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The Genesis of a Theorem

Osvaldo Marrero

Department of Mathematics and Statistics, Villanova University, Pennsylvania, USA
Osvaldo.Marrero@villanova.edu

Synopsis

We present the story of a theorem’s conception and birth. The tale begins with
the circumstances in which the idea sprouted; then is the question’s origin; next
comes the preliminary investigation, which led to the conjecture and the proof;
finally, we state the theorem. Our discussion is accessible to anyone who knows
mathematical induction. Therefore, this material can be used for instruction in a
variety of courses. In particular, this story may be used in undergraduate courses
as an example of how mathematicians do research. As a bonus, the proof by
induction is not of the simplest kind, because it includes some preliminary work
that facilitates the proof; therefore, the theorem can also serve as a nice exercise
in induction. Additionally, we use well-known facts from calculus to clarify and
enhance what is intrinsically a discrete problem. Making an unexpected but
welcome explanatory appearance, the number e is pertinent.

Keywords: mathematical induction, mathematical research, number theory, un-
dergraduate instruction

1. Introduction

At times, when talking with students, I get the impression that some students
believe that all of mathematics is already known. It is as if all of mathematics
were already available on some tablets that came down the mountain with
Moses, and, therefore, since then, there is no need to create any new mathe-
matics. Thus, some students are surprised when I repeat what has been said
many times before, namely, that more mathematics has been created since
1900 than had been created before.

Journal of Humanistic Mathematics Volume 13 Number 1 (January 2023)

http://scholarship.claremont.edu/jhm/


Osvaldo Marrero 165

It is probably safe to assume that anyone earning an undergraduate degree
in mathematics during our time has received instruction in how to read and
do mathematical proofs. However, it is also likely that many undergraduates
do not receive training in how mathematical theorems actually arise; the
students see the theorem already stated, but there is no clue as to how the
theorem originated. This is largely understandable because mathematical
research generally requires the kind of background that most undergradu-
ates simply do not have. Fortunately, we see a trend toward incorporating
mathematical research in the undergraduate mathematics curriculum, so that
students can experience the joy of discovering new mathematics, and then
writing the proofs that go along with their discoveries.

Finding research problems for undergraduates is not easy; the problems must
be easy to understand and amenable to at least a partial solution after a rea-
sonable effort. Undergraduate mathematics students are often accustomed to
finishing a homework exercise within at most a few minutes, and so they can
easily get discouraged when they cannot solve a problem that requires more
time and thought. We should remind students that a number of mathemati-
cal problems, such as Fermat’s Last Theorem, are passed from generation to
generation, hoping that eventually a solution will be found. We should also
tell and remind students that the abstract mathematics that may appear to
be nothing more than a mental exercise can, in fact, be quite useful; the fi-
nite fields that we study in abstract algebra are essential for the applications
of coding theory and cryptology that currently permeate and facilitate our
daily lives.

In this paper I present a result that can be used for undergraduate instruction
in mathematical research. I describe the complete genesis of the result, which
is accessible to undergraduates. Students can see where and how the theorem
originated, from beginning to end.

2. Genesis

Mathematics research—in fact, all research—begins with a question. So, it
is important for students to see examples of how such a question can arise.
One example follows.
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It used to be that a year of algebra—groups, rings, and fields—was required
for an undergraduate mathematics degree. However, for some time now, the
requirement is just one semester, typically devoted to mostly groups. When
I teach the required one-semester algebra course, I include some material on
fields, and I discuss rings as time permits. I also discuss fields in other courses
as I can. Many of my students are electrical-engineering majors, who can
eventually become interested in coding theory and cryptology, where finite
fields are essential. Indeed, at conferences over the years, I have met many
electrical engineers who are well versed in algebra, and, especially, in finite
fields. So, I always discuss finite fields in my algebra classes and other courses
as time allows.

In my classes, I keep my discussion of finite fields as concrete and accessible
as possible. Therefore, I usually discuss in detail the fields with 8 and 9
elements. That way, the students can easily and clearly see all the pertinent
salient properties, such as the fact that the multiplicative group of nonzero
elements in a finite field is a cyclic group.

I did not pay close attention to this the first time I taught the material
about fields with 8 = 23 and with 9 = 32 elements, but it so happens that
23 + 1 = 32, which I considered a lovely equation. I was then curious: When
is it true that nn+1+1 = (n+1)n for positive integers? This is it! This is the
question that generates the research! It is important for students to realize
that the motivating question need not become apparent right away!

3. The Preliminary Investigation

To gain some initial insight, we do what mathematicians generally do, and
that is, we examine some particular situations or we do some computing,
which, in this case, is natural. Number-theoretic questions naturally lend
themselves well to preliminary investigation by computing. A little comput-
ing produced the results we show in Table 1. These data suggest that, for
natural numbers n, we have nn+1 + 1 = (n + 1)n if and only if n = 1, 2;
moreover, it appears that nn+1 > (n+1)n whenever n ≥ 3. So, now we have,
at last, a conjecture to work on, and we proceed by induction.
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Table 1: Values of the sequences
(
nn+1 + 1

)
and ((n+ 1)

n
) for n = 1, . . . , 10

n nn+1 + 1 (n+ 1)n

1 2 2
2 9 9
3 82 64
4 1,025 625
5 15,626 7,776
6 279,937 117,649
7 5,764,802 2,097,152
8 134,217,729 43,046,721
9 3,486,784,402 1,000,000,000

10 100,000,000,001 25,937,424,601

The first step in the induction proof is already accomplished by examining
the data in Table 1, that is, the statement is true when n = 3. The remainder
of a proof by induction directly was not fruitful; roughly, having exponents
on both sides of the inequality was a nuisance. So, to reduce the number of
exponents, we notice that

nn+1 > (n+ 1)n ⇐⇒ nn+1

nn
>

(n+ 1)n

nn

⇐⇒ n >

(
n+ 1

n

)n

⇐⇒ n >

(
1 +

1

n

)n

,

which is what we proceed to prove.

The induction assumption is that for some natural number k > 3, we have

k >

(
1 +

1

k

)k

.

We now observe that, for such k > 3,(
1 +

1

k + 1

)k+1

<

(
1 +

1

k

)k+1

=

(
1 +

1

k

)k (
1 +

1

k

)
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< k

(
1 +

1

k

)
, by the induction assumption

= k + 1,

which completes the proof by induction.

Thus, we have proven the following result.

Theorem 1. If n is a natural number, then nn+1 + 1 = (n+ 1)n if and only
if n = 1, 2. Moreover, nn+1 > (n+ 1)n whenever n ≥ 3.

4. Insights From Calculus

Mathematical induction is a venerable, widely used tool that is available and
present in every mathematician’s toolbox. However, after a successful induc-
tion application, we are often left partially hungry and craving for knowledge
that will help us unravel why the result is actually true; generally, induction
does not satisfactorily reveal the reasons why a result is valid.

In this section, let us recollect familiar results from calculus to elucidate
Theorem 1; that is, we wish to have a better understanding of why the
inequality

n >

(
1 +

1

n

)n

is true for each natural number n ≥ 3.

The sequence
(
(1 + 1

n
)n
)∞
n=1

excites every mathematician because this se-
quence is a favorite, traditional example to show that the rational numbers
are not complete; that is, it is not true that each convergent sequence of
rational numbers converges to a rational number.

For our purposes, we recall the following well-known facts from calculus.

• The sequence (n)∞n=1 is strictly monotonically increasing and not bounded
above, so that limn→∞ n = ∞.

• The sequence
(
(1 + 1

n
)n
)∞
n=1

is strictly monotonically increasing, bounded
above by e, and

lim
n→∞

(
1 +

1

n

)n

= e,
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so that

lim
n→∞

(
1 +

1

n

)n

= sup

({(
1 +

1

n

)n

: n ∈ N
})

= e < 3,

where, as usual, N := {1, 2, 3, . . .} is the set of natural numbers. Con-
sequently, (

1 +
1

n

)n

< 3

for all natural numbers n = 1, 2, 3, . . . .

Thus, we now have a better understanding of the fact that

n >

(
1 +

1

n

)n

for all integers n ≥ 3.
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Figure 1: The first seven values of the sequences (n)
∞
n=1 (symbol: ◦) and ((1 + 1/n)n)

∞
n=1

(symbol: •).
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For the first seven values of n, Figure 1 illustrates the relationship between
the sequences (n)∞n=1 and

(
(1 + 1

n
)n
)∞
n=1

; that figure helps to clarify why
Theorem 1 is valid.

5. Conclusion

Of course, Theorem 1 can be presented to students without any of the back-
ground we have mentioned. In fact, that theorem can be be used as a nice
exercise to illustrate a nontrivial application of induction, when some pre-
liminary work facilitates the proof by induction. However, leaving out the
motivating background is likely to leave the students hungry for knowing how
the result came about, and then some students may perhaps think that this
is just another piece of busywork.

In my classes, students invariably prefer knowing about the motivational
background, which they appreciate, instead of just being presented the the-
orem by itself. We invite teachers to present their students the theorem
by itself, perhaps as an exercise; and, otherwise, include all the motivating
background. Then assess and compare the students’s reactions.

Our discussion shows that, for mathematical-induction problems, it is benefi-
cial to further explore the matter at hand. As happens here, such efforts can
profitably uncover relationships between topics that initially may appear dis-
parate. We began with a topic that is intrinsically discrete and then we were
able to illuminate our theorem with results from calculus. In mathematics
everything seems to be related to everything else; this interrelatedness is one
more attractive feature that makes mathematics exciting!

For a mathematician, the initial inspirational moment, and then the chase
that eventually leads to results, are joys and thrills that are difficult to com-
municate to others. We can, however, show our students examples of how
such exciting moments occur. For some students, this can change mathe-
matics from a boring subject where everything seems to be already known,
to a stimulating, very much alive and permanently growing human activity.
The example we present in this article is useful for instruction in a variety of
courses.
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