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Conic Diagrams

David Pierce

Matematik Béliimi, Mimar Sinan Giizel Sanatlar Universitesi, Istanbul, TURKEY
david.pierce@msgsu.edu.tr

Synopsis

Textbooks may say that the so-called conic sections can be obtained from cones,
but this is rarely proved. However, diagrams of the proof require no intuition
for solids and can be read as flat. We construct the diagrams with ruler and
compass and derive from them basic properties of conic sections as established
by Apollonius of Perga, though again in a way that does not require a third
dimension. The construction inevitably involves choices that give play to one's
aesthetic sense.

1. Introduction

This article is about using ruler and compass to construct points on conic
sections. These curves are usually approached analytically, with algebraic
equations; our interest will be in perceiving them, thus perhaps even appre-
ciating them aesthetically, the word aesthetic itself being derived from the
Greek for perception.

The conic sections are three, called ellipse, parabola, and hyperbola
respectively, for reasons not usually explained, although there are cognate
literary terms ellipsis, parable, and hyperbole. By what I call the high-school
definition, the three conic sections can be given respectively in a rectangular
coordinate system by equations

2 2 2 2

x oy
—+==1, y* = daz, —ﬁzl. (1)

a?
The coordinate axes are also the axes of the hyperbola and ellipse, and the
origin of coordinates is the center of each of these curves. The hyperbola
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and ellipse then are central conics, while the parabola has no center and
one axis, the horizontal or x-axis.

Each point of intersection of a conic section with an axis can be counted as
a vertex of the section. If (s,t) lies on the section, then the line segment
between this point and (s,0) is the associated ordinate, and the segment
between (s, 0) and a vertex on the horizontal axis is an abscissa. That vertex
is (0,0) for the parabola, (—a,0) or (a,0) for a central conic. Thus a point
on the parabola has one abscissa; on a central conic, two. In the ellipse, one
can also make these definitions with respect to (0,t) and the vertical axis.

It may be more usual to refer to the coordinates s and ¢ themselves as abscissa
and ordinate respectively. The reason for the present definition is that now
the square on the ordinate varies as

e the abscissa, in the parabola;
e the product of the abscissas, in a central conic.

We shall use these proportionality conditions as an alternative definition of
the conic sections. If we relax the condition that the ordinates be orthogonal
to the abscissas, we obtain nothing new; the curves can still be given by the
original equations in the appropriate rectangular coordinate system.

The equations (1) can be derived from a focus and a directriz in the coor-
dinate plane; also from two foci, in the case of the central conics. However,
our concern here is mainly how the conic sections arise in solid geometry.

If a point and a circle are given in Euclidean space, and the point does not
lie in a plane of the circle, and an infinite straight line through the point in-
tersects the circumference of the circle, and we move the point of intersection
around the circumference, then the line traces out a conic surface whose
apex is the original point. The conic surface has two parts or nappes, sep-
arated by the apex. The solid bounded by one nappe and the original circle
is the cone with the same apex and whose base is the circle. A plane that
does not contain the apex cuts the conic surface in a conic section. There
are three possibilities.

1. If the conic section has two parts, one from each nappe, it is an hyper-
bola.

2. If it has one part, but is infinite, it is a parabola.

3. If it is finite, it is an ellipse.
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We are going to make the connections between the proportionality conditions,
the equations (1), and the solid geometry.

Let us then draw a circle having diameter BC' as in Figure 1(a).

On this diameter, at a chosen point M, we erect a perpendicular, meeting
the circle at D. We draw a segment VII that contains both M and a new
point X, as in Figure 1(b), so that the lines BV and C'W are not parallel,
but intersect at a point A. From these data, we obtain the point P shown in
Figure 1(c) by letting

1) AX meet BC at N,
2) J lie on the circle so that NJ || M D,
3) P lie on AJ so that XP || MD.

Using the additional lines shown in Figure 1(d), we shall show that X P is an
ordinate, parallel to the ordinate M D, of an ellipse of which VIV is called a
diameter, because it bisects the chords that are parallel to ordinates. By
letting X range along the diameter, we can obtain as many points P on the
ellipse as we like.

We can have let the diameter VW lie in the plane of the original circle, so
that everything else is in that plane. However, nothing has required this. If
VW does not lie in the plane of the circle, then neither does A, and in this
case, A serves as the apex of a cone whose base is the circle, and our ellipse
is indeed a section of the corresponding conic surface. In this case, we have
the option of letting M D be at right angles to VW and thus to the plane of
VW and BC. In this case, VI is not just a diameter, but an axis of the
ellipse.

We shall show how all of the foregoing agrees with the high-school definition
of an ellipse. Meanwhile, let us note two variations of the construction.

e Of the segment VW that contains M and X, we can send the endpoint
W off to infinity as in Figure 2, so that A still lies on BV, but now
CA || VM. Then P lies on a parabola.

e We let M lie on the extension of the segment VIV but not the segment
itself, as in Figure 3. When X meets the same condition, then P traces
out an hyperbola.
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() (d)

Figure 1: Construction of points of an ellipse
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Figure 2: Points of a parabola

2. Aesthetics

This section is not required for what follows it.

Given just a diagram as in Figure 1(d), 2, or 3, one may treat it as a puzzle:
how has it has been filled out from the points B, C, M, D, V, W, and X7
One may also just contemplate the diagram as it is. I wonder then how well
the diagram can satisfy the account of Kant in The Critique of Judgement,
whereby

Beauty is the form of finality in an object, so far as perceived in
it apart from the representation of an end. [5, §17, page 80|

Beauty is finality without end — or in an alternative translation, purposive-
ness without purpose [4]. As Kant explains in a footnote, a tulip is beautiful,
but utilitarian artefacts are not, even if we do not actually know their pur-
pose; for the artefacts still obviously have a purpose.

Have our diagrams a purpose then? The artefacts that Kant mentions as hav-
ing a purpose are “the stone implements frequently obtained from sepulchral
tumuli and supplied with a hole, as if for [inserting] a handle.” Presumably
the location of the hole is chosen to serve a purpose.
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Figure 3: An hyperbola

Our diagrams will in fact serve a mathematical purpose. However, the choices
e in Figure 1(a) of the location of M on BC

e in Figure 1(b) of the angle and the endpoints of the segment VW that
contains M, and of the position of X on that segment

— these choices serve no purpose, except that the construction arising from
them should please the eye. Still, part of that pleasure may come from
following the mathematical argument to come.

Since reading selections from Kant’s third Critique in college, I have remem-
bered its example of a Sumatran pepper garden. The regularity of this garden
ought to be irksome, Kant thinks, though it may first seem refreshing after
time spent in the jungle. Kant takes the example from William Marsden,
who says,

A pepper garden cultivated in England would not . . . be con-
sidered as an object of extraordinary beauty, and would be par-
ticularly found fault with for its uniformity; yet, in Sumatra, I
never entered one, after travelling many miles . . . through the
woods, that I did not find myself affected with a strong sensation
of pleasure. [6, page 113]
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If one tries to consider a mathematical diagram as a work of art, how well
does Kant’s own criticism apply? He says generally,

All stiff regularity (such as borders on mathematical regularity)
is inherently repugnant to taste, in that the contemplation of it
affords no lasting entertainment. Indeed, where it has neither
cognition nor some definite practical end expressly in view, we
get heartily tired of it. On the other hand, anything that gives
the imagination scope for unstudied and final play is always fresh
to us. [5, §22, page 8§]

In Kant’s terms, the diagrams of Figure 1 are going to “have cognition in
view”; however, they do not yet “expressly” have this. They do exhibit
regularity, but only in the sense that individual lines and circles are regular.
These are regular, because produced mechanically, with ruler and compass.
However, one may have no idea that there is a reason why those tools have
used to produce the particular lines and circles of the diagrams.

3. My personal journey

Conic sections became a fascination for me in adolescence, as I started learn-
ing about curves and how they could be encoded in equations. Using graph
paper and a pocket calculator, I plotted families of conic sections on the
same axes, having looked up their equations in the analytic geometry text-
book that my mother had used in college [7, pages 100-123]. About the
historical origin of the parabola, ellipse, and hyperbola, the book says only,

Because of the possibility of identifying these curves (including
circles) with plane sections of right circular cones, they are called
conic sections.

The book itself derives the equations of the conics from planar geometric
definitions, whereby

e the points of the parabola are equidistant from a point called a focus
and a line called a directrix;

e the points of the ellipse and hyperbola maintain, from two foci, dis-
tances whose sums and differences are respectively constant.

From these definitions, in a suitable rectangular coordinate system, the au-
thers obtain the equations (1). Two years later, when I was in high school,
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the textbook used for algebra 2 gave the same geometric definitions and the
same equations, but without fully proving the connection. The book stated
in more detail how the conics came from cones, but still without proof [15,
pages 397-399]. There followed the alternative characterization of a conic
section as the locus of points whose distances from a focus and directrix bore
a common ratio. Pappus had proved it, sixteen hundred years earlier [13,
pages 494-503]; but for the readers of Second Course in Algebra,

The technical difficulties are too great to allow us to make a
general examination of the above definition.

Weeks and Adkins may have been correct not to undertake such an exami-
nation; but I did not like being told that it was too difficult for me.

The authors do take up a special case of the focus-directrix definition of a
conic. When the focus is (2,0), and the directrix is given by x = 8, and the
common ratio of distances from focus and directrix is 1/2, the authors derive
for the locus of points the equation 3z% + 4y? = 48. Even though it is for a
second course in algebra, the textbook does not then generalize, as by letting
the focus be (a,0), the directrix be given by (r?a,0), and the common ratio
be 1/r, so that the locus is given by

(r* — D)z +r*y? = r*(r* — 1)a®.

The authors omit consideration of such a general equation, even though, by
their own account, it would define an ellipse or hyperbola, depending on
whether 7% was greater or less than 1.

Weeks and Adkins must have known what they were doing. Evidently the
abstraction of algebra has to be learned in stages. And yet the authors do
give so-called

Sidelights. These are, in essence, brief essays that introduce the
reader to topics of a more advanced nature or provide somewhat
deeper insights. [15, page 1]

Deeper insight into the conic sections might not have been out of place.
Moreover, a geometrical diagram is the opposite of abstract. It is right there
on the paper, or (these days) on the screen.
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4. Mathematics ancient and modern

A planar diagram is still challenging when it represents a solid object. One
would have to face the challenge, if one wanted to learn the conic sections
in the old days, when the diagrams and words of Apollonius of Perga were
practically the only source about these sections.

We need not actually face the challenge of three-dimensional visualization,
in order to establish the basic results of Apollonius. We shall use diagrams
as in §1 to do this, even if we read them as planar. We can decline the option
of reading the diagrams as parallel projections of solid figures.

We shall take advantage of what in some countries is taught as Thales’s
Theorem [9]; this is Proposition V1.2 of Euclid’s Elements [3], that a line
dividing two sides of a triangle divides them proportionally if and only if the
line is parallel to the third side. This has the corollary that the ratio of two
parallel segments is unaffected by parallel projection.

In our attempt at recovering something of the ancient understanding of conic
sections, we may be instantiating the teaching of Diotima of Mantinea, as
recalled by Socrates in the Symposium of Plato [12, 207TE-8A]:

not only do bits of knowledge come and go for us (we are never
the same even in terms of our knowledge), but each single bit of
knowledge also undergoes the same experience. What is called
studying exists because knowledge goes away. Forgetting is the
departure of knowledge, and study saves the knowledge by reim-
planting a new memory in place of what has gone away, so that
it seems to be the same knowledge.

Our diagrams are like those of Apollonius, but not the same. For one thing,
ours have a precision that the diagrams of Apollonius himself must not have
had.

Those diagrams had their own kind of precision, in the sense of showing the
location of points that were undefined in the accompanying text. Reviel Netz
has an example [8, page 23]: in Proposition 1.11 of Apollonius [1, page 20],
when, from a point K, a line KL is drawn, parallel to a line DFE, readers
are not told in words that L will be on a line F'G; one must see this in the
diagram.

Clarity can sometimes be achieved when straight lines are drawn curved.
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When Archimedes inscribes a dodecagon in a circle, Netz remarks on how
the sides of the polygon are not straight in some manuscripts, but curve
inward [2, page 115]. Then he says,

It is, I think, somewhat improbable that a scribe would invent
such a practice, in defiance of his sources. If so, we may have in
this practice a hint of Archimedes’ own diagrammatic practices.

The diagrams of the present essay are drawn by computer. I happen to use
pstricks and pst-eucl with BTEX. In Figure 1, adjustments are possible
in the choices of the ratio BM : M C', the position of A, the angle BMV', and
the ratio VX : VIW; but everything else is derived mechanically from these
choices.

By the account of Eutocius [14, page 279], the Greeks first obtained a cone
by revolving a right triangle about a leg; and they sectioned the cone only
with a plane perpendicular to the hypotenuse of the triangle. This gives
three possibilities, depending on whether the angle of the cone at its apex is
acute, right, or obtuse. Only later did Apollonius show that a conic section
of any of the three kinds could be obtained from any cone.

The cone need not even be right. It just has a circular base, and its apex
can be any point not in the plane of the base. In a sense, we shall remove
even this last condition, and what may be seen as the apex of a cone need
only be a point not lying on the line of a selected diameter of the base of the
cone.

5. Ellipse in Cartesian terms

From a point on the circumference of a circle of radius a, suppose we drop a
perpendicular to a diameter. If the perpendicular has length y, and its foot
is 2 from the midpoint of the diameter, then y? = a? — 22 by the Pythagorean
Theorem [3, 1.47], and so

v* = (a+x)(a — ). (2)

Let us call the perpendicular by the Latin term ordinate. The ordinates to
the same diameter will all be parallel to one another, like columns in one of
the ancient orders of architecture, the Doric, Ionic, and Corinthian [10].

An ordinate divides the diameter into two segments. For either of these,
since it is something cut out, that is, excised — or rather cut off, that is,
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“abscised” — we use the Latin term abscissa. By equation (2) then, the
square of the ordinate is the product of the abscissas.

We can weaken this condition. We shall still understand ordinates to be
drawn to a given diameter, each ordinate cutting the diameter into two ab-
scissas. Let us now require only that

e ordinates be parallel to one another;
e the proportion
y2 o (a+2)(a - o)
be satisfied, so that the square of the ordinate will vary jointly as the

abscissas.

Each ordinate still has one endpoint on the diameter. The other endpoints
now trace out an ellipse.

Thus, if a segment VIV is given as in Figure 4, and a point M on the segment,
and a point D not on the segment, then that curve is an ellipse which is the
locus of points P such that, when X is the point on VW such that

XP| MD, (3)
then
(XP:MD)?:: (VX : VM) (XW : MW). (4)

W

Figure 4: Ellipse determined by diameter and an ordinate
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Note that an expression like X P has three or four related meanings:
e the infinite line through X and P;
e the segment of that line bounded by X and P;

e the directed segment from X to P, or the vector represented by this
directed segment.

Context should make it clear what is meant. For example, ratios as in (4) are
always ratios of parallel vectors. There are no ratios of nonparallel vectors.
There could be ratios of the magnitudes of nonparallel vectors; but for now,
our vectors need not have magnitudes, and our points need lie only in an
affine plane.

We let O be the midpoint of VW, this being understood as a segment. We
define

OV =a, OM = \-a, OX =s-a,
and
MD =c, XP=u-c,

these five entities all being vectors, three of them analyzed as product of
scalar and vector. In particular, condition (3) is now automatically satisfied,
and

XP:MD::(u-c):c

D,
while
VX:VM:: (VO+0X):(VO+OM)
(—a+s-a):(—a+X\-a)
l-=s
11—
and L+
s
XW MW
L+ N
so that (4) is equivalent to
1 — 2
v = (5)

1=\
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We can simplify this by defining b and ¢ so that

1

Then t/v/1 — A2 = u, so that (5) becomes
t?=1-3s (6)
Also, passing to matrix notation, we have

OP=0X+XP=s-a+t-b=(a m(ﬂ. (7)

We now introduce a Euclidean structure to our affine plane. In a rectangular
coordinate system whose origin is O, letting

P=(xy) a = (ar,a), b= (b1, bo),
(- 00
@ - (_biz _a?l> @ |

Plugging this into (6), which we rearrange as s? + t*> = 1, and then scaling,
we obtain for the ellipse the defining equation

from (7) we have

and therefore

(boxr — b1y)? + (agr — a1y)? = (a1by — bray)?. (8)

One can then obtain the high-school equation of an ellipse as in (1) by ro-
tating the coordinate system so as to eliminate the zy terms. Alternatively,
on can just confirm that this is possible by finding a’ and b’ such that the
equation

(bﬂ — b1y)2 + (agr — aly)2 = (b/ﬂ - bﬁy)2 + (a’2x - a,ﬂ/)%

which shares its left member with (8), is an identity, but also @’ and b’ are
orthogonal, meaning
albl + CLQbQ =0.

This is worked out in [11]. Cartesian notation makes it possible. Now we
want just to see what is happening.
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6. Ellipse geometrically

With ruler and compass, we shall construct PX parallel to M D as in Figure
4, given the foot X on VIV.

Any such X corresponds to two points P on the ellipse, and those two points
bound a chord whose midpoint is X. For this reason, VW is a a diameter
of the ellipse, because it “measures through.” Any chord passing through the
center of one diameter will be another diameter, in this sense of bisecting each
in a family of parallel chords. One can prove this by completing the squares
differently in (8), although Apollonius has a geometric method. Again, the
details are in [11].

Given V, W, M, D, and X as in Figure 4, we construct P to satisfy (3) and
(4) by the following steps.

1. Construct right angle DM B as in Figure 5(a), letting M B have any
convenient length for what is to come.

C C

M

V v
(a) (b)

Figure 5: Construction of points of an ellipse
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2. Extend BM to C' so that angle BDC' is right. Then the circle with
diameter BC passes through D.

3. We should have chosen B so that V B and W intersect at a convenient
point A, as in Figure 5(b).

4. For an arbitrary point X on VW as in Figure 6(a), we let
e AX intersect BC at N,

e the line through N that is parallel to M D meet the circle with
diameter BC at J.

5. Finally, we obtain P on AJ as in Figure 6(b), so that X P is parallel
to MD.

Figure 6: Construction completed

For the proof that (4) now holds, through X we draw the line parallel to
BC', meeting AB at Q and AC at R. By Thales’s Theorem,

XP:NJ:: XA:NA,
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and likewise
QX :BN:: XA:NA:: XR:NC.

Since we can make the factorization
XP:MD :: (XP:NJ)NJ:MD),
from our first two proportions we have
(XP:MD)*:: (XP:NJ)*(NJ: MD)?

(XA:NA?(NJ: MD)?
::(QX : BN)(XR:NC)(NJ: MD)>.

Since NJ and M D are ordinates of a circle, the proportion corresponding to
(4) does hold, that is,

(NJ:MD)?:: (BN : BM)(NC: MC).

Plugging this into the previous proportion, reducing, and applying Thales
again yields
(XP:MD)?:: (QX : BM)(XR: MC) (9)
(VX VMY(WX :WM),

which is (4), as desired.

7. Conic sections as such

In the construction of the previous section, M was on the line determined by
V and W, but nothing required it to lie between those points. If it does not
so lie, we get a diagram as in Figure 7, and thus an hyperbola.

If instead we push W off to infinity, then condition (4) becomes
(XP:MD)?*:: VX :VM, (10)

defining a parabola. The construction of P is as before, except that, in
step 3, the point A lies on V B so that AC is parallel to VM, as shown in
Figure 8. The proof of (10) is as for (4), except that, in the last step, at (9),
XR:MC is now a ratio of equals, so it just drops out.
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Q

B

Figure 7: Point of hyperbola

Apollonius is concerned, not just with proportions, but with what we call
constants of proportionality. In particular, he cares about the height of the
rectangle on the abscissa (or one of the abscissas) that is equal to the square
on the ordinate. As the abscissa grows, the height of the rectangle may
decrease, grow, or stay the same, and in Greek this is reflected in the terms
ellipse, hyperbola, and parabola [10].
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Figure 8: Point of parabola

We have now obtained the three so-called conic sections by means of ele-
mentary plane geometry and the algebra of such proportions as arise from
Thales’s Theorem. Our construction of the point P has not actually required
B and C to lie in the plane of V', W, and D. If they do not lie in that plane,
then A becomes the apex of a cone whose base is the circle having diameter
BC', and the point P lies on a section of the surface of the cone.

If we wish, we can now let our diagrams be parallel projections of the
solid situation. Of the circle with diameter BC, the only property that
we use is the one that we have now shown to be shared with an arbi-
trary conic section. Besides D, B, and C, the only point on the circum-
ference of the circle that we need is J. We now know how to construct this
point, even if we have replaced the circle with an arbitrary conic section.
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Thus, with ruler and compass, we can construct all of the points in a dia-
gram as in Figure 9, where BC' is a diameter, and M D an ordinate, of an
ellipse in the plane of the diagram.

Figure 9: Circular cone in space

We can now read this diagram as an illustration of how to obtain one conic
section from another by ruler and compass, or even by two parallel rulers.
We may also use three-dimensional intuition to understand the diagram as
a demonstration of how to obtain conic sections as such; but this intuition
is not required.

One also has the option of ignoring one’s knowledge and seeing such a di-
agram (or another one, constructed from one’s own chosen proportions) as
decoration, if not art.
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