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DISJOINT COVERS IN REPLICATED HETEROGENEOUS ARRAYS*

P. K. MCKINLEY+t$, N. HASAN+%§, R. LIBESKIND-HADASt, anp C. L. LIUY

Abstract. Reconfigurable chips are fabricated with redundant elements that can be used to replace the
faulty elements. The fault cover problem consists of finding an assignment of redundant elements to the faulty
elements such that all of the faults are repaired. In reconfigurable chips that consist of arrays of elements,
redundant elements are configured as spare rows and spare columns.

This paper considers the problem in which a chip contains several replicates of a heterogeneous array, one
or more sets of spare rows, and one or more sets of spare columns. Each set of spare rows is identical to the set
of rows in the array, and each set of spare columns is identical to the set of columns in the array. Specifically,
an ith spare row can only be used to replace an ith row of an array, and similarly with spare columns. Repairing
the chip reduces to finding a cover for the faults in each of the arrays. These covers must be disjoint; that is, a
particular spare row or spare column can be used in the cover of at most one array. Results are presented for
three fault cover problems that arise under these conditions.

Key words. reconfigurable chips, fault covers
AMS(MOS) subject classification. 94C15

1. Introduction. As chip density increases, the likelihood of fabrication defects on
chips also increases. Maintaining an acceptable yield in chip production requires the
capability to repair defective chips. To this end, reconfigurable chips are fabricated with
redundant elements that can be used to replace faulty elements. The fault cover problem
consists of finding an assignment of redundant elements to the faulty elements such that
all of the faulty elements are replaced.

For reconfigurable chips that consist of arrays of elements, redundant elements are
configured as spare rows and spare columns [15]. Examples of such reconfigurable arrays
include not only arrays of memory elements [19], but also arrays of processors [11],
[14]. A line refers to a row or column of an array. In a reconfigurable array, each spare
line can be activated by programming selection circuitry after fabrication to effectively
replace lines containing faulty elements. The fault cover problem seeks an assignment
of the spare lines to the array such that all of the faulty elements are repaired. The set of
replaced lines is referred to as a cover.

In the model studied previously [8], [12], a row that contains faulty elements can
be replaced by any spare row, and a column that contains faulty elements can be replaced
by any spare column. An example of this model is shown in Fig. 1, in which X’s indicate
faulty elements. Assigning spare rows to rows 1 and 4 and spare columns to columns 2
and 6, marked with arrows, represents one possible repair solution for this array. The
fault cover problem for this type of reconfigurable array is NP-complete [12]. Several
algorithms, including exhaustive approaches and heuristics, have been developed for this
problem [3], [4], [7], [12], [18], [19].

The situation in which a particular row (column) can be replaced only by a member
of a proper subset of the spare rows (columns) arises when the elements in the array are
not all identical. For example, consider the array shown in Fig. 2, which contains four
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FIG. 1. Reconfigurable 8 X 8 array with two spare rows and two spare columns.

types of elements. In the configuration shown, the array comprises two types of rows
and four types of columns. A spare row and column of each type is provided. Clearly, a
line can be replaced only by a line of the same type.

We are concerned with problems in which such heterogeneity of array elements
implies that the ith rows of all the arrays share one or more spares, and similarly for the

S A O O O O < A O O
¢ A O O O O < A O O
© A O O O O < A O O
o 0O A A A O O O A <
o O A A A O O O A <
Array Spare Columns
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o O A A A O

Spare Rows

FIG. 2. Heterogeneous reconfigurable array.
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jth columns of all the arrays. In other words, the set of spare rows is identical to the set
of rows in the array, and the set of spare columns is identical to the set of columns in
the array. When the chip contains a single array of elements, the problem of repairing
faults is trivial. In fact, each fault can be covered in either of two ways, with a spare row
or with a spare column. When the chip contains multiple copies of an array, however,
repairing the chip reduces to finding a cover for the faults in each of the arrays. Figure
3 shows three copies of an array whose faults must be covered by lines from one set of
spare rows and one set of spare columns. A spare line can be assigned to only one of the
three arrays; that is, the three covers for the arrays must be disjoint.

To formulate the problem of finding disjoint covers for replicated heterogeneous
arrays, we model each array as a (0, 1)-matrix, a 0 indicating a nonfaulty element and
a | indicating a faulty element. Figure 4 shows an instance of the problem for the arrays
depicted in Fig. 3. Each of the arrays contains two faulty elements. One solution to the
cover problem, indicated with arrows, is the following: spare columns 1 and 2 are assigned
to array 1; spare row 2 is assigned to array 2; spare column 4 is assigned to array 3. The
covers are disjoint and all of the faults are covered.

In this paper, we present results for three fault cover problems for reconfigurable
arrays in which the use of spare lines is constrained in the manner described above.
These problems are the feasibility problem, the disjoint minimum cover problem, and
the multiple spare array problem. In the first two problems, the chip is assumed to comprise
t replicates of an array and one set each of spare rows and columns. The feasibility
problem asks whether or not the chip can be repaired; the disjoint minimum cover
problem seeks a feasible solution but with the stipulation that the individual cover of
each array be minimum, that is, consisting of a minimum number of spare lines. In §§
2 and 3, respectively, we show that these problems can be solved in polynomial time.
The multiple spare array problem is a generalization of the feasibility problem in which
more than two arrays of spares are available for use in covering faults. In § 4, we show
that the multiple spare array problem is NP-complete. In § 5, we briefly discuss other
potential applications for our fault cover model, and in § 6 we summarize our results.

Array 1 Array 2 Array 3
O ¢ A O O 0o o A O O o ¢ A O O
o o o o 0O o o Oo o O o o o o O
o A O O O O A O O O ¢ A O O O
O A A O O o A A O O ¢ A A O O
O o A O O o <o A O O
O ¢ o o 0O 0o ¢ O O DO
O A O O O S A O O O
O A A O O S A A O O
Spare Rows Spare Columns

FIG. 3. Replicated heterogeneous arrays and spares.
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FIG. 4. Disjoint covers of arrays.

2. Feasible disjoint covers. Given ¢ copies of an R X C array, each containing zero
or more faulty elements, an array of R spare rows and an array of C spare columns, the
feasibility problem seeks an assignment of the spare lines to the arrays such that all faults
are covered and no spare line is assigned to more than one array. The ith spare row may
only be assigned to cover the ith row of an array, and the jth spare column may only be
assigned to cover the jth column. To solve the feasibility problem, we show that the
problem can be formulated as a multigraph coloring problem. This problem in turn can
be reduced to the 2-satisfiability (2SAT) problem in which, given a set U of Boolean
variables and a conjunction of 2-clauses over U, we seek an assignment of values to
variables such that each of the clauses is true. The 2SAT problem is solvable in polynomial
time using any one of several known algorithms [2], [5]. The multigraph is constructed
as follows.

CONSTRUCTION 1. Given a set of replicated arrays Ay, A, -+ , A,, we represent
each fault i with a vertex v; in a multigraph G . With each vertex v;, we associate the label
(a;:r;, c;), representing the array, row, and column, respectively, of the ith fault . For each
pair of faults not in the same array that lie in the same rows of their respective arrays,
we add a red edge to G between the vertices representing the faults. Similarly, we add a
black edge for pairs of faults in the same columns of their respective arrays. Let V be the
set of vertices and E the set of edges in G.

The multigraph G may not be connected. In fact, if there exists a fault in row i and
column j of an array, and if there are no faults in row i or column j of all other arrays,
then this fault will be represented by an isolated vertex. Next, we consider the problem
of assigning the colors red and black to the vertices of such a multigraph. We say that a
coloring is feasible if every vertex is colored, no black edge has two black endpoints, and
no red edge has two red endpoints.

THEOREM 1. A feasible coloring for a multigraph resulting from Construction 1

exists if and only if there exist disjoint covers K, K,, ---, K, for the arrays A,
Az, e, AL
Proof. In the following, i, j, k, /€ {1,2,---, |V|}. Assume that K|, K;, - -+ , K,

are disjoint covers for A, A,, - - - , A,. For each faulty element i, if spare row ; is contained
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in K,, then we color vertex v; red; otherwise we color the vertex black. We claim that
this coloring is feasible. If not, then there must exist a red edge whose endpoints, labeled
(ai:ri, ¢;) and (a;:r), cj), with r; = r;, are both red or a black edge whose endpoints, labeled
(ax:ry, c) and (a;:1, ¢;), with ¢, = ¢, are both black. The former case implies that row
r; is contained in two different covers, K, and K,. This contradicts our assumption that
the covers are disjoint. The latter case implies that column ¢ is contained in two different
covers, K, and K. Again, this is a contradiction.

Next, let C: V= { red, black } be a feasible coloring of the multigraph. We construct
a set of covers K, K;, -+, K, as follows. For each vertex v; that is colored red, we
include spare row r; in cover K,. For each vertex v; that is colored black, we include
spare column ¢; in cover K,. We claim that K|, K3, - -+, K, are disjoint covers of 4,,
Ay, - -+, A,. Since each vertex represents a faulty element, and for each vertex v; at least
one of row r; and column ¢; is included in cover K,, it follows that K, K5, -+, K,
constitute covers for 4,, A,, - -+, A,, respectively. Assume that K, K;, - - - , K, are not
pairwise disjoint. If a row r; is included in both K, and K,, then there must exist two
vertices labeled (a;:7;, ¢;) and (a;:r;, ¢;), with r; = r;, both colored red and connected by
a red edge, a contradiction. Similarly, if a column ¢ is included in both K, and K,
then there must be two vertices labeled (ax:rx, ¢x) and (a;:r;, ¢;), with ¢, = ¢;, both
colored black and connected by a black edge. Again, this is a contradiction. O

Figure 5 shows the multigraph corresponding to the arrays and their faults shown
in Fig. 4. Red edges are depicted with solid lines, black edges with dashed lines. If vertices
V1, V2, Us, and vg are colored black and vertices v; and v, are colored red, then the coloring
is feasible. From this solution, we generate disjoint covers for the arrays as follows: for
each red vertex labeled (a;:r;, ¢;), we assign spare row r; to cover row r; in array a;; for
each black vertex labeled (a;:r;, c;), we assign spare column c¢; to cover column ¢; in
array a;. That is, spare columns 1 and 2 are assigned to array 1; spare row 2 is assigned

vy

Ug

2:2,3

V3 Vs

vy

FIG. 5. Multigraph for feasibility problem.
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to array 2; spare column 4 is assigned to array 3. This solution is indicated with arrows
in Fig. 4.

To solve the feasibility problem, we require an algorithm to solve this multigraph
coloring problem. Construction 2 shows that this problem can be formulated as an instance
of 2SAT, solvable in polynomial time [2], [5].

CONSTRUCTION 2. Given a multigraph G = (V, E) with red edges and black edges,
we construct a conjunction of clauses as follows: For each vertex v; € V, we introduce a
Boolean variable s;. For each red edge (v;, v;), we include the clause (s; V §;); for each
black edge (v, v;), we include the clause (s, V s;).

Intuitively, setting s; to true means that the fault represented by s; is covered by a
row. Similarly, setting s; to false means that the fault represented by s; is covered by a
column.

THEOREM 2. The conjunction of clauses resulting from Construction 2 is satisfiable
if and only if a feasible coloring exists for the multigraph G.

Proof. Let C: V — {red, black} be a feasible coloring of the multigraph G. We
assign values to the Boolean variables as follows: For each vertex v; that is colored red,
we assign variable s; the value true. For each vertex v; that is colored black, we assign
variable s; the value false. Each red edge (v;, v;) has at least one black endpoint, so the
clause (§; V §;) is true. Each black edge (vy, v;) has at least one red endpoint, so the
clause (sx V s;) is true. Therefore, all the clauses in the conjunction are true.

Next, let TA: {s;} = {true, false} be a truth assignment satisfying the conjunction
of clauses. We color the multigraph as follows: For each true variable, we color its cor-
responding vertex red. For each false variable, we color its corresponding vertex black.
Note that an isolated vertex will not be represented in the conjunction of clauses. For
completeness, we color each isolated vertex red. Each clause of the form (5; V ;) is true,
so the red edge (v;, v;) it represents must have at least one black endpoint. Each clause
of the form (s; V s;) is true, so the black edge (vi, v;) it represents must have at least
one red endpoint. Therefore, the coloring is feasible. O

As an example, we give the 2SAT formulation for the set of arrays shown in Fig. 4.
Using the numbering of the vertices in Fig. 5, the conjunction of clauses is: (5] V §3) A
(ST VI)AGBVH)NANGLV §5) A (sqV s5) A (saV Ss). An example of a satisfying
truth assignment is constructed by setting s3 and s4 to be frue and setting sy, 55, S5, and
Se to be false.

3. Disjoint minimum covers. The disjoint minimum cover problem seeks a feasible
solution to the fault cover problem, with the stipulation that the individual cover of each
array be minimum. Finding minimum covers is one way to reduce the cost of repairing
the chip [3]. To show that the disjoint minimum cover problem can be solved in poly-
nomial time, we must first provide some background results. A minimum cover of a
(0, 1)-matrix is a minimum set of lines that contain all the 1’s. The problem may be
represented by a graph. For a given (0, 1)-matrix, we construct a bipartite graph G,
which consists of two sets of vertices, X and Y, and a set of edges E. For each row r; of
the matrix there is a vertex x,, € X. For each column ¢; of the matrix there is a vertex
¥y, € Y. There is an edge between vertices x,, and y,, if there is a 1 in position (7;, ¢;) in
the matrix. This construction is illustrated in Fig. 6. A cover of G is a set of vertices K =
X U Y such that every e € F is adjacent to some vertex k € K.

A matching in a graph is a subset of the edges such that no two edges in the matching
have a common endpoint. A maximum matching is a matching of maximum cardinality.
The bold edges in Fig. 6 constitute a maximum matching. Given a graph G and a matching
in G, a vertex is said to be matched if it is adjacent to an edge in the matching; otherwise,
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FIG. 6. (0, 1)-matrix and corresponding bipartite graph.

it is said to be unmatched. The Konig-Egervary theorem [13] states that the size of a
minimum cover in a (0, 1)-matrix is the same as the size of a maximum matching in
the corresponding bipartite graph. Finding a maximum matching in a bipartite graph
can be done in time O(mVn ), where m is the number of edges and n is the number of
vertices [10].

LEMMA 1. Given a bipartite graph G = (X U Y, E), a maximum matching M in
G, and a minimum cover K of G, exactly one endpoint of each edge in M belongs to K.

Proof. By definition, at least one endpoint of every edge must be included in K.
Since edges in M have no endpoints in common, no vertex can cover two edges in M.
So at least one endpoint of each edge in M must be in K. From the Kénig-Egervary
theorem [13], we know that | K| = | M|. Therefore, at most one endpoint of each edge
in M can be in K. O

LEMMA 2. Given a bipartite graph G = (XU Y, E) and a maximum matching M
in G, an unmatched vertex does not belong to any minimum cover K of G.

Proof. By Lemma 1, there must be at least | A/| matched vertices in the cover.
Since |K| = | M|, the cover K can contain no other vertices. O

Using these two lemmas, we now show that the disjoint minimum cover problem,
like the feasibility problem, can be reduced to 2SAT. The conjunction of clauses is formed
using the following construction.

CONSTRUCTION 3. Let R and C be the number of rows and columns, respectively,
in each of t (0, 1)-matrices, Ay, Az, - -+ , A;. Let G; be the bipartite graph corresponding
to A;. Let M; be a maximum matching for A;. For each row r;, 1 < r; < R, we introduce
t Boolean variables, r;,, 1i2, *** , ri,. For each column ¢;, 1 < ¢; < C, we introduce t
Boolean variables, c;,, ciy, -+ * , ¢iy;. The conjunction consists of four types of clauses:

(1) For each 1, we include the clause (ri, NV c;x), where r;, ¢;, and Ay are the row,
column, and array, respectively, that contain the 1.

(2) Next, for each row r; that contains a 1 in one or more of the arrays, and for
each unordered pair of matrices, A, and A;, we include the clause (7, NV Fi;). For each
column c; that contains a 1 in one or more of the arrays, and for each unordered pair of
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matrices, Ay and A;, we include the clause (T;x V T;;). Hence, for each line that contains
a 1 in one or more of the arrays, t(t — 1)/2 clauses are included in the conjunction.

(3) For each 1 that is represented by an edge in My, we include the clause (r;x vV
Cjx), wWhere r; and c; are the row and column, respectively, that contain the 1.

(4) Finally, for each row r; whose representative vertex in Gy is not matched, we
include the clause (r;x). For each column c; whose representative vertex in Gy is not
matched, we include the clause (¢;;).

THEOREM 3. The conjunction of clauses resulting from Construction 3 is satisfi-
able if and only if there exist disjoint minimum covers K, K,, - -+ , K, for matrices A,
Ay, o0, A,

Proof. Assume that there exist disjoint minimum covers K, K>, - - - , K, for matrices
Ay, Ay, - -+, A;. We assign truth values to variables as follows: For each spare row r; €
K., we set 1, to be true; for each spare column ¢; € K;, we set ¢;; to be true. Each 1 in
Ay is covered by its row #; or its column ¢;, so its corresponding clause (r;x V ¢;x) must
be true. Since each spare row r; can be assigned to at most one cover, every clause
(7ix V Fi;) must be true. Since each spare column ¢; can be assigned to at most one
cover, every clause (Cjx V C;;) must be true. By Lemma 1, we know that, for each edge
in a matching M}, exactly one of its endpoints must be included in a minimum cover
of Gi. Therefore, every clause (7;x V ¢;x) must be true. Finally, by Lemma 2, an un-
matched vertex in a bipartite graph Gy cannot be in a minimum cover of Gy, so all 1-
clauses must be true. Hence, using the truth assignment above, the conjunction of clauses
is true.

Conversely, assume the conjunction is satisfiable. Then there exists a truth assignment
that forces every clause to be true. For each true variable r;;, include spare row r; in
cover Ki. For each true variable c;;, include spare column c; in cover K;. The clauses
from step 1 imply that each 1 is covered. The clauses from step 2 imply that the covers
are disjoint. The clauses from steps 3 and 4 imply that the covers are minimum. O

We omit the details of the conjunction for the example shown in Fig. 4. We note,
however, that while there exists a solution to the feasibility problem for this example,
there does not exist a set of disjoint minimum coverings for the three arrays shown. Such
a set could involve no more than three spare lines, but the faults in the arrays cannot be
covered with fewer than four.

4. Disjoint covers using multiple spare arrays. The multiple spare array problem
is an extension of the feasibility problem discussed in § 2 to include the case in which
the chip contains more than one set of spare rows, more than one set of spare columns,
or both. Multiple sets of spares offer potential increases in chip yield because more defects
can be successfully covered. Of course, the increase in yield must be balanced against
the increase in fabrication and materials costs accompanying the use of additional spares.

The multiple spare array problem can be stated as follows: Given ¢ (0, 1)-arrays of
R rows and C columns each, SR R X C arrays of spare rows and SC R X C arrays of
spare columns, the problem is to find an assignment of the spares to the arrays such that
all the ones in the arrays are covered. An example of the multiple spare array problem,
in which SR = 2 and SC = 1, is depicted in Fig. 7. Unfortunately, finding such disjoint
covers is much more difficult than is the original problem, in which SR = SC = 1.

THEOREM 4. The multiple spare array problem is NP-complete.

Proof. The problem is in NP because we can guess an assignment of the spares to
the arrays and check in polynomial time whether or not all the faulty elements are
covered. Next, we want to use a reduction from a known NP-complete problem to the
multiple spare array problem to show that the latter is NP-complete. Our reduction is
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FIG. 7. Multiple spare array problem.

from the vertex cover problem, which is as follows: Given a graph G = (V, E), and an
integer K = | V|, does there exist a subset V' = V' with | V'| = K such that for each edge
(u, v) € E, at least one of u and v belongs to V'"? The vertex cover problem is NP-
complete [6].

Given an instance of the vertex cover problem, we want to construct an instance
of the multiple spare array problem. Given V = {v,,0,, -+ - ,V,}, E={e;, €2, - ** ,€m},
and a positive integer K = n, we construct n 1 X m arrays, Ay, Ay, * -, Ay, K1 X m
arrays of spare rows, and one 1 X m array of spare columns. That is, SR = K and SC =
1. An entry (1, j) in array 4, is 1 if and only if vertex v; is one of the endpoints of edge
¢;. This means that the sum of the number of faulty elements in each column over all
the arrays is exactly 2.

Now we want to show that there exists a solution to the instance of the vertex cover
problem if and only if there exists a solution to the instance of the multiple spare array
problem. If there is a solution to the instance of the vertex cover problem, then there is
asubset V' = {v}, v5, - -+, v} of ¥ such that / = K and every edge in E has at least one
endpoint in V. For each vertex v} in V', we assign a spare row to the first (and only)
row of array 4;. We use at most SR spare rows, because SR = K. Since every edge has
at least one of its endpoints in 7, the sum of the number of faulty elements that have
not been covered by spare rows, in each column over all the arrays, is at most 1. This
means that a spare column can be used to cover each of these 1’s.

Suppose there is a solution to the instance of the multiple spare array problem. Let
Agpy Agyy * ¢ 5 Agy, Where [ = SR, be the arrays to which spare rows are assigned. Let
be { vy, Vay, *** , U, }. Since we have only one array of spare columns, this means that
the sum of the number of faulty elements left uncovered by the spare rows in each
column over all the arrays is at most 1. Recall that initially this number was 2. This
means that the set ' contains at least one endpoint of each edge in E. O

Although chip yield may be increased with the use of multiple sets of spares, our
NP-completeness result implies that heuristic algorithms are likely to be the only viable
approach to the problem. The investigation of such heuristics is a potential area for future
research.
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5. Other fault cover applications. The results presented here have potential appli-
cation in two other VLSI contexts. First, as the density of reconfigurable arrays continues
to increase, with a corresponding increase in the number of elements in the arrays, re-
pairing a chip will require a larger number of spare lines. Often, however, an individual
row or column contains only a small number of faulty elements [17]. This implies that,
for a reconfiguration method such as shown in Fig. 1, in which entire rows or columns
are replaced, the spare elements will be used inefficiently because most of them wili
replace correctly functioning elements. The number of such wasted redundant elements
increases as the size of the array increases and limits the number of chips that can be
repaired.

One way to increase efficiency in the use of spares, and thus increase yield, is to
replace the single large array with an array of smaller subarrays. The redundant elements
are arranged such that rows and columns of individual subarrays may be replaced, in-
dependent of other subarrays, achieving the desired higher efficiency. Allocating spare
lines for each subarray may be expensive. Alternatively, allowing a spare line to be used
anywhere on the chip is not an attractive solution because the cost of wiring and the size
of programmable decoders increases with the partitioning of the array. A compromise
solution, used in [9], [16], is to limit the number of subarrays to which a particular
spare line may be assigned. Figure 8 shows how our model may be used in this manner.
The array has been partitioned into 16 subarrays. The spare elements have been arranged
as one array of spare rows and one array of spare columns.

Another potential application of our model stems from recent interest in three-
dimensional VLSI design [1]. Consider the situation depicted in Fig. 9, in which eight
arrays are sandwiched between an array of spare rows and an array of spare columns.
Arranging redundant elements in this manner, and requiring that a spare row be used
to replace only one of the rows directly below it, and that a spare column be used to
replace only a column directly above it, offers one way to reduce the circuit complexity
in reconfigurable three-dimensional devices.

In both applications just described, the arrays may be homogeneous. Our model
for heterogeneous arrays is applicable because it is assumed that the need to simplify
wiring for reconfiguration imposes constraints on the use of spares.

I

F1G. 8. Reconfiguration of spares.
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FIG. 9. Three-dimensional arrays and spares.

6. Summary. We have presented results for a set of fault cover problems in repli-
cated, heterogeneous arrays of elements. First, a polynomial-time solution was given for
the problem of finding a set of disjoint covers, if one exists, for the arrays using one set
of spare rows and one set of spare columns. Second, a polynomial-time algorithm was
given to find a feasible set of disjoint covers such that each is minimum. Finally, the
problem of finding a feasible solution when multiple sets of spare lines are available was
shown to be NP-complete. We briefly discussed two other potential applications of this
work. We are currently studying extensions of the problems discussed here.
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