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Nilpotents Leave No Trace:

A Matrix Mystery for Pandemic Times

Eric L. Grinberg

Department of Mathematics, University of Massachusetts Boston, USA
eric.grinberg@umb.edu

Synopsis

Reopening a cold case, Inspector Echelon, high-ranking in the Row Operations
Center, is searching for a lost linear map, known to be nilpotent. When a partially
decomposed matrix is unearthed, he reconstructs its reduced form, finding it
singular. But were its origins nilpotent?

Keywords: nilpotent matrix, singular matrix, row reduced echelon form,
RREF, null space, kernel, Jorge Luis Borges, mystery.

1. Early in the Investigation

In teaching Linear Algebra, the first topic frequently is row reduction [1, 5, 7],
including Row Reduced Echelon Form (RREF); its applicability is broad and
growing. Another topic, surprisingly popular with beginning students, is
nilpotent matrices. One naturally wonders about their intersection. For
instance, one would expect to find a book exercise asking:

What can be said about the row reduced echelon form of a nilpotent
matrix?

In the early days of the COVID-19 pandemic, as test delivery went re-
mote, demand grew for new, Internet-resistant problems. A limited liter-
ature search for the Nilpotent-RREF connection came up short, suggesting
potential for take-home final exam questions, hence the note at hand. We’ll
first explore examples sufficient to settle the 3 × 3 case, then consider the
general situation. The upshot is that row reduction eliminates all traces of
nilpotence.
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140 Nilpotents Leave No Trace

Figure 1: “Very Early in The Investigation,” by Frank Cotham, New Yorker, 2007. Per-
mission for use was obtained by arrangement with Condé Nast.

2. Stumbling On Evidence

We refer to [1, 2] for general background on RREF and rank. (Most other
linear algebra texts will also do, of course.) Recall that a matrix M is nilpo-
tent if it is square and if some power of M , say Mk, is the zero matrix;
the smallest such k is called the nilpotent index or just index of M . For
instance, the rightmost matrix in (2.2) below is nilpotent, of index 3. In-
deed, every strictly upper-triangular matrix (i.e., square, with zeros on and
below the diagonal) is nilpotent. Every nilpotent matrix N is singular and
has additional standard properties. For instance, N has trace zero, as do all
its powers. Examining each general type of singular 3× 3 matrix of RREF,
we’ll try to find those that are row equivalent to nilpotents.

A nilpotent 3 × 3 matrix, being singular, can have rank 0, 1, or 2. We’ll
begin by considering general 3 × 3 matrices of rank 1 in RREF. There are
three types of such matrices:1 a b

0 0 0
0 0 0

 ,

0 1 c
0 0 0
0 0 0

 ,

0 0 1
0 0 0
0 0 0

 , (2.1)

where the entries a, b, c are fixed but unspecified and unrestricted constants.



Eric L. Grinberg 141

When working with matrices and their components we’ll follow a left to right
and top to bottom convention. Thus first means leftmost, etc. We enumerate
the rows of a matrix using the notation Ri. Hence R2 is the second row from
the top.

The second and third matrices in (2.1) are strictly upper triangular, hence
nilpotent. Call the first matrix F . It is not traceless, hence not nilpotent, but
we can try to row reduce it into nilpotence. In F , if b = 0, interchange rows
R1 and R3 (i.e., perform R1 ←→ R3) to obtain a strictly lower triangular
matrix, hence a nilpotent matrix. If b 6= 0, perform R3 −→ R3 − 1

b
R1

(subtract 1
b

times row R1 from row R3 and make that the new row R3) to
obtain  1 a b

0 0 0
−1

b
−a

b
−1

 .

This matrix squares to zero, hence is nilpotent.

Next, we present the RREFs of 3× 3 matrices with rank 2:1 0 a
0 1 b
0 0 0

 ,

1 a 0
0 0 1
0 0 0

 ,

0 1 0
0 0 1
0 0 0

 . (2.2)

The third matrix is strictly upper triangular, hence nilpotent. For the second
matrix, exchange rows R1 and R3, then perform R1 −→ R1−(a)R2 to obtain0 0 −a

0 0 1
1 a 0

 .

This matrix cubes to zero, hence is nilpotent. As with all 3 × 3 matrices of
rank 2, its square does not vanish (exercise), so it is nilpotent of index 3.

Up till now we have been far from systematic, and the leftmost matrix in
(2.2), call it T , takes even more doing. The procedure we offer is no more
systematic, and admittedly less than pleasant to parse, but rest assured that
systematic relief cometh.

We can row reduce T to the following matrix, which is nilpotent of index 3: −1 0 −a
− b

a
0 −b

− b−1
a

1 1

 . (2.3)
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We can get from T , the leftmost matrix in (2.2), to (2.3) by the following
row operations:

R2 ←→ R3; (2.4)

R2 −→ R2 −
(
b

a

)
R1;

R1 −→ (−1)R1;

R3 −→ R3 −
(
b− 1

b

)
R2.

This tacitly assumes that a, b are both nonzero. If both a and b are zero, row
swaps turn T into a strictly lower triangular, and hence nilpotent matrix.

If b = 0 and a 6= 0 then T is still nilpotent and row equivalent to (2.3), even
though the steps we took to get there involve a zero denominator. (For this
case, replace the last step of (2.4) by R3 −→ R3 −

(
1
a

)
R1.)

In case a = 0, perform row reduction steps

R2 ↔ R3; R1 ↔ R2; R2 −→ R2 − bR3,

obtaining the following nilpotent matrix:0 0 0
1 −b −b2
0 1 b

 .

But (2.3) and (2.4) and all the row manipulations beg the question: how did
we come up with these constructs?

3. No Basis For An Investigation

The facts which you have brought me are so indefinite
that we have no basis for an investigation.

–Sherlock Holmes
in The Adventure of the Dancing Men.

We have a good working basis, however, on which to start.

–Sherlock Holmes
in A Study In Scarlet.
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Consider again the matrix

T =

1 0 a
0 1 b
0 0 0

 .

Recall that the (right) null space of T is the solution set of the linear system

Tv = 0. One can check that the span of the vector w ≡
(
−a −b 1

)t
gives

all solutions of this linear system.

We form a basis for R3 by extending the one element set {w}, and use that
to build a nilpotent matrix whose RREF is T . Using the familiar notation
e2 ≡

(
0 1 0

)t
and e3 ≡

(
0 0 1

)t
, we write u ≡ e2 and v = e3. Then, if

a is a nonzero scalar, {u,v,w} is a basis for R3.

There is a unique linear transformation H on R3 with the properties Hu = v;
Hv = w; Hw = 0; we summarize these as follows:

u −→ v −→
(
−a −b 1

)t −→ 0.

(This is not an exact sequence, and not even trying to be one.) Let’s find
M , the matrix representation of H in the standard basis.

The second column of M is the vector Me2, which is already prescribed: it
is e3. The third column of M is the vector Me3, prescribed as w. What
about the first column of M? It is Me1, but what’s that? We can express
e1 in the basis {u,v,w} as follows:

(−a)e1 =

−a−b
1

−
0

0
1

+ b

0
1
0

 ,

which we can rewrite as e1 = −1
a

(w − v + bu) . Thus

Me1 =
−1

a
(Mw −Mv + bMu) =

−1

a
(0−w + bv) =

(
−1 − b

a
1−b
a

)t
,

which matches the first column of (2.3), and thereby reproduces (2.3).

This approach un-begs one question while begging another. The vector space
basis procedure here is guaranteed to produce a nilpotent matrix, but how
did we know that this matrix will have the requisite RREF, namely T? We
know that M and T have the same null space: span{w}. We now quote [5,
Chapter 2, page 58]:
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Corollary (Row Space–Row Equivalence). Let A and B be m× n matrices
over the field F . Then A and B are row-equivalent if and only if they have
the same row space.

Remark. Everyone knows many famous theorems and some famous lemmas,
but there is a dearth of famous (or just named) corollaries. In fact, the
two best known to us are not mathematical, emanating from the Monroe
Doctrine.1 To address this dearth, I labeled the corollary above the “Row
Space–Row Equivalence Corollary”.

In our context, relating row equivalence to the null space is needed, and such
a relation is implicit (though perhaps not salient) in the literature, e.g., [5]
again, or [2, Theorem VFSLS: Vector Form of Solutions to Linear Systems].
In a recent paper [4], I stated the following as a corollary:

Corollary. The null space of a matrix M determines the RREF and the row
space of M . Hence if two matrices of the same size have the same null space,
they are row equivalent.

Note that this is a corollary of our Row Space–Row Equivalence Corollary.

Thus, since the nilpotent matrix M has the correct (right) null space, it has
the correct RREF as well.

4. General Impressions

Never trust to general impressions, . . . but concentrate
yourself upon details.

–Sherlock Holmes
in A Case of Identity.

I have had no proof yet of the existence of this . . .

–Sherlock Holmes
in The Sign Of The Four.

Here is the general result we were looking for:

1 See https://en.wikipedia.org/wiki/Roosevelt_Corollary and https://en.

wikipedia.org/wiki/Johnson_Doctrine.

https://en.wikipedia.org/wiki/Roosevelt_Corollary
https://en.wikipedia.org/wiki/Johnson_Doctrine
https://en.wikipedia.org/wiki/Johnson_Doctrine
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Theorem. Every singular matrix is row equivalent to a nilpotent matrix.

Proof. Let M be a singular n × n matrix, and take a basis of the (right)
null space of M , {k1, . . . ,k`}, where ` is the nullity of M . (Here and below,
though we use the set notation {· · · }, we are, in fact, working with ordered
sets or lists.) As M is singular, ` is greater than or equal to 1.

If ` = n then M is the zero matrix, which is nilpotent, and we are done; so we
assume ` is smaller than n. Extend {k1, . . . ,k`} to {z1, . . . zn−`,k1, . . . ,k`},
a basis of the vector space of all n × 1 columns. We consider a linear map
that annihilates the basis vectors kj and “shifts” each basis vector zi to the
next one, except for zn−`, which is shifted to k1.

This corresponds to a matrix N with the following properties:

Nzi−1 = zi; Nzn−` = k1,

for all suitable values of i. The construction of such a matrix is a standard
extension of the process we used with the matrix T in the previous section;
see, for example, [6, Sections 4.1.1–4.1.2] for more details. Applying N n −
` + 1 times to a vector v shifts to zero the coordinates of that vector in
the basis above, so the matrix N is nilpotent of index n − ` + 1, which is
rank(M) + 1, with null space spanned by {k1, . . . ,k`} (see, for example, [6,
Section 3.5.1]). Thus M and N share a null space. Hence, by the companion
corollary of the Row Space–Row Equivalence Corollary, they have the same
RREF and are thereby row equivalent.

Remark. We have, in fact, shown that a singular matrix of rank r is row
equivalent to a nilpotent matrix of index r+ 1; alternative constructions can
yield other indices. Of course, a nonsingular matrix is not row equivalent to
a nilpotent matrix, since row reduction preserves nonsingularity, and every
nilpotent matrix is singular.

5. What’s It All About? The Aftermath

Nilpotency figures in the deepest moments of a first course in linear algebra
[8]. It is particularly accessible to beginning students. Experience indicates
that they latch onto to the subject, with curiosity and enthusiasm; ditto for
RREF. Yet, in the literature, the two seldom interact. Why? The theorem
above may give a clue. In fact, our discussion shows that it’s not about
nilpotency at all. It’s about the null space.
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6. Late Inspiration

In the course of the Spring 2020 academic-pandemic semester, this author
developed the habit of staying up late and delving into the literature, math-
ematical, fictional, and non-fictional. Trying to compose Internet-lookup-
resistant take-home final exam questions, he stumbled on the nilpotency-
RREF pairing. At the same (late) time, he was reminded of the stories of
Jorge Luis Borges, where mathematical ideas and constructs figure into de-
tective stories, (see for example, [3], also see [9]). Could the nilpotency of a
matrix serve a similar purpose? More generally, could a mathematical the-
orem give rise to a mystery story? (More generally still, is there a functor
from the category of mathematics to the category of mystery stories?) That
led to the present note.

Since the beginning of the pandemic, teachers have been asked to exercise
particular understanding and accommodation with students. In the same
vein one hopes that the reader will do similarly with the would-be lockdown
literato responsible for this pandemic-produced essay.
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