (running VMs, stopped ones, etc.).

Fifth, the I/O sizes of original requests can both de-
crease and increase while passing through the virtualiza-
tion layers. Guest file systems perform reads and writes
in units of their block size, often 4KB. So, when read-
ing a file of, say, 6KB size, the NAS server observes two
4KB reads for a total of 8KB, while a physical client
would request only 6KB (25% less). Since many modern
systems operate with a lot of small files [31], this differ-
ence can have a significant impact on bandwidth. Sim-
ilarly, when reading 2KB of data from two consecutive
data blocks in a file (1KB in each block), the NAS server
may observe two 4KB reads for a total of 8KB (one for
each block), while a physical NAS client may send only
a single 2KB request. A NAS server designed for a vir-
tualized environment could optimize its block-allocation
and fragmentation-prevention strategies to take advan-
tage of this observation.

Interestingly, I/O sizes can also decrease because
guest file systems sometimes split large files into blocks
that might not be adjacent. This is especially true for
aged file systems with higher fragmentation [37]. Con-
sequently, whereas a physical client might pass an ap-
plication’s 1MB read directly to the NAS, a virtualized
client can sometimes submit several smaller reads scat-
tered across the (aged) disk image. An emulated disk
controller driver can also reduce the size of an I/O re-
quest. For example, we observed that the Linux IDE
driver has a maximum I/O size of 128KB, which means
that any application requests larger than this value will
be split into smaller chunks. Note that such workload
changes happen even in a physical machine as requests
flow from a file system to a physical disk. However, in
a VM-NAS setup, the transformed requests hit not a real
disk, but a file on NAS, and as a result the NAS experi-
ences a different workload.

The sixth change is that when an application writes
to part of a block, the guest file system must perform
a read-modify-write (RMW) to first read in valid data
prior to updating and writing it back to the NAS server.
Consequently, virtualized clients often cause RMWs to
appear on the wire [19], requiring two block-sized round
trips for every update. With physical clients, the RMW
is generally performed at the NAS server, avoiding the
need to first send valid data back to the NAS client.

Seventh, the think time between I/O requests can in-
crease due to varying virtualization overhead. It has
been shown that for a single VM and modern hardware,
the overhead of virtualization is small [4]. However, as

Parameter RHEL 6.2 Win 2008 R2 SP1
No. of CPUs 1
Memory 1GB 2GB
Host Controller Paravirtual LSI Logic Parallel
Disk Drive Size 16GB 50GB
Disk Image Format Thick flat VMDK
Guest File System Ext3 NTFS
Guest I/O Scheduler CFQ n/a

Table 3: Virtual Machine configuration parameters.

the number of VMs increases, the contention for compu-
tational resources grows, which can cause a significant
increase in the request inter-arrival times. Longer think
times can prevent a NAS device from filling the underly-
ing hardware I/O queues and achieving peak throughput.

In summary, both static and dynamic properties of
NAS workloads change when virtualized clients are in-
troduced into the infrastructure. The changes are suf-
ficiently significant that direct comparison of certain
workload properties between virtual and physical clients
becomes problematic. For example, cross-file random-
ness has a rather different meaning in the virtual client,
where the number of files is usually one per VM. There-
fore, in the rest of the paper we focus solely on charac-
terizing workloads from virtualized clients, without try-
ing to compare them directly against the physical client
workload. However, where possible, we refer to the
original workload properties.

4 VM-NAS Workload Characterization
In this section we describe our experimental setup and
then present and characterize a set of four different
application-level benchmarks.

4.1 Experimental Configuration
Every layer in the VM-NAS I/O stack can be configured
in several ways: different guest OSes can be installed,
various virtualization solutions can be used, etc. The
way in which the I/O stack is assembled and configured
can significantly change the resulting workload. In the
current work we did not try to evaluate every possible
configuration, but rather selected several representative
setups to demonstrate the utility of our techniques. The
methodology we have developed is simple and accessi-
ble enough to evaluate many other configurations. Ta-
ble 3 presents the key configuration options and param-
eters we used in our experiments. Since our final goal is
to create NAS benchmarks, we only care about the set-
tings of the layers above the NAS server; we treat the
NAS itself as a black box.

We used two physical machines in our experimental
setup. The first acted as a NAS server, while the second
represented a typical virtualized client (see Figure 3).
The hypervisor was installed on a Dell PowerEdge R710
node with an Intel Xeon E5530 2.4GHz 4-core CPU

6
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and 24GB of RAM. We used local disk drives in this
machine for the hypervisor installation—VMware ESXi
5.0.0 build 62386. We used two guest OSes in the vir-
tual setup: Red Hat Enterprise Linux 6.2 (RHEL 6.2)
and Windows 2008 R2 SP1. We stored the OS’s VM
disk images on the local, directly attached disk drives.
We conducted our experiments with a separate virtual
disk in every VM, with the corresponding disk images
being stored on the NAS. We pre-allocated all of the
disk images (thick provisioning) to avoid performance
anomalies across runs related to thin provisioning (e.g.,
delayed block allocations). The RHEL 6.2 distribution
comes with a paravirtualized driver for VMware’s emu-
lated controller, so we used this controller for the Linux
VM. We left the default format and mount options for
guest file systems unchanged.

The machine designated as the NAS server was a Dell
PowerEdge 1800 with six 250GB Maxtor 7L250S0 disk
drives connected through a Dell CERC SATA 1.5/6ch
controller, intended to be used as a storage server in
enterprise environments. It is equipped with an Intel
Xeon 2.80GHz Irwindale single-core CPU and 512MB
of memory. The NAS server consisted of both the Linux
NFS server and IBM’s General Parallel File System
(GPFS) version 3.5 [35]. GPFS is a scalable clustered
file system that enables a scale-out, highly-available
NAS solution and is used in both virtual and non-
virtual environments. Our workload characterization
and benchmark synthesis techniques treat NAS servers
as a black box and are valid regardless of its underly-
ing hardware and software. Since our ultimate goal is
to create benchmarks capable of stressing any NAS, we
did not characterize NAS-specific characteristics such as
request latencies. Our benchmarks, however, let us man-
ually configure the think time. By decreasing think time
(along with increasing the number of VMs), a user can
scale the load to the processing power of a NAS to accu-
rately measure its peak performance.

4.2 Application-Level Benchmarks
In the Linux VM we used Filebench [15] to generate
file system workloads. Filebench can emulate the I/O
patterns of several enterprise applications; we used the
File-, Web-, and Database-server workloads. We scaled
up the datasets of these workloads so that they were
larger than the amount of RAM in the VM (see Table 4).

Because Filebench does not support Windows, in our
Windows VM we used JetStress 2010 [23], a disk-
subsystem benchmark that generates a Microsoft Ex-
change Mail-server workload. It emulates accesses to
the Exchange database by a specific number of users,
with a corresponding number of log file updates. Com-
plete workload configurations (physical and virtualized),
along with all the software we developed as part of this

Workload Dataset size Files R/W/M ratio I/O Size
File-server 2.0GB 20,000 1/2/3 WF
Web-server 1.6GB 100,000 10/1/0 WF
DB-server 2.0GB 10 10/1/0 2KB
Mail-server 24.0GB 120 1/2/0 32KB

Table 4: High-level workload characterization for our bench-
marks. R/W/M is the Read/Write/Modify ratio. WF (Whole-
File) means the workload only reads or writes complete files.
The mail-server workload is based on JetStress, for which
R/W/M ratios and I/O sizes were estimated based on [24].

project are available from https:// avatar.fsl.cs.sunysb.edu/
groups/ t2mpublic/ .

Although SPECsfs is a widely used NAS bench-
mark [38], we could not use it in our evaluation because
it incorporates its own NFS client, which makes it im-
possible to run against a regular POSIX interface. We
hope that the workload analysis and proposed bench-
marks presented in this paper can be used by SPEC for
designing future SPECsfs synthetic workloads.

VMware’s VMmark is a benchmark often associated
with testing VMs [45]. However, this benchmark is de-
signed to evaluate the performance of a hypervisor ma-
chine, not the underlying storage system. For example,
VMmark is sensitive to how fast a hypervisor’s CPU is
and how well it supports virtualization features (such
as AMD-V and Intel VT [1, 22]). However, these de-
tails of hypervisor configuration should not have a large
effect on NAS benchmark results. Although VMmark
also indirectly benchmarks the I/O subsystem, it is hard
to distinguish how much the I/O component contributes
to the overall system performance. Moreover, VMmark
requires the installation of several hypervisors and ad-
ditional software (e.g., Microsoft Exchange) to generate
the load. Our goal is complementary: to design a real-
istic benchmark for the NAS that serves as the backend
storage for a hypervisor like VMware.

Our goal in this project was to transform some of the
already existing benchmarks to their virtualized counter-
parts. As such, we did not replay any real-world traces in
the VMs. Both Filebench and JetStress generate work-
loads whose statistical characteristics remain the same
over time (i.e., stationary workloads). Consequently,
new virtualized benchmarks also exhibit this property.

4.3 Characterization
We executed all benchmarks for 10 minutes (excluding
the preparation phase) and collected NFS traces at the
NAS server. We repeated every run 3 times and verified
the consistency of the results. The traces were collected
using the GPFS mmtrace facility [21] and then converted
to the DataSeries format [5] for efficient analysis.

We developed a set of tools for extracting various
workload characteristics. There is always a nearly infi-
nite number of characteristics that can be extracted from
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Figure 4: Read/Write ratios for different workloads

a trace, but a NAS benchmark needs to reproduce only
those that significantly impact the performance of NAS
servers. Since there is no complete list of workload char-
acteristics that impact NAS, in the future we plan to con-
duct a systematic study of NASes to create such a list.
For this paper, we selected characteristics that clearly
affect most NASes: (1) read/write ratio; (2) I/O size;
(3) jump (seek) distance; and (4) offset popularity.

As we mentioned earlier, the workloads produced
by VMs contain no meta-data operations. Thus, we
only characterize the ratio of data operations—READs
to WRITEs. The jump distance of a request is defined
as the difference in offsets (block addresses) between it
and the immediately preceding request (accounting for
I/O size as well). We do not take the operation type into
account when calculating the jump distance. The off-
set popularity is a histogram of the number of accesses
to each block within the disk image file; we report this
as the number of blocks that were accessed once, twice,
etc. We present the offset popularity and I/O size dis-
tributions on a per-operation basis. Figure 4 depicts the
read/write ratios and Figures 5–8 present I/O size, jump
distance, and offset popularity distributions for all work-
loads. For jump distance we show a CDF because it is
the clearest way to present this parameter.
Read/Write ratio. Read/write ratios vary significantly
across the analyzed workloads. The File-server work-
load generates approximately the same number of reads
and writes, although the original workload had twice
as many writes (Table 4). We attribute this differ-
ence to the high number of meta-data operations (e.g.,
LOOKUPs and STATs) that were translated to reads by
the I/O stack. The Web-server and the Database-server
are read-intensive workloads, which is true for both orig-
inal and virtualized workloads. The corresponding orig-
inal workloads do not contain many meta-data opera-
tions, and therefore the read/write ratio remained un-
changed (unlike the File-server workload). The Mail-
server workload, on the other hand, is write-intensive:
about 70% of all operations are writes, which is close
to the original benchmark where two thirds of all opera-
tions are writes. As with the Web-server and Database-
server workloads, the lack of meta-data operations kept
the read/write ratio unchanged,
I/O size distribution. The I/O sizes for all workloads
vary from 512B to 64KB; the latter limit is imposed by
the RHEL 6.2 NFS server, which sets 64KB as the de-

fault maximum NFS read and write size. All requests
smaller than 4KB correspond to 0 on the bar graphs.
There are few writes smaller than 4KB for the File-
server and Web-server workloads, but for the Database-
and Mail-server (JetStress) workloads the corresponding
percentages are 80% and 40%, respectively. Such small
writes are typical for databases (Microsoft Exchange
emulated by JetStress also uses a database) for two rea-
sons. First, the Database-server workload writes 2KB at
a time using direct I/O. In this case, the OS page cache
is bypassed during write handling, and consequently
the I/O size is not increased to 4KB (the page size)
when it reaches the block layer. The block layer cannot
then merge requests, due to their randomness. Second,
databases often perform operations synchronously by
using the fsync and sync calls. This causes the guest
file system to atomically update its meta-data, which can
only be achieved by writing a single sector (512B) to the
virtual disk drive (and hence over NFS).

For the File-server and Web-server workloads, most
of the writes happen in 4KB and 64KB I/O sizes. The
4KB read size is dominant in all workloads because this
is the guest file system block size. However, many
of the File-server’s reads were merged into larger re-
quests by the I/O scheduler and then later split into 64KB
sizes by the NFS client. This happens because the av-
erage file size for the File-server is 128KB, so whole-
file reads can be merged. For the Web-server work-
load, the average file size is only 16KB, so there are no
64KB reads at all. For the same reason, the Web-server
workload exhibits many reads around 16KB (some files
are slightly smaller, others are slightly larger, in accor-
dance with Filebench’s gamma distribution [47]). In-
terestingly, for the Mail-server workload, many requests
have non-common I/O sizes. (We define an I/O size as
non-common if fewer than 1% of such requests have
such I/O size.) We grouped all non-common I/O sizes
in the bucket called “Rest” in the histogram. This illus-
trates that approximately 15% of all requests have non-
common I/O sizes for the Mail-server workload.

Jump distance. The CDF jump distance distribution
graphs show that many workloads demonstrate a signif-
icant level of sequentiality, which is especially true for
the File-server workload: more than 60% of requests are
sequential. Another 30% of the requests in the File-
server workload represent comparatively short jumps:
less than 2GB, the size of the dataset for this work-
load; these are jumps between different files in the active
dataset. The remaining 10% of the jumps come from
meta-data updates and queries, and are spread across the
entire disk. The Web-server workload exhibits similar
behavior except that the active dataset is larger—about
5–10GB. The cause of this is a larger number of files in
the workload (compared to File-server) and the alloca-
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Figure 5: Characteristics of a virtualized File-server workload.
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Figure 6: Characteristics of a virtualized Web-server workload.
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Figure 7: Characteristics of a virtualized Database-server workload.
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Figure 8: Characteristics of a virtualized Mail-server workload.

tion policy of Ext3 that tries to spread many files across
different block groups.

For the Database-server workload there are almost no
sequential accesses. Over 60% of the jumps are within
2GB because that is the dataset size. Interestingly, about
40% of the requests have fairly long jumps that are
caused by frequent file system synchronization, which
leads to meta-data updates at the beginning of the disk.

In the Mail-server workload approximately 40% of
the requests are sequential, and the rest are spread across
the 50GB disk image file. A slight bend around 24GB
corresponds to the active dataset size. Also, note that the
Mail-server workload uses the NTFS file system, which
uses a different allocation policy than Ext3; this explains
the difference in the shape of the Mail-server curve from
other workloads.
Offset popularity. In all workloads, most of the off-
sets were accessed only once. The absolute numbers on
these graphs depend on the run time, e.g., when one runs
a benchmark longer, then the chance of accessing the
same offset increases. However, the shape of the curve
remains the same as time progresses (although it shifts to
the right). For the Database workload, 40% of all blocks
were updated several thousand times. We attribute this
to the repeated updates of the same file system meta-data

structures due to frequent file system synchronization.
The Mail-server workload demonstrates a high number
of overwrites (about 50%). These overwrites are caused
by Microsoft Exchange overwriting the log file multiple
times. With Mail-server, “R” on the X axes designates
the “Rest” of the values, because there were too many
to list. We therefore grouped all of the values that con-
tributed less than 1% into the R bucket.

5 New NAS Benchmarks
This section describes our methodology for the creation
of new NAS benchmarks for virtualized environments
and then evaluates their accuracy.

5.1 Trace-to-Model Conversion
Our NAS benchmarks generate workloads with charac-
teristics that closely follow the statistical distributions
presented in Section 4.3. We decided not to write a new
benchmarking tool, but rather exploit Filebench’s abil-
ity to express I/O workloads with its Workload Model-
ing Language (WML) [48], which allows one to flex-
ibly define processes and the I/O operations they per-
form. Filebench interprets WML and translates its in-
structions to corresponding POSIX system calls. Our
use of Filebench will facilitate the adoption of our new

9
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virtualized benchmarks: existing Filebench users can
easily run new WML configurations.

We extended the WML language to support two vir-
tualization terms: hypervisor and vm (virtual machine).
We call the extended version WML-V (by analogy with
AMD-V). WML-V is backwards compatible with the
original WML, so users can merge virtualized and non-
virtualized configurations to simultaneously emulate the
workloads generated by both physical and virtual clients.

For each analyzed workload—File-server, Web-
server, Database-server and Mail-server—we created a
corresponding WML-V configuration file. By modify-
ing these files, a user can adjust the workloads to reflect
a desired benchmarking scenario, e.g., defining the num-
ber of VMs and the workloads they run.

Listing 1 presents an abridged example of a WML-V
configuration file that defines a single hypervisor, which
runs 5 Database VMs and 2 Web-server VMs. Flowops
are Filebench’s defined I/O operations, which are
mapped to POSIX calls, such as open, create, read,
write, and delete. In the VM case, we only use read
and write flowops, since meta-data operations do not ap-
pear in the virtualized workloads. For every defined VM,
Filebench will pre-allocate a disk image file of a user-
defined size—16GB in the example listing.

1 HYPERVISOR name="physical-host1" {
2 VM name="dbserver-vm",dsize=16gb,instances=5 {
3 flowop1, ...
4 }
5 VM name="websever-vm",dsize=16gb,instances=2 {
6 flowop1, ...
7 }
8 }

Listing 1: An abridged WML-V workload description that de-
fines 7 VMs: 5 run database workloads and 2 generate Web-
server workloads.

Filebench allows one to define random variables with
desired empirical distributions; various flowop attributes
can then be assigned to these random variables. We used
this ability to define read and write I/O-size distributions
and jump distances. We achieved the required read/write
ratios by putting an appropriate number of read and write
flowops within the VM definition. The generation of
a workload with user-defined jump distances and offset
popularity distributions is a complex problem [28] that
Filebench does not solve; in this work, we do not attempt
to emulate this parameter. However, as we show in the
following section, this does not significantly affect the
accuracy of our benchmarks.

Ideally, we would like Filebench to translate flowops
directly to NFS procedures. However, this would re-
quire us to implement an NFS client within Filebench
(which is an ongoing effort within the Filebench com-
munity). To work around this limitation, we mount NFS
with the sync flag and open the disk image files with
the O DIRECT flag, ensuring that I/O requests bypass

the Linux page cache. These settings also ensure that
(1) no additional read requests are performed to the NFS
server (readahead); (2) that all write requests are imme-
diately sent to the NFS server without modification; and
(3) that replies are returned only after the data is on disk.
This behavior was validated with extensive testing. This
approach works well in this scenario because we do not
need to generate meta-data procedures on the wire; that
would be difficult to achieve using this method because
a 1:1 mapping of meta-data operations does not exist be-
tween system calls and NFS procedures.

Our enhanced Filebench reports aggregate operations
per second for all VMs and individually for each VM.
Operations in the case of virtualized benchmarks are
different from the original non-virtualized equivalent:
our benchmarks report the number of reads and writes
per second; application-level benchmarks, however, re-
port application-level operations (e.g., the number of
HTTP requests serviced by a Web-server). Neverthe-
less, the numbers reported by our benchmarks can be di-
rectly used to compare the performance of different NAS
servers under a configured workload.

None of our original benchmarks, except the database
workload, emulated think time, because our test was de-
signed as an I/O benchmark. For the database bench-
mark we defined think time as originally defined in
Filebench—200,000 loop iterations. Think time in all
workloads can be adjusted by trivial changes to the
workload description.

5.2 Evaluation
To evaluate the accuracy of our benchmarks we observed
how the NAS server responds to the virtualized bench-
marks as compared to the original benchmarks when
executed in a VM. We monitored 11 parameters that
represent the response of a NAS and are easy to ex-
tract through the Linux /proc interface: (1) Reads/sec-
ond from the underlying block device; (2) Writes/sec-
ond; (3) Request latency; (4) I/O utilization; (5) I/O
queue length; (6) Request size; (7) CPU utilization;
(8) Memory usage; (9) Interrupt count; (10) Context-
switch count; and (11) Number of processes in the wait
state. We call these NAS response parameters.

We sampled the response parameters every 30 sec-
onds during a 10-minute run and calculated the relative
difference between each pair of parameters. Figure 9
presents maximum and Root Mean Square (RMS) dif-
ference we observed for four workloads. In these exper-
iments a single VM with an appropriate workload was
used. The maximum relative error of our benchmarks is
always less than 10%, and the RMS distance is within
7% across all parameters. Certain response parameters
show especially high accuracy; for example, the RMS
distance for request size is within 4%. Here, the accu-
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Figure 9: Root Mean Square (RMS) and maximum relative distances of response parameters for all workloads.
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Figure 10: Response parameter errors depending on the number of VMs deployed. The first four VMs (1–4) execute four different
workloads we analyzed. The next four VMs (5–8) are repeated in the same order.

racy is high because our benchmarks directly emulate
I/O size distribution. Errors in CPU and memory utiliza-
tion were less than 5%, because the NAS in our experi-
ments did not perform many CPU-intensive tasks.

Scalability with Multiple Virtual Machines. The
benefit of our benchmarks is that a user can define many
VMs with different workloads and measure NAS perfor-
mance against this specific workload configuration. To
verify that the accuracy of our benchmarks does not de-
crease as we emulate more VMs, we conducted a multi-
VM experiment. We first ran one VM with a File-server
in it, then added a second VM with a Web-server work-
load, then a third VM executing the Database-server
workload, and finally a fourth VM running JetStress. Af-
ter that we added another four VMs with the same four
workloads in the same order. In total we had 8 different
configurations ranging from 1 to 8 VMs; this setup was
designed to heavily stress the NAS under several, differ-
ent, concurrently running workloads. We then emulated
the same 8 configurations using our benchmarks and
again monitored the response parameters. Figures 10(a)
and 10(b) depict RMS and maximum relative errors, re-
spectively, depending on the number of VMs.

When a single VM is emulated, our benchmarks
show the best accuracy. Beyond one VM, the RMS er-
ror increased by about 3–5%, but still remained within
10%. For four parameters—latency, writes/sec, inter-
rupts and context switches count—the maximum error

observed during the whole run was the highest among
other parameters—in the 10–13% range.

In summary, our benchmarks show a high accuracy
for both single- and multi-VM experiments, even under
heavy stress.

6 Related Work
Storage performance in virtualized environments is an
active research area. Le et al. studied the storage per-
formance implications of combining different guest and
host file systems [29]. Boutcher et al. examined how the
selection of guest OS and host I/O schedulers impacts
the performance of a virtual machine [10]. Both of these
works focused on the performance aspects of the prob-
lem, not workload characterization or generation; also,
the authors used direct-attached storage, which is sim-
pler but less common in modern enterprise data centers.

Hildebrand et al. discussed the implications of us-
ing the VM-NAS architecture with enterprise storage
servers [19]. That work focused on the performance im-
plications of the VM-NAS I/O stack without thoroughly
investigating the changes to the I/O workload. Gulati et
al. characterized the SAN workloads produced by VMs
for several enterprise applications [17]. Our techniques
can also be used to generate new benchmarks for SAN-
based deployments, but we selected to investigate VM-
NAS setups first, for two reasons. First, NAS servers are
becoming a more popular solution for hosting VM disk
images. Second, the degree of workload change in such
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deployments is higher: NAS servers use more complex
network file-system protocols whereas SANs and DAS
use a simpler block-based protocol.

Ahmad et al. studied performance overheads caused
by I/O stack virtualization in ESX with a SAN [4]. That
study did not focus on workload characterization but
rather tried to validate that modern VMs introduce low
overhead compared to physical nodes. Later, the same
authors proposed a low-overhead method for on-line
workload characterization in ESX [3]. However, their
tool characterizes traces collected at the virtual SCSI
layer and consequently does not account for any trans-
formations that may occur in ESX and its NFS client.
In contrast, we collect the trace at the NAS layer after
all request transformations, allowing us to create more
accurate benchmarks.

Casale et al. proposed a model for predicting stor-
age performance when multiple VMs use shared stor-
age [12, 26]. Practical benchmarks like ours are com-
plementary to that work and allow one to verify such
predictions in real life. Ben-Yehuda et al. analyzed per-
formance bottlenecks when several VMs are used to pro-
vide different functionalities on a storage controller [7].
The authors focused on lowering network overhead via
intelligent polling and other techniques.

Trace-driven performance evaluation and workload
characterization have been the basis of many stud-
ies [14, 25, 27, 33]. Our trace-characterizing techniques
and benchmark-synthesis techniques are based on multi-
dimensional workload analysis. Chen et al. used multi-
dimensional trace analysis to infer behavior of enterprise
storage systems [13]. Tarasov et al. proposed a tech-
nique for automated translation of block-I/O traces to
workload models [40]. Yadawakar et al. proposed to
discover applications based on multi-dimensional char-
acteristics of NFS traces [49].

In summary, to the best of our knowledge, there have
been no earlier studies that systematically analyzed vir-
tualized NAS workloads. Moreover, we are the first to
present new NAS benchmarks that accurately generate
virtualized I/O workloads.

7 Conclusions and Future Work
We have studied the transformation of existing NAS
I/O workloads due to server virtualization. Whereas
such transformations were known to occur due to vir-
tualization, they have not been studied in depth to date.
Our analysis revealed several significant I/O workload
changes due to the use of disk images and the place-
ment of the guest block layer above the NAS file client.
We observed and quantified significant changes such as
the disappearance of file system meta-data operations
at the NAS layer, changes in I/O sizes, changes in file
counts and directory depths, asynchrony changes, in-

creased randomness within files, and more.
Based on these observations from real-world work-

loads, we developed new benchmarks that accurately
represent NAS workloads in virtualized data centers—
and yet these benchmarks can be run directly against
the NAS without requiring a complex virtualization en-
vironment configured with VMs and applications. Our
new virtualized benchmarks represent four workloads,
two guest operating systems, and up to eight virtual ma-
chines. Our evaluation reveals that the relative error of
these new benchmarks across more than 11 parameters
is less than 10% on average. In addition to providing a
directly usable measurement tool, we hope that our work
will provide guidance to future NAS standards, such as
SPEC, in devising benchmarks that are better suited to
virtualized environments.
Future work. We plan to extend the number of gen-
erated benchmarks by analyzing actual applications and
application traces, including typical VM operations such
as booting, updating, and snapshotting—and examine
root and I/O swap partition access patterns. We also
expect to explore more VM configuration options such
as additional guest file systems (and their age), hypervi-
sors, and NAS protocols. Once a larger body of virtual
NAS benchmarks exists, we will be able to study the
I/O workload’s sensitivity to each configuration param-
eter as well as investigate the impact of extracting and
reproducing additional trace characteristics in the gener-
ated benchmarks. To avoid manual analysis and trans-
formation of large numbers of applications, we plan to
investigate the feasibility of automatically transforming
physical workloads to virtual workloads via a multi-level
trace analysis of the VM-NAS I/O stack.
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