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Synopsis

For high school and college instructors and students, this paper connects number
systems, field axioms, and polynomials. It also considers other properties such
as cardinality, density, subset, and superset relationships. Additional aspects of
this paper include gains and losses through sequences of number systems. The
paper ends with a great number of activities for classroom use.
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1. Pre-Introduction

Zero is the most interesting number—nothing can be divided by it!

This paper considers the intersection of number systems, field axioms, and
polynomials with additional dimensions such as cardinality, density, and sub-
set and superset relationships. This material is intended for either high school
or college mathematics instructors or their respective students. While some
of the material in this paper may be well known by some instructors and col-
lege math majors, few universities have in place a course or a series of courses
which create the gestalt which we intend in this paper. Additionally, even
some college math majors may may not recognize some of the number sys-
tems mentioned herein, their connections to polynomials, or the transfinite
cardinality 2ℵ0 , among many other ideas in this paper.

The flow of this paper follows the path: Culminating Ideas (§2); Introduction
(§3), providing the motivation for the paper; Field Axioms (§4); Polynomials
(§5); Cardinality of Sets (§6); Number Systems (§7); Connecting Number
Systems through Subsets, Supersets, and Cardinality (§8); Other Interesting
Systems (§9); Other Aspects of Gains and Losses (§10); and Activities (§11).
Notably, the authors make a heavy use of footnotes as well as little packets of
fun facts distributed throughout the paper in small boxes in order to provide
the reader some options regarding how to interact with the paper. Some
readers may streamline their reading of the paper and only examine the
footnotes necessary to complete ideas. This is appropriate for those who do
not need the minutia provided in the footnotes. Other readers may carefully
examine every footnote to gain deeper understanding of the relative concepts.

The readers are encouraged to look carefully at the extensive list of activi-
ties described at the end of this paper in §11 and in the article supplements
at http://scholarship.claremont.edu/jhm/vol13/iss2/22. All of these
activities have been used through multiple semesters at the authors’ univer-
sity for senior and graduate level mathematics and mathematics education
majors. Many of these activities can be used in numerous K-16 classes. These
activities bring more meaning to the discussion at hand.

2. Culminating Ideas

1�6
�64

= 1
4
, 1�9
�95

= 1
5
, 4�9
�98

= 4
8
, and 1�6,�6�6�6

�6�6,�6�64
= 1

4

http://scholarship.claremont.edu/jhm/ vol13/iss2/22
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We have chosen the unusual tack of beginning a paper with its culminat-
ing ideas. Figure 1, The Number Systems Maze, depicts subset and super-
set relationships among various number systems which can be seen in K-16
mathematics and beyond.

Figure 1: The Number Systems Maze.

Additionally, as seen in the legend for this diagram, this figure also captures
whether a particular number system is relatively sparse or dense, ordered or
not ordered, and has a cardinality of ℵ0 or 2ℵ0 = c. An accompanying figure
is provided as a standalone figure through the link:

http://appstate.edu/∼bossemj/NumberSystems/ImageMap/ImageMap.html

http://appstate.edu/~bossemj/NumberSystems/ImageMap/ImageMap.html
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This interactive figure provides mouseover capability, where definitions ap-
pear when the mouse runs over the name of the respective number system.
and it can be used by instructors and students to further investigate ideas in
conjunction with, or independent of, this article.

3. Introduction

1
3
= 1+3

5+7
= 1+3+5

7+9+11
= 1+3+5+7

9+11+13+15
= ...

Three realms of mathematics are inextricably linked through K-16 mathe-
matics: number systems, axiomatic field theory1, and solutions to equations.
For example, attempt to solve x + 3 = 1 in the natural numbers. You are
correct; it cannot be accomplished, since negative integers are needed.

To provide a brief motivational platform for this paper, we begin by consid-
ering the equation x2− 4 = 0 and its solutions; see Figure 2 below. Through
changes in the constant or the operation involved, we obtain new equations
whose solution domains change accordingly. In other words, with each change
of constant or operation in the figure, we are thrust into a new number system
in which the roots reside. While all the resulting roots are complex numbers,
students would most often see ±2 as integers, ±

√
6 as irrational, ±2i as pure

imaginary, and ±i
√
6, which can be written as 0± i

√
6, as complex numbers.

From these two scenarios above (x+ 3 = 1 and x2 − 4 = 0), we can see that
number systems are connected to roots of polynomials. However, the devel-
opment of number systems is also connected to field axioms. For instance,
the set N of natural numbers is not closed under subtraction or division,
and it does not contain an additive identity; inverse elements for addition
and multiplication do not always exist in N, and N has a cardinality of ℵ0

(countable infinity). By contrast, the set R of real numbers satisfies all of
these properties and has a cardinality of c (the continuum). Thus, number
systems are also connected to axiomatic field theory.

Altogether, Figure 3 depicts our approach in this paper that the three realms
of number systems, polynomials, and axiomatic field theory are inextricably

1Even though all recognize properties such as the commutative and associative prop-
erties, many students may not be familiar with the term field axioms or field properties.
When discussed in this investigation, all readers will remember these properties and rec-
ognize that they have been used in part since the early elementary grades.
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x2−4 = 0
roots
= ±2

x2+4 = 0
roots
= ±2i

change an
operation

x2+6 = 0
roots

= ±
√
6 i

change a
constant

x2 − 6 = 0
roots
= ±

√
6

change a
constant

change an
operation

Figure 2: Altering the solution domain.

interconnected. So, how do we attack this intersection of ideas? Indeed,
we can focus on any one to develop the other. For instance, it would be as
convenient to develop understanding of number systems by considering which
number systems are closed with respect to which operations, or equivalently,

Number
Systems

Polynomials
Field

Axioms

Figure 3: The three realms.
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which particular field axioms are satisfied in which number system.2 Or the
discussion could be focused on the order in which number systems and field
axiom properties are encountered through K-12 education.

Reviewing all our options, we have decided to provide a development of num-
ber systems and connect them to polynomials and field axioms. Notably, the
number systems provided in this paper span K-16 mathematics and beyond.3

To accomplish our goals, we first provide an overview of axiomatic field the-
ory as a reminder to the readers.

4. Field Axioms: A Quick Introduction to Axiomatic Field Theory

In ancient Egyptian mathematics, 2
3
is the only non-unit fraction

not represented as a sum of unit fractions.

Prior to a formal exposition of field axioms, we demonstrate with a few ex-
amples that some are considered as early as elementary school. For instance,

• As early as first or second grade, students investigate that 3+5 = 5+3
(ithe commutative property).

• Around second grade, students learn that 5+ 0 = 5 and 0+ 3 = 3 (the
additive identity).

• This is usually soon followed by exploration of the associate property
of addition and possibly multiplication. This may then be followed by
the distributive property of multiplication over addition/subtraction.

• Later in elementary school, students encounter negative integers. This
allows them to have closure for subtraction and employ the additive
inverse to solve very simple (one step) arithmetic equations.

2For instance, we could argue that the integers were developed to enforce closure for
subtraction for the natural numbers and that the rational numbers were developed to
enforce closure for division for the integers, and so forth.

3Some of the latter number systems will be quite advanced and usually only investigated
in college graduate level mathematics courses.
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• This is soon accompanied by the consideration of fractions and deci-
mals, opening the way to the notions of rational numbers, closure for
division, and multiplicative inverses.

Thus, while not stated explicitly as field axioms, many of the associated prop-
erties of number systems are investigated throughout the K-12 educational
system.

The field4,5,6axioms are provided in Figure 4 below. This simple table should
be a sufficient reminder for most readers.

Field Properties of F
+ : ∀a, b, c ∈ F × : ∀a, b, c ∈ F

Closed a+ b ∈ F a× b ∈ F
Commutative a+ b = b+ a a× b = b× a

Associative a+ (b+ c) = (a+ b) + c a× (b× c) = (a× b)× c

Identity ∃ 0 s.t. 0 + a = a ∃ 1 s.t. 1× a = a

Inverse ∃ -a s.t. a+ (-a) = 0 ∃ a−1 s.t. a×a−1 = 1, a ̸= 0

Distributive Law a× (b+ c) = (a× b) + (a× c)

Non-triviality 1 ̸= 0

Figure 4: Field properties.

Prior to considering further how the field axioms intersect with number sys-
tems, there are a few additional notions that we think will be important to
our investigation. First, as is mathematically common, we define subtrac-
tion and division through additive and multiplicative inverse respectively.

4Looking into an introductory Modern Algebra textbook for “the” definition of field
doesn’t satisfy our need; nearly all have something like “A field F is a commutative ring
with 1 ̸= 0 in which every nonzero element a is a unit; that is, there is a−1 ∈ F with
a−1a = 1.” [15, page 230]. or “Division rings that have this property [commutative
multiplication] are called fields.” [8, page 88]. We find much more useful Swokowski’s
precalculus text, Fundamentals of Algebra and Trigonometry (1968), giving the list of
field properties collected in Figure 4 on page 8.

5An interesting student project is proving addition is commutative from the other
properties by investigating the equation (1 + x) · (1 + y) = (1 + y) · (1 + x).

6Technically, a field is a triple: the underlying set, an “addition,” and a “multiplica-
tion,” that satisfy the properties listed in Figure 4; we usually abuse the notation referring
to the field by just its underlying set.
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Thus, a− b = a+(−b) and a÷ b = a× 1
b
for b ̸= 0. With these definitions in

place, we do not need to be concerned with closure, identity, or inverses for
subtraction and division.

Second, discussions below place some emphasis on the existence of zero and
the properties of zero. Zero is an important element in the world of number
systems. Zero acts as the additive identity. Also, its properties are instru-
mental to understanding zero divisors which are later discussed in this inves-
tigation. There are two important properties of zero. The first states: ∀a ∈
S, a·0 = 0. The second states that ∀a, b ∈ S, if a · b = 0, then a = 0 or b = 0.
Note that “or” in this last statement is the inclusive or, meaning one or the
other or both.

Our classroom experience has verified that K-16 students can always use
more investigations of the field axioms. Although most of the axioms are
seen informally in early grades, most student rarely see them as a unified
whole. Instructors are encouraged to ask students to define and provide
their own examples of each axiom. Also, it is valuable to show them where
axioms can be applied to simplify mathematics. For instance, rather than
calculating 5(99, 999) = 450, 000 + 45, 000 + 4, 500 + 450 + 45 = 499, 995 a
student can calculate 5(100, 000 − 1) = 500, 000 − 5 = 499, 995, employing
the distributive property.

5. Polynomials

1 and 8 are the only perfect cube Fibonacci numbers.

As a second preparatory discussion prior to considering number systems, we
provide a very brief and well known definition for polynomials. We begin
with the common notation for a polynomial expression:

P (x) = anx
n + an−1x

n−1 + an−2x
n−2 + . . . a2x

2 + a1x
1 + a0.

We define a real polynomial as a polynomial P (x) for which all coefficients
and constants ai are real numbers and all exponents are natural numbers.
A rational polynomial would have all coefficients and constants as rational
numbers.

Due to their simplicity, many first year college students often do not recognize
linear functions as polynomials. However if 2x + 3 is rewritten as P (x) =
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0x3 + 0x2 + 2x + 3, we can see it in the context of a polynomial. Thus, as
soon as a student is asked to solve something as simple as 3 + □ = 5, they
are effectively solving a linear polynomial equation, where the x has been
replaced by the □ for the variable.

As we will see in later discussions of number systems, the notion of polynomi-
als is paramount. For instance, an algebraic number is defined as a number
which is a root of a polynomial function with integer (or rational) coefficients.
Transcendental numbers are those which are non-algebraic. Moreover, stu-
dents generally first encounter irrational, pure imaginary, and complex num-
bers in the context of solving quadratic equations.

Our experience has revealed that, while students are familiar with polyno-
mials, their understanding is often limited and fragmented. For instance,
for

P (x) = anx
n + an−1x

n−1 + an−2x
n−2 + . . . a2x

2 + a1x
1 + a0,

students may not recognize all the information that is readily available (e.g.,
far-left and -right (limit) behavior, the y−intercept, and the number of com-
plex roots and possible real roots). When they see a polynomial in factored
form or a quadratic in vertex form, they might value the new information
provided through those forms but not truly connect it back to polynomi-
als. In other words, there is much for students to consider with respect to
polynomials. Activities #3-5 for R and C relate these ideas; see §11.

6. Cardinality of Sets

9 = 32 = 13 + 23 = 1! + 2! + 3!

Another beautiful notion embedded into the discussion of number systems is
their associated cardinality. Most students are familiar with Buzz LightYear’s
famous quote, “To infinity and beyond.” Interestingly, Buzz was correct.
There are cardinalities beyond the infinity with which most students may be
familiar. Indeed, the infinity recognized by most students is the SMALLEST
of the infinities!

Students are quick to recognize that the set N = {1, 2, 3, 4, 5, ...} of natural
numbers is an infinite set. While the cardinality of this set is indeed infinite,
we denote this as ℵ0, said “aleph nought” or “aleph null”, depending on the
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reference source.7 Interestingly, the respective cardinalities of the following
sets are all ℵ0: the natural numbers, integers, rational numbers, and real
constructible, arithmetic, and algebraic numbers.

The powerset of a set is the set that includes all the subsets of the set and
nothing more.8 Thus, for any set with a cardinality of n, the cardinality of its
power set will be 2n, and n < 2n. Cantor showed that the powerset of a set
always has a larger cardinality. Thus, the cardinality of the powerset of N,
denoted 2ℵ0 = c, must be larger than ℵ0: ℵ0 < 2ℵ0 . Taking this further, the
powerset of the powerset of N (i.e., P(P(N))) has an ever larger cardinality:
ℵ0 < 2ℵ0 = c < 2c. By continuing to consider powersets of powersets, one can
find an infinite number of infinities, each infinitely larger than its predecessor!
Buzz Lightyear was right!

Mind-blowingly, the set of real transcendental numbers (of which most people
only recognize two, π and e) has a cardinality of c (a much larger size of
infinity than ℵ0).

9 Since the real transcendental numbers are a subset of the
real numbers, the real numbers must have a cardinality at least as large as the
real transcendentals. In fact, the cardinality of the reals is also c. Therefore,
the set R of reals gets its enormous size from the real transcendental numbers!
This is cool.

It is fun to consider number systems from the lens of their cardinal sizes.
Indeed, all the number systems we will consider in this paper fall under
the two cardinalities ℵ0 (countably infinite) and c (continuum, uncountably
infinite).

Transfinite cardinalities are just plain cool. Student at many levels enjoy
investigations of various sizes of infinity. Instructors are encouraged to use
notions of infinity to pique the interests of students toward deeper mathe-
matical and philosophical concerns. Zeno’s paradoxes and the evolution of
the notion of limits can also be fun investigations.

7ℵ (aleph) is the first upper case letter in the Hebrew alphabet.
8For instance, for the set A = {1, 2, 3}, the powerset of A would be P(N) =

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
9As stated in [2], “Some authors use ℶn (Hebrew letter Beth) to represent the nth

powerset of N so ℶ0 = ℵ0 = cardN, ℶ1 = 2ℵ0 = cardP(A), ℶ2 = 2ℶ1 = 22
ℵ
0 etc.”
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7. Number Systems

15 is the first product of two distinct odd primes.

Below is an annotated catalog of number systems. These include some com-
ments on properties, such as whether the particular set is discrete or dense10,
whether it is linearly ordered or not11, and its cardinaility. Furthermore, we
consider the number systems in the context of polynomials when appropriate.

Natural Numbers: N = {1, 2, 3, 4, ...}

• N satisfies properties: closure for NN12 and dis-
tributive for × over +.13 N is discrete, ordered,
and has the cardinality ℵ0

• Missing properties include, zero properties and
closure for − and ÷

• N solves the polynomial equation x− a = b for all
a, b ∈ N. Note how limited this equation is.

N + ×
Closed
Commutative
Associative
Identity
Inverse

• N is encountered informally (as numbers) as young children, but not
formally as a number system.

10Sets which are discrete have successive elements such that there are no elements in
between (e.g., in N, there are no elements between 2 and 3). Sets which are dense have an
infinite number of elements between any two elements — no matter how seemingly close
they appear to be. More precisely, a set is dense if given any element x and arbitrarily
small distance ϵ > 0, then is some element y within distance ϵ from x (where distance is
measured thinking of numbers as points residing in the complex plane). In other words,
given an element, there are other elements arbitrarily close to it. On the other hand, a
set is discrete if given an element x there is some distance ϵ > 0 such that there are no
elements (other than x itself within ϵ-distance from x. Consequently, given an element,
we can speak of a closest neighboring element (e.g., in N the closest neighbors of 3 are 2
and 4).

11Here we speak of a linear ordering (i.e., for any x, y, z our order is transitive: x < y
and y < z implies x < z and the trichotomy property holds: exactly one of the following
holds: x < y, x = y, or x > y) that respects arithmetic (for any x, y, z we respect addition:
x < y implies x+ z < y + z and multiplication: x < y and z > 0 implies xz < yz).

12Throughout this paper, EF means that elements of E raised to elements of F powers
result in an element belonging to the number system in question.
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Whole Numbers: W = {0, 1, 2, 3, 4, ...}

• W satisfies the properties: zero14 and closure for
WW15. W is discrete, ordered, and has the cardi-
nality ℵ0

• Missing properties include closure for− and÷. W
still leaves the motivation for a set with closure for
−.

• W introduces zero properties and an identity for
+.

W + ×
Closed
Commutative
Associative
Identity
Inverse

• W solves the equation x − a = b for all a, b ∈ W. Note that this is
almost the same equation as for N. So, it did not help much. But
it certainly leads to the motivation to want a more robust set which
solves more equations.

• W is encountered informally (not as a number system) in grades 1-2.
When investigating subtraction, zero is discovered.

Integers: Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}

• Z satisfies the properties: zero and closure for −
and ZW. Z is discrete, ordered, and has the car-
dinailty ℵ0

• Missing properties include closure for ÷.

• Z introduces closure for − and inverses for +. We
may yet want closure for ÷.

Z + ×
Closed
Commutative
Associative
Identity
Inverse

• Z solves the equation x ± a = b for all a, b ∈ Z. This is a great
improvement, but it still does not solve an equation even as simple as

13Unless otherwise specified or the set does not have closure for + and ×, all the sets
listed have the distributive property of × over +: ∀a, b, c ∈ S, a(b+ c) = ab+ ac.

14Unless specified otherwise, the Zero Property always includes the two properties: (1)
∀a ∈ S, a · 0 = 0 and (2) If a · b = 0, then a = 0 or b = 0.

15In all cases of exponentiation, we omit the option of 00.
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2x+3 = 2. This leads to the motivation to solve linear equations with
integer coefficients which are other than 1.

• Z is encountered semi-formally as the result of investigating subtrac-
tion.16

Rational Numbers: Q = {p/q : p, q ∈ Z and q ̸= 0}
or17

Q = {x : x is a terminating or repeating decimal18}

• Q satisfies the properties: zero and closure for÷19.
Q is dense, ordered, and has the cardinality ℵ0.

• Q introduces closure for for ÷ and multiplicative
inverses and density.

• Q solves the equation ax±b = c for all a, b, c ∈ Q.
Notably, this set still cannot solve equations in-
volving a polynomial function of degree greater
than 1.

Q + ×
Closed
Commutative
Associative
Identity
Inverse

• Q is encountered informally in K-1 (as unit fractions), but not formally
as a number system. It is then once again encountered, semi-formally,
in grades 5-8 as fractions, decimals, and percents.

16We believe that negative integers are encountered far too late in the standard U.S.
curriculum (often in fifth grade). They should evolve organically as students perform
subtraction as early as a negative value may appear.

17It is vitally important to K-16 mathematics that Q has more than one definition.
In essence, the two definitions given indicate that any rational number represented in
fraction form can be converted to a decimal and any terminating or repeating decimal can
be written as a fraction of integers; this is not always obvious to students.

18Students must recognize the distinction between numerals with repeating cycles versus
other discernible patterns. For instance, 1.234234234... has a repeating cycle of 234, and
1.1011011101110... has a discernible pattern which is not a cycle of constant length. In
fact, playing with these patterned decimals, can lead to an understanding of irrational
numbers. The following are all irrational numbers: 1.234567891011121314151617181920...;
1.234345456567678789891091011...; and 1.5101520253035....

19In all discussions involving closure for ÷, we omit the case of division by zero.
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Real Constructible Numbers: SR = {x : x is a real
number which can be compass and straightedge con-
structed20} or SR = R ∩ S, where S will be defined
shortly.

• SR has the properties: zero and closure for − and
÷, and

√
xx≥0, distributive. SR is dense, ordered,

and has the cardinality ℵ0.

• SR introduces closure for square roots and con-
tains some irrational numbers. Note that this is
not closure for all roots, and only a limited num-
ber of irrational numbers are in S, far from the
complete set.

• SR is rarely encountered before select graduate
mathematics courses.

SR + ×
Closed
Commutative
Associative
Identity
Inverse

Real Arithmetic Numbers: ArR = {x : x is real
number which can be built from natural numbers after a
finite sequence of addition, subtraction, multiplication,
division, exponentiation, and root taking} or ArR =
R ∩ Ar, where Ar will be defined shortly.

• ArR has the properties: zero, closure for −, ÷,
and

√
xx≥0, and distributive.

• ArR is dense, ordered, and has the cardinality ℵ0.

• ArR is rarely encountered outside of graduate
studies.

ArR + ×
Closed
Commutative
Associative
Identity
Inverse

20Beginning with two points, (0, 0) and (1, 0), one is allowed to successively construct
lines through two previously constructed points or circles passing through a previously
constructed point with previously constructed point as its center. Intersections of such
lines and circles give newly constructed points. Coordinates of such points are constructible
numbers. Briefly, a constructible number can be constructed from a finite number of uses
of a straightedge and compass.
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Real Irrational Algebraic Numbers: ARI = {x : x
is a real irrational root of a polynomial with integer
coefficients} or ARI = I ∩ AR, where I and AR will be
defined shortly.

• ARI is dense, ordered, and has the cardinality ℵ0.

• Due to lack of closure for + and ×21, we no longer
have any of the field axioms.

• ARI contains the real irrational solutions of all
polynomials with coefficients in Z.

• ARI is encountered informally as numbers (but not
as a number system) when solving quadratic func-
tions in early high school.

ARI + ×
Closed
Commutative 22

Associative
Identity
Inverse

Real Algebraic Numbers: AR = {x : x is a real root
of a polynomial with integer23 coefficients} or AR =
R ∩ A, where A will be defined shortly.

• AR has the properties: zero, closure for −, ÷, and√
xx≥0, and distributive. AR is dense, ordered,

and has the cardinality ℵ0.

• AR contains real solutions of all polynomials with
coefficients in Z.

• AR is encountered informally in high school when
finding roots of polynomials. It is potentially en-
countered formally in a college modern algebra
course.

AR + ×
Closed
Commutative
Associative
Identity
Inverse

21Counterexamples are as simple as
√
2 +

(
−
√
2
)
= 0 and

√
2 ·

√
2 = 2.

22The backcheck symbol indicates that, if the operation on two operands produces an
element in the set, the operation with those two operands holds the respective property.

23Some define AR as the set {x : x is a root of a polynomial with rational coefficients
and x ∈ R}. These two definitions are essentially the same since any polynomial with
rational coefficients can be multiplied by some constant to make all coefficients integral,
and both polynomials would have the same roots.
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Real Transcendental Numbers: TR = {x : x is a
real number but not algebraic (i.e., x ̸∈ AR)} or TR =
R ∩ T, where T will be defined shortly. Also TR =
R− AR

24

• TR is dense and ordered and introduces the cardi-
nality 2ℵ0 = c.

• Due to lack of closure for + and ×25, we no longer
have any of the field axioms.

TR + ×
Closed
Commutative
Associative
Identity
Inverse

• TR is encountered informally in approximately third grade as students
begin to work with calculations of areas of circles with π ≈ 3. It is also
considered semi-formally (but not as a number system) in high school
precalculus courses and above generally in the form of π and e. It is
potentially considered formally in a college modern algebra course.

Irrational Numbers: I = {x : x is a non-terminating
and non-repeating decimal} or I = R−Q or I = ARI∪TR

• I is dense and ordered, and since TR ⊂ I, I has
the cardinality 2ℵ0 = c.

• Due to lack of closure for + and ×, we no longer
have any of the field axioms.

• I is encountered informally in early high school
when solving quadratic equations. It is later con-
sidered semi-formally (but not as a number sys-
tem) in high school precalculus courses and above.
I is potentially considered formally as a set in a
college modern algebra course.

I + ×
Closed
Commutative
Associative
Identity
Inverse

24A − B = {x ∈ A : x ̸∈ B} is the complement of the set B in the set A (also called a
set difference).

25Counterexamples are as simple as π + (−π) = 0 and π · 1
π = 1.



414 The Number Systems Tower

Real Numbers: R = {x : x is a decimal number}
or R = Q ∪ I or R = AR ∪ TR

• R has the properties: zero, closure for −, ÷, and
R≥0

R, and distributive. R is dense, ordered, and
has the cardinality c.

• Given a polynomial P (x) with real coefficients and
a ∈ R+, there are real solutions of P (x)a = 0.

• R introduces closure for (R)R≥0

R + ×
Closed
Commutative
Associative
Identity
Inverse

• R is encountered informally in middle grades in the investigation of dec-
imal numbers and the number line. It is also considered semi-formally
throughout high school and above. R is potentially considered formally
as a set in a college modern algebra course.

Imaginary Numbers: Im = {ai : a ∈ R, i2 = −1}

• Im is dense, but not ordered,26 and has the cardi-
nality c.

• Due to lack of closure for + and ×, we no longer
have any of the field axioms.

Im + ×
Closed
Commutative
Associative
Identity
Inverse

• Im is encountered informally when finding roots of quadratic functions.
It is also considered semi-formally (but not as a number system) in
high school precalculus courses and above. Im is potentially considered
formally as a set in a college modern algebra course.

Gaussian Integers: Z[i] = {a + bi : a, b ∈ Z and i2 =
−1}

• Z[i] has the properties: zero, closure for − and
distributive. Z[i] is discrete, not ordered, and has
the cardinality ℵ0.

• We have lost closure for ÷.

GZ + ×
Closed
Commutative
Associative
Identity
Inverse

26We can order ai < bi for real numbers a < b. Such an ordering respects addition but
not multiplication: since 0 = 0i < 1i = i but i3 = −i = −1i < 0i = 0 (a “positive” cubed
isn’t positive).
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• Z[i] introduces a set which is not ordered.27,28

• Z[i] is encountered informally when solving quadratic equations. It is
also considered semi-formally (but not as a number system) in high
school precalculus courses and above. It is potentially considered for-
mally as a set in a college modern algebra course.

Constructible Numbers: S = {x + yi : the point
(x, y) can be constructed with finitely many uses of com-
pass and straightedge and i2 = −1}

• S has the properties: zero, closure for − and ×,
and ÷, and distribution. S is dense, not ordered,
and has the cardinality ℵ0.

• S is rarely encountered before graduate mathe-
matics courses.

S + ×
Closed
Commutative
Associative
Identity
Inverse

Arithmetic Numbers: Ar = {x : x can be built from
natural numbers after a finite sequence of addition, sub-
traction, multiplication, division, exponentiation, and
taking roots}

• Ar has the properties: zero, closure for − and ×,
and ÷, and distribution. Ar is dense, not ordered,
and has the cardinality ℵ0.

• Ar is rarely encountered before graduate mathe-
matics courses.

Ar + ×
Closed
Commutative
Associative
Identity
Inverse

27As soon as the elements of a set possess both non-zero real and imaginary parts, it is
no longer ordered. This stems from the fact that we can no longer respect multiplication:
non-zero squares must be positive but i2 = −1 < 0.

28The Eisenstein integers are complex numbers of the form x + ωy where x and y are
integers and ω is a nontrivial cube root of 1. This set has hexagonal symmetry.
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Algebraic Numbers: A = {x : x is a root of a non-
zero polynomial with integer (or rational) coefficients}29

• A has the properties: zero, closure for − and ÷,
and distributive. A is dense, not ordered, and has
the cardinality ℵ0.

A + ×
Closed
Commutative
Associative
Identity
Inverse

• A is encountered informally in high school when finding roots of poly-
nomials. It is potentially encountered formally in a college modern
algebra course.

Complex Numbers: C = {a+bi : a, b ∈ R and i2−1}
or C = R ∪ Im or C = A ∪ T

• C has the properties: zero, closure for −, ÷, and
CC, and distributive. C is dense, not ordered, and
has the cardinality c.

• C introduces closure for CC.

C + ×
Closed
Commutative
Associative
Identity
Inverse

• Given a polynomial P (x) with complex coefficients and a ∈ C, some
elements of this set are solutions of P (x)a = 0.

• C is encountered informally when solving quadratic equations. It is also
considered semi-formally (but not as a number system) in high school
precalculus courses and above. It is potentially considered formally as
a set in a college modern algebra course.

Quaternions: H = {a+bi+cj+dk : a, b, c, d ∈ R and i2=
j2=k2= ijk=−1}30

• H contains the properties: zero, closure for −, ÷,
and HH, and distributive. H is dense, not ordered,
and has the cardinality c.

H + ×
Closed
Commutative
Associative
Identity
Inverse

29This set is sometimes denoted by Q because it is the algebraic closure of the rational
numbers.

30On Monday, the sixteenth of October, 1843, Hamilton had the epiphany that the
relation i2 = j2 = k2 = ijk = −1 defined the quaternions; he carved this formula into the
stone of the Brougham Bridge in Dublin.
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• Since H is noncommutative for multiplication, H is a skew-field (also
called a division ring), not a field.

• H is rarely encountered before graduate mathematics courses.

8. Connecting Number Systems through Subsets, Supersets, and
Cardinality

For n = 22, 23, 24 (only), n is the number of digits in n!

The annotated list of number systems of §7 can be considered through an-
other interesting and entertaining light. Some sets have subset and superset
relationships. This also leads to considerations of sets with cardinality ℵ0 or
2ℵ0 . The following expressions demonstrate some of these relationships.

N ⊂ Z ⊂ Q ⊂ S ⊆ ArR︸ ︷︷ ︸
ℵ0

⊂ R ⊂ C︸ ︷︷ ︸
c

,

ARI︸︷︷︸
ℵ0

∪ TR︸︷︷︸
c

= I ⊂ R︸ ︷︷ ︸
c

, Im ⊂ C︸ ︷︷ ︸
c

,

Z[i]︸︷︷︸
ℵ0

⊂ C︸︷︷︸
c

Considering these set relationships introduces another interesting notion: as
elements from a proper subset are inherited into a superset, the superset also
inherits all the field axioms associated with the subset. For instance, since
Z ⊂ Q, all the field axioms inherent in Z are also in Q. Notably, the superset
may bring in additional field axioms not held in the subset. However, and
maybe unexpectedly, the superset may also lose some properties too. For
instance, while R ⊂ C, C loses order, and while C ⊂ H, H loses multiplicative
commutativity.

Instructors are encouraged to lead students through investigations of various
number systems through the lens of subset and superset relations (see ac-
tivity #7 under R and C in §11). Through investigating these superset and
subset structures, the notion of inheriting field axioms among subsequent
number systems naturally evolves. These can be informative and engaging
investigations.
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9. Interesting Systems Other than Number Systems

In English, 77 is the smallest number requiring five syl-
lables to name.

There are four other systems which we wish to present for the sake of compar-
ison with previously presented number systems. These include the integers
Zp under a prime modulus, integers Zc under a composite modulus, matrices,
and field extensions. We discuss these less formally than the number systems
of §7.

• Integers Mod p where p is prime: p = {2, 3, 5, 7, 11 . . .}. Zp is a
field with all the properties including zero, closure (+,−,×, and ÷),
and distributive. Notably the cardinality of Zp is p and Zp is discrete.

• Integers Mod c where c is composite: c = {4, 6, 8, 9, 10, . . .} Zc

is not a field. Zc contains zero divisors31. While zero divisors do not
affect closure, they affect other properties such as the identity and
inverse properties.

• Matrices. Most notably, matrix multiplication is noncommutative.
Since matrices are investigated as early as high school, they are usually
the first system which students investigate which is noncomutative for
multiplication.

• Field Extensions. We can also build towers of fields. For example,
look at Q[

√
2] = {p + q

√
2 : p, q ∈ Q} or Q[ 3

√
2] = {p + q 3

√
2 + r

3
√
22 :

p, q, r ∈ Q}. This concept is studied in many college-level algebra
courses.

• Computable numbers. Alan Turing defined a computable number as
a number that can be approximated to an arbitrarily chosen precision
given a finite amount of time. Rational numbers and algebraic numbers
are computable. While transcendental numbers like π or e which have
convergent series expansions are computable, most real numbers are
not computable. For a nice exposition, see [11].

31We previously stated that if a · b = 0, then a = 0 or b = 0. However, for instance,
under Z6, 2 · 6 = 0, but neither 2 nor 3 is zero. Thus, 2 and 3 are zero divisors and we say
that the system includes zero divisors.
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There are countless additional systems which have been recognized by others
or can be constructed. The study of any and all of these help us to understand
others. Instructors can encourage students to investigate number systems to
build their enthusiasm regarding mathematical pursuits.

10. Other Aspects of Gains and Losses

113 is the smallest three-digit number for which all ar-
rangements of its digits are also prime.

There are other ways to envision the movement among number systems. This
can be seen through the lens of gains and losses. Some of these are depicted
in Figure 5.

• Progressing from N to Z, we gain closure for subtraction but lose the
representation of a unique absolute value. For instance, |−1| = |1| and
| − 3| = |3|.

• Progressing from Z to Q, we gain closure for division and lose unique
representation. For instance 1/2 = 2/4 − 100/(−200) = 0.04/0.08 =
(1.234/2.468 = 0.5 = 0.49.

• Progressing from Q to R, we gain Dedekind completeness32 and lose
countability33 and simple representation34.

• Progressing from R to C, we gain algebraic completeness35 and lose
order36.

32Dedekind completeness is encountered in a typical introductory real analysis course. It
guarantees that subsets of real numbers with upper and lower bounds in fact have greatest
upper bounds and least upper bounds. Alternatively, this kind of completeness guarantees
that Cauchy sequences (that is, sequences in which as one goes further out in the sequence,
the terms gets closer and closer together) must converge to some real number.

33The cardinality moves from ℵ0 to 2ℵ0 = c.
34There is no simple way to represent r = 1.01 002 0003 00004 000005 0000006 . . . .
35Every nth degree polynomial has exactly n roots (counting multiplicity).
36We can no longer say that for any two numbers a, b ∈ C, that a < b or a = b or a > b.

Let us consider why one complex number cannot be greater than another. Suppose i > 0
and multiply by i. Then i > 0 =⇒ i2 > i·0 = 0 =⇒ −1 > 0, which is somewhat unsettling.
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• Progressing from C to H gains an ability to depict 3D geometry and
loses commutivity for multiplication.

N
Natural Numbers

Z
Integers

Q
Rational Numbers

R
Real Numbers

C
Complex Numbers

H
Quaternions

Gain:
closure of

subtraction

Loss:
well-ordered,
unique absolute
value

Gain:
closure of
division

Loss:
unique
representation

Gain:
Dedekind

completeness

Loss:
simple representation,
countable universe

Gain:
algebraic

completeness

Loss:
order,
trichotomy

Gain:
3D geometry

Loss:
commutativity

Figure 5: The Tower of Num-
ber Systems

Students can be encouraged to investigate
other series of number systems for gains and
losses in other dimensions. For example,
‘what properties are gained or lost when
moving from irrational numbers to real num-
bers?’ This is a relatively unique mechanism
through which to view, compare, and con-
trast various number systems. This could
provide much interesting fodder for univer-
sity mathematics learners.

11. Activities

101 is a palindromic prime.

We conclude this paper with some activi-
ties designed to help make the gestalt among
the topics and subtopics in this paper, lead-
ing to deepening students’ understanding of
the topics. These activities are not grade-
related; they are aligned by number sys-
tem. Thus, they can be used in multiple
ways in different classes. In the following
we provide a brief description of each activ-
ity. A booklet containing full descriptions of
all activities can be found as an article sup-
plement on the website for this article (http://scholarship.claremont.
edu/jhm/vol13/iss2/22) in two formats: a PDF file for effective printing
and a MS Word doc, so that it can be easily edited and modified by in-
structors to give students the learning experiences they wish them to have.

Now suppose i < 0. Then multiply by i. Then i < 0 =⇒ i2 > i · 0 = 0 =⇒ −1 > 0, which
still is discomforting. So i can be neither greater than nor less than 0 — there is no ‘less
than’ for the complex numbers.

http://scholarship.claremont.edu/jhm/ vol13/iss2/22
http://scholarship.claremont.edu/jhm/ vol13/iss2/22
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All of these activities have been field tested in middle school, high school,
and college classrooms and revised and improved accordingly. The reader
should not be deceived by the seeming simplicity or complexity of some of
the activities; at times college math majors are surprised by what they learn
in the simple activities and high school students are surprised how far they
can get with the more advanced activities.

Activities for N, W, and Z
1. Blank Modulo Tables: This activity asks readers to complete some
blank addition and multiplication tables in various modular arithmetic sys-
tems with leading questions at the end. It is an introduction to zero divisors.
This activity compares systems with prime versus composite moduli. This
activity can be completed by students as young as in middle grades. Under-
standing zero divisors leads to better understanding of the far more familiar
zero properties. This activity leads students to some fun and unanticipated
findings. In another dimension regarding number systems, this investigation
deals with sets of cardinality n < ℵ0.

3. The Magic of 1: This activity investigates some fun facts about the
values 0 and 1. The reader must complete proofs about some commonly
encountered ideas often seen as early as in middle grades. These proofs
should be immediately at hand for any teacher of grade 6 and above to
readily answer student questions. The values 0 and 1 are very important
in mathematics in general and in respect to the consideration of number
systems and field axioms.

4. Order of Operations: This activity uses modulo operation tables in
order to investigate order of operations. Too many students think they un-
derstand the order of operations. This activity both challenges them and
solidifies these notions. In respect to number systems, a firm grasp of oper-
ations is needed to understand field axioms.

5. Rules for Divisibility: Students are often expected to use divisibility
rules. However, few understand why these work. This worksheet asks the
reader to prove various rules. Students at many levels are expected to apply
these rules without an understanding as to why they work. Admittedly, this
worksheet is not needed in the context of an investigation of number systems.
But students often enjoy proving these ideas, particularly for divisibility by
3 and 9. Younger students can empirically experiment with the rules to see
if they believe that are true.
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6. Theorem Investigation: This activity is fun based on the cryptic
form through which the Fundamental Theorem of Arithmetic is presented.
This activity introduces many students to the operation

∏
rather than only

the
∑

operation. This is important regarding the Fundamental Theorem
of Arithmetic and later applications of such. While students often find this
activity fun in its cryptic nature, the activity subtlety emphasizes the notion
of uniqueness – a concept later lost in more advanced number systems.

7. Other Bases: Understanding numbers and operations in other bases
helps us understand base 10. This activity forces students out of their comfort
zone regarding base 10 and helps them to better conceptually understand the
arithmetic they do daily. Although beyond the scope of this activity, students
are surprised to find that number systems in other bases hold the same
properties as does base 10 numbers, including prime and composite values.

Activities for Q

1. Algebraic Structures: This chart can be used as either a reference tool
or an instructional/learning tool in respect to the notion of a field and the
field axioms. This is much more of a very helpful resource than an activity.
Many abstract algebra students struggle with the nomenclature of groups,
rings, and fields. This chart collects many of these ideas in one graphic.

2. Playing with Fractions: This activity looks more deeply at relation-
ships with fractions. Some students find these activities both interesting and
challenging, and are quite surprised at recognizing the gaps in their knowl-
edge and what they learn. In respect to number systems, this activity helps
students better understand aspects of Q which might have previously escaped
them.

3. Terminating and Repeating Decimals: Students can investigate fun
ideas regarding terminating and repeating decimals, including delayed cycles.
Many students are quite surprised what they learn through this exercise,
and how they can use these ideas to understand delayed terminating and
repeating decimals. In respect to number systems, this activity helps students
better understand aspects of Q which may have previously escaped them.

4. Mapping Between Number Systems: This activity considers map-
pings between N → Z and N → Q. It also considers other mappings and the
notion of cardinality. Students generally like this exercise as the see many
sets with cardinality ℵ0 and are introduced to the cardinality 2ℵ0 .
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Activities for I

1. Geoboard Numbers: This activity introduces the notion of con-
structible numbers. Many students will not have seen these numbers before
and may be surprised at what number can be constructed and which cannot.

2. Rational Approximations of Irrational Numbers: This activity
expands on student understanding of rational and irrational numbers. It
helps students to see that a rational number can be made to approximate
any irrational number to a particular decimal place. This activity also helps
with the notion that R = Q ∪ I.
3. Continued Fractions: This activity expands on student understanding
of rational and irrational numbers. It invites students to consider the nature
of continued fractions, a concept only infrequently investigated in high school
and college classes.

4. Infinite Irrational Decimals: This activity considers a historic proof
of the infinity of irrational numbers from a very cryptic and incomplete pre-
sentation. As in a precious exercise, students appreciate the mathematically
cryptic form of the exercise. It allows them to fill in missing ideas, and learn
thereby. It also helps them to understand that the cardinality of I must be
greater than ℵ0.

5. Fibonacci Sequences: An investigation of the Fibonacci sequence leads
to some nice connections to irrational numbers. Particularly, this activity
helps students understand one number which is often misunderstood as irra-
tional: ϕ.

Activities for R and C

1. Functions with Characteristics: This activity considers various func-
tions with zeros and asymptotes from various number systems. This activity
deepens many students understanding of polynomial functions. Many stu-
dents enjoy solving these problems and inventing their own.

2. Finding Domains: This activity considers how the domains of func-
tions intersects with number systems. Students are often challenged by these
exercises.

3. Taylor Polynomials and Euler’s Formula: Some mathematicians
and educators consider Euler’s Formula to be the culmination of all mathe-
matics that should be learned in high school. This activity makes some nice
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connections among trigonometric functions and complex numbers. Students
often enjoy recognizing the connection of trigonometry with Euler’s Formula.

4. Some Complex Ideas: This is an extension of investigating Euler’s
Formula. Even students who are quite familiar with complex numbers only
occasionally consider complex numbers in this manner.

5. Readings on Complex Roots of Polynomial and Rational Func-
tions: These provide interesting, fun, and unexpected results. Most inter-
esting is that, through the graph alone of a polynomial or rational function,
students can approximately locate the position of complex roots.

5.1 Quadratic through Quartic: https://scholarworks.umt.edu/cgi/view

content.cgi?article=1440&context=tme

5.2 Circle Constructions: https://php.radford.edu/∼ejmt/deliveryBoy.
.php?paper=eJMT v11n2n1

5.3 Quintics: https://scholarworks.umt.edu/tme/vol15/iss3/12/

5.4 Rational Functions: https://php.radford.edu/∼ejmt/deliveryBoy.ph
p?paper=eJMT v12n2n1

6. Number Systems Table: This activity connects number systems with
field axioms, cardinaliy, and other dimensions. Its simple form allows for
students to recognize gaps in their own knowledge and the instructors to
efficiently assess student understanding.

7. Number Systems Diagram: This assignment challenges the student
to better understand subset and superset relationships. Additionally, this
activity allows them to see how many poor representations are provided on
the internet.

8. System-Oscillating Functions: This is a fun exercise which considers
functions hopping between number systems. More advanced students gener-
ally greatly enjoy this activity, and often develop very creative functions to
complete the tasks.
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