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Abstract

Design couples synthesis and analysis in iterative cycles, alternatively generating solutions, and evaluating their
validity. The accuracy and depth of evaluation has increased markedly because of the availability of powerful simu-
lation tools and the development of domain-specific knowledge bases. Efforts to extend the state of the art in evalua-
tion have unfortunately been carried out in stovepipe fashion, depending on domain-specific views both of function
and of what constitutes “good” design. Although synthesis as practiced by humans is an intentional process that centers
on the notion of function, computational synthesis often eschews such intention for sheer permutation. Rather than
combining synthesis and analysis to form an integrated design environment, current methods focus on comprehensive
search for solutions within highly circumscribed subdomains of design. This paper presents an overview of the
progress made in representing design function across abstraction levels proven useful to human designers. Through an
example application in the domain of mechatronics, these representations are integrated across domains and throughout
the design process.

Keywords: Case-Based Design; Computational Synthesis; Function-Based Design; Functional Synthesis

1. INTRODUCTION: THE HUMAN NATURE
OF DESIGN

Leifer ~1994! casts design as a human, social activity. Design
is customer driven because designers take input from non-
experts ~customers! and translate it into engineering require-
ments that represent the desires of the customer without
unduly constraining the design space. These requirements
typically fall into those associated with function ~what a
design must do! and performance ~measures of its effective-
ness in doing it!. Translation processes take place recur-
sively throughout the design process, from initial customer
objectives to design specs, function-based design to config-
uration design, and configuration design to detailed design.
Design processes at higher levels of abstraction lead to spec-
ifications that further drive processes performed at lower
levels of abstraction. The results of lower level design activ-
ities are used iteratively to redefine design goals at higher
levels of abstraction. Because initial goals occur at many
levels of abstraction, the quality of abstract design concepts

cannot be fully evaluated until their implications at lower
design levels are explored. This deeper investigation informs
higher level design processes, helping to refine design goals.

Both the process of design and the product of this pro-
cess are developed concurrently, as duals. When we talk
about design as a knowledge-intensive process, we are talk-
ing not only about knowledge of how to generate design
alternatives and select among them but also about knowl-
edge of when to narrow or expand the design space and
how to manage evaluation models with varying cost and
accuracy.

Design is thus a transformation ~by recursive, iterative
translations! of an initial knowledge state to a final knowl-
edge state. Because the initial and final states are represen-
tations of the artifact being designed expressed at different
levels of abstraction, the state descriptions must be com-
plete and unambiguous at their respective levels of abstrac-
tion. The start of the design process requires a sufficiently
clear description of the intended end point of the process
and the constraints within which the designed device must
operate. Dym ~1994a! defines a complete design as a set of
fabrication specifications that allow the artifact to be built
exactly as intended by the designer. Others suggest that the
final specification include detailed representation of designer-
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intended function0behavior to improve downstream pro-
cesses like manufacturing and troubleshooting ~Umeda et al.,
1994! capturing this information within the design process
is a prime motivation for formalizing function-based design.
Only the most routine designs are understood well enough
initially to provide specifications complete enough to entail
a design solution; in the general case, the initial specifica-
tion must be refined through repeated testing throughout
the design process. In Yoshikawa’s Ideal Design ~1981!,
complete knowledge of all possible specifications and
designs affords a direct mapping from customer need to
design attribute; Real Design introduces physics as an inter-
mediary in the mapping, creating an evolutionary process
where requirements are refined as solution classes and then
specific solutions are proposed and evaluated.

Rather than a single layer of abstraction interposed
between design requirements and solutions, Dym and Lev-
itt ~1991! and Ullman ~1992b! propose the following six
knowledge-state layers for design:

1. layer 1— client objectives,
2. layer 2—function~s!,
3. layer 3—physical phenomena,
4. layer 4— embodiment~s!,
5. layer 5—artifact type~s!, and
6. layer 6—artifact instance.

The detailing of the knowledge-state layers is not discussed
here, beyond noting that the knowledge-level layers require
various representation languages for proper expression, five
of which are identified here ~Dym, 1994b; Dym & Brey,
2000!:

1. textual,
2. numerical—discrete,
3. numerical— continuous,
4. graphical, and
5. physical.

The knowledge-state layers and their representations are
not independent: the more abstract the layer is, the more
likely its rather vague knowledge will be expressed in text.
At the other end of this spectrum, artifact types and artifact
instances are increasingly specific descriptors typically
expressed in graphical or physical terms.

1.1. Function

At its core, function is an abstraction of behavior ~Qian &
Gero, 1996!. Although physics can often be used to model
the behavior of a design, functionality is a human interpre-
tation of this behavior: Does this behavior accomplish the
desired effect? Does this effect address the needs of the
customer? For this reason, when we talk about function we
must always relate function to a customer; when we talk

about functional synthesis, we must expand the boundaries
of synthesis beyond physics-mediated behavior into human-
mediated function. Functional abstraction implies more than
simply a subset relationship on behavior; it implies intent
on the part of the designer situated in the context of the
customer ~Chandrasekaran & Josephson, 2000!.

In the modern, life-cycle view of design, the role of “cus-
tomer” is extended from the end user to all of those involved
in the production, distribution, service, and retirement of a
design. Although end-user notions of function predominate
at the “function” layer, function pervades the six knowledge-
state layers for life-cycle customers. For example, function
relating to forming parts resides at the artifact type and
instance levels; assembly functions occur at the embodi-
ment and artifact type levels. Functional requirements at
these lower levels come from two basic sources: the spe-
cific design ~defining the parts that must be shaped and
assembled! and the more generic processes used to produce
it ~assembly, automated assembly, primary forming pro-
cess, secondary process, fixturing, etc.!. In an examination
of small mechatronic products, Verma and Wood ~2001!
find that 70% of the geometric features of a design relate to
functions other than those attributable to the end user. In
addition, these functions vary based on the manufacturing
processes used, the production volume required, the method
of distribution, and so forth. Design for X thus means estab-
lishing functional requirements for each X within the con-
text of a design that also addresses end-user functional
requirements.

1.2. Computational synthesis

Computational synthesis focuses on formal methods of gen-
erating candidate designs. The process is fundamentally one
of composition: a set of building blocks is defined along
with rules for combining them. These building blocks can
be a collection of parts or a set of primitives ~functional or
geometric!. We will divide computational synthesis into two
loose classes based on the degree to which goal and domain
knowledge is explicitly used for generating designs.

Where goals can be defined in the language of genera-
tion, computational synthesis takes on the character of a
classification or derivation design task. Typical of this type
of computational synthesis are efforts in the abstract func-
tional design knowledge-state layer ~Chakrabarti & Bligh,
1994; Qian & Gero, 1996; Sharpe & Bracewell, 1996; Kota
& Chiou, 1997!. Because goals essentially establish the
boundary conditions of the design, search is focused on
reducing differences between input and output by interpos-
ing functional units. From a strategy standpoint, this type of
computational synthesis might be directed to define a sin-
gle design solution or to enumerate all possible design solu-
tions. We will label this tight coupling of goals and synthesis
“strong” computational synthesis. Such methods typically
focus on a single function0behavior goal for synthesis; addi-
tional goals like size, cost, or other aspects of technical
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performance might be used to select among the generated
designs. Kota and Choiu ~1997! perform strong synthesis
for mechanism type design; desired input0output relation-
ships are produced by stringing together catalog compo-
nents whose individual behavior is expressed in input0
output relationships.

Where design goals cannot be encoded in the represen-
tation most appropriate to generation, computational syn-
thesis relies on iterative generate-test loops. In such a scheme,
design goals are encoded as fitness functions defined over
the design generation space. Because generation cannot be
constrained directly by the representation, these methods
tend toward random explorations, iteratively focused on areas
most likely to accomplish the desired goal. The resulting
large number of design candidate evaluations places a pre-
mium on both the efficiency of goal assessment and the
effectiveness of candidate generation. This “weak” compu-
tational synthesis tends to work well in situations where
design goals are difficult to encode directly in the represen-
tation least biased for the generation step. For example,
2-dimensional ~2-D! truss structures can be generated in a
graphical0pixel domain by adding and deleting “material.”
The resulting design is evaluated through more abstract math-
ematical models of strength, deflection, mass, or cost ~Reddy
& Cagan, 1995!. Alternatively, topology generation could
employ a grammar to place new members into a design
~Shea & Cagan, 1997!, but the effectiveness of the new
design must still be gauged in a separate evaluation step. In
both cases, the resulting evaluation steps help to focus fur-
ther synthesis ~e.g., removing material from low stress areas,
adding members to high stress areas!. Evaluations of a
more binary nature ~e.g., is this item a “chair”?! produce
still weaker synthesis methods.

Because it takes place at many different stages of the
design process and in several different knowledge-state lay-
ers, it is difficult to categorize functional synthesis rigidly.
At various stages of design, functional goals might be defined
textually, numerically, or graphically; the native format goes
a long way toward shaping the nature of synthesis; less
formal ~i.e., less computable! representations yield less for-
mal definitions of building blocks and less sound composi-
tion rules.

2. INTEGRATED FUNCTIONAL SYNTHESIS

The directionality conventions of business integration also
frame a discussion of design integration. Vertical integra-
tion spans all abstraction levels within a single domain. For
mechanical engineering this would mean proposing mechan-
ical solutions to customer needs at the functional level, iden-
tifying mechanical means of accomplishing individual
functions, developing a configuration and embodiment link-
ing these functional units together, and generating detail
design plans for parts and assemblies. The main issue in
vertical integration is in the transition from one abstraction
level to the next, first from higher to lower levels through

goal specification. The combination of weak computational
synthesis at high levels of abstraction with the imprecise
evaluation metrics that can be applied to such abstract rep-
resentations may lead to backtracking when strong synthe-
sis at lower levels of abstraction finds contradictory goals
or when more accurate design evaluations at even lower
levels of abstraction find a design concept unacceptable.

Horizontal integration generates and evaluates solutions
from all domains within a single abstraction layer. Integra-
tion at the functional level might mean the ability to con-
sider both mechanical and electrical solutions to the same
problem ~e.g., designing hard vs. soft automation for a pro-
duction line! or could broaden the scope of domains to
political or social solutions to problems: should the excess
nutrient problem in the Chesapeake Bay be addressed by
controlling runoff with a civil dam structure, an environ-
mental buffer, a mechanical filter, a computer-controlled
fertilizer dispenser, development of different types of fer-
tilizers, encouragement of organic farming methods, or leg-
islation of farming practice? At lower levels, horizontal
integration might be more straightforward, perhaps devel-
oping solutions in parallel for various materials and manu-
facturing processes. Circumscription, used by many “strong”
computational synthesis methods to promote soundness
~Takeda et al., 1990!, limits the domain @e.g., energetic sys-
tems ~Sharpe & Bracewell, 1996!, mechanisms ~Chakra-
barti & Bligh, 1994; Kota & Chiou, 1997!# that any one
method might search; horizontal integration requires explor-
ing the functional boundary between synthesis methods or
integrating functional representations and synthesis meth-
ods across domains.

A completely integrated design environment would fea-
ture both vertical and horizontal integration. However, until
the issues surrounding integration along each of the above
axes are understood, it is premature to talk about complete
integration. Where does functional synthesis fit into these
integration frameworks?

2.1. Vertically integrated functional synthesis

To address this question, we must look at the core compo-
nents of functional synthesis: building blocks, composition
rules, and evaluation functions. An additional organiza-
tional distinction also helps frame the discussion: top-down
vertical integration would imply progression through increas-
ingly less abstract representations, the results of search at
each step passed down to lower levels of abstraction as
functional goals. Bottom-up integration performs search at
low levels of abstraction and controls this search through
the evaluation of models of higher level functionality that
build upon low-level behavior.

Top-down vertical integration requires translation between
abstraction levels. For strong computational synthesis within
each level, designs from higher levels of abstraction must
be translated into goals at lower levels. Top-down weak
computational synthesis might simply identify a set of “seed”
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building blocks for initiating the construction of lower level
candidate designs. In either case, evaluation spans several
levels of abstraction, from high-level functionality, to ide-
alized behavior, to part count and cost.

The need to access low levels of design abstraction for
accurate performance evaluation suggests a bottom-up
approach to vertical integration in which synthesis is done
at the lowest level of abstraction. Search control is extremely
important in this mode because such low-level representa-
tions are naturally unbiased, a pixel representation can be
readily searched for 2-D trusses, but a voxel representation
for 3-D trusses is impractical compared to grammars that
bias the design generation toward topologies of straight mem-
bers. Success of the bottom-up approach lies in the ability
to propagate structural descriptions to behavior-based eval-
uation and function. Thus, the bottom-up approach is most
suitable to search where completeness is highly valued and
evaluation is either inexpensive across all abstractions or
inaccurate at all but the lowest levels of abstraction. Genetic0
evolutionary methods predominate here, requiring both inex-
pensive evaluation metrics to identify promising candidates
and simple composition mechanisms that use pools of such
candidates to “design” new candidates with the hope of
combining good features in a synergistic way.

2.2. Horizontally integrated functional synthesis

Whereas vertical integration introduces the need to trans-
late either functional goals or evaluation models between
representations within a single domain, horizontal integra-
tion requires merging representations across domains. The
ability to represent a larger range of solutions brings with it
a cost in decreased representational bias, which in turn,
means that more of the domain knowledge must be expressed
using the representation rather than embedded in it. This
includes strategic knowledge that may have been encoded
in composition rules. Problem-solving methods and mech-
anisms that pertain to only a subset of designs in the broader
representation must be preceded by appropriate screening
logic. Likewise, effects that can be ignored in a subdomain
may become significant in an expanded context. For exam-
ple, a mechanical model of an electric motor might not
include the RF noise that a motor’s brushes emit; this noise
could be critical in a mixed electromechanical domain.

The closer a design moves to the final artifact, the more
difficult it is to horizontally integrate the design process.
Concurrent engineering performed through collocation is a
successful strategy of integrating manufacturing consider-
ations into the earliest functional and embodiment phases
of design. Its effectiveness lies in the exchange of informal
information at high levels of abstraction where there is the
largest freedom to explore design alternatives. Concurrent
engineering applied at the later geometry-oriented stages of
design has proven less successful. As prescribed by Pahl
and Beitz ~1988!, function-based design is essentially hor-
izontally integrated at the highest levels of abstraction. The

emphasis early in the design process is on development of
function–structures that are explicitly solution neutral. The
selection of physical phenomena at the final stages of func-
tional design goes a long way toward defining the relevant
solution domain~s!. Instead of trying to integrate synthesis
across domains, horizontal integration could act at higher
levels of abstraction to produce a range of possible goal
sets for each solution subdomain. In mechatronics, horizon-
tal integration might mean exploring in parallel several
apportionments of functionality between the mechanical and
computational domains; should a mouse generate separate
x and y signals mechanically or should these signals be
extracted computationally from a simpler mechanical
system?

Functional synthesis is search. Vertical integration affords
development of depth in this search. Strong computational
synthesis further introduces a heuristic element for manag-
ing the search process; weak computational synthesis
responds to poor design performance by backtracking within
and across abstraction levels. Horizontal integration affords
an increase in the breadth of search within each abstraction
level. However, in doing so its reduced circumscription
“weakens” domain-specific synthesis. Both horizontal and
vertical integration are directed at improving the scope of
the design search process, the issue is how to manage both
the breadth of the search and the declared and implied knowl-
edge required to conduct it under resource constraints.

2.3. Search in integrated design

A generate-test paradigm must maintain a balance on the
efficiency of the two main activities. Generation efficiency
can be measured along two metrics: completeness and sound-
ness. Complete design generation is capable of producing
all possible designs; sound generation produces only designs
that are feasible. These two measures compete because
improving completeness often means generating a greater
proportion of infeasible designs; improving soundness might
remove small pockets of interesting feasible design solu-
tions from consideration.

On the evaluation side, a similar trade-off is found in
cost versus accuracy. Evaluation at high levels of abstrac-
tion may be inexpensive ~essentially free if it is encoded in
the representation or composition rules!, but inaccurate.
Where uncertainty in the evaluation is explicit, it can be
used to aid search control ~Wood & Agogino, 2005!. At
high levels of abstraction, behavior prediction need only be
accurate enough to eliminate infeasible ~either from the
standpoint of function0behavior or performance! designs.
As abstraction is reduced, both function0behavior and per-
formance evaluations gain accuracy: general operation,
approximate cost, and approximate size at the functional
level; idealized behavior, approximate size0shape, and more
refined cost at the embodiment stage; actual behavior, cost,
size, shape, and so forth, at the artifact instance level. Syn-
thesis must proceed to the lowest level of abstraction to
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generate a design; if synthesis is essentially free, then it
makes sense to generate all possibilities to the most detailed
level of abstraction and simply choose the best design. How-
ever, under limited resources synthesis of a design must
terminate once it is proven inferior.

Because design is driven by customer needs, most ana-
lytical evaluation models are at best approximations of the
situations into which the design will be inserted. Estimat-
ing the value of a design from the perspective of the cus-
tomer takes time and money. Even if we could afford to
capture completely the future value of a design for a single
customer, most designs are produced for a market of mul-
tiple heterogeneous customers, each with separate value func-
tions. In such a market, the value attached to a design will
be uncertain even if design behavior simulation is exact.
Casting design as the transformation of the initial knowl-
edge state into a solution cannot assume that this initial
state is well enough defined to select a single best solution.
Design is a process of learning, about both the design space
and the design evaluation. Search in integrated design means
coupled synthesis, evaluation, and refinement of evaluation
metrics. Integrating functional synthesis challenges our abil-
ity to represent and reason about function at many levels of
abstraction and across domains. To illustrate some of the
challenges and trade-offs to be managed, we now describe
an attempt in the domain of mechatronics at both vertical
and horizontal integration applying, combining and extend-
ing existing representations and methods for reasoning about
function.

3. APPLICATION: MECHATRONIC DESIGN

Mechatronics is an emerging discipline at the interface
between mechanical and electrical engineering. It is distin-
guished by the isolation of sensation from actuation, usu-
ally accomplished through digital control. The increasing
presence of computers and data networks in everyday life
positions mechatronics as a critical technology for the future:
the demand for interfaces between the digital and physical
world will only continue to increase.

In addition to its economic and technical importance,
mechatronics provides an interesting setting for discussing
design integration; it not only presents the challenge of hor-
izontal integration across mechanical, electrical, and infor-
mation domains, but through this integration it also presents
a much larger space of design possibilities. Distinguishing
among candidates from this increased design space affords
~or, for optimal design, requires! consideration of many more
aspects of design performance: packaging, manufacturabil-
ity, cost, technical performance, and so forth. At the same
time, because it is centered on a limited set of sensors and
actuators, mechatronics provides a tractable set of building
blocks in the phenomenon0embodiment knowledge layers.

We now present the functional synthesis of mechatronic
devices throughout knowledge-state layers from client objec-
tives to artifact type. At each layer, the salient functional

representation is introduced along with how building blocks
and composition rules are represented in it. This is followed
by the treatment of goals0evaluations ~strong vs. weak syn-
thesis!, followed by an illustrative example and the issues
its functional synthesis raises.

3.1. Client objectives

At this highest level of design abstraction, client objectives
are separated into two classes: what the design must do, and
how to measure how well it does it. It is useful for this
discussion to separate them into functional and perfor-
mance goals, respectively. Typical methods for eliciting and
objectifying the latter include quality function deployment
~QFD! and the House of Quality ~Hauser & Clausing, 1988!,
resulting in both evaluations of performance and approxi-
mate targets for success. Although these metrics will be
used for evaluation, the main issue for functional synthesis
at this most abstract layer of design is the development of
functional goals.

3.1.1. Representation
Functional goals at this stage are at their most abstract.

The systematic methods of Pahl and Beitz ~1988! provide a
good starting point for capturing them: the black-box
function–structure. Here, a “box” is drawn around the sys-
tem to be designed and the required input and output flows
of energy, material, and information defined for this box.
The box is then filled with transformations that should occur
within the system: the system functions. Although Pahl and
Beitz ~1988! make no restriction on the language used to
describe either function or flow, others have created lists of
typical functions drawn from experience ~e.g., Ullman,
1992a!. Stone and Wood ~2000! propose a restricted vocab-
ulary for both function and flow that is intended as a basis
representation from which any function can be composed.
We will use this “functional basis” as the foundation for our
representation of high-level function. Because many mate-
rial and energy flows are spatially constrained in some way,
the text-based flow representation is augmented with
position-direction information.

3.1.2. Building blocks
At this design-initiating knowledge-state layer, the main

activity is the generation of goals and evaluations that will
be used throughout the rest of the design process. The build-
ing blocks used in this process consist of the desired input
and output flow specifications and the description of the
overall transformations that must take place. The functional
basis provides a restricted set of flows and functions that
can be used in this description, but the actual description
must be derived from an analysis of the context of the cus-
tomer need: a thoroughly human activity.

3.1.3. Composition
No formal composition takes place at this level, although

considerable effort is involved in translating a human0
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physical context into the function–structure framework. The
Pahl and Beitz ~1988! methodology stresses abstraction of
the problem at this stage, essentially expanding the borders
of the system so that all possible solutions can be consid-
ered: a single design context might spawn several different
system definitions even at this initial design stage.

3.1.4. Example

Through the rest of the discussion we will trace the design
of a force-feedback mouse. Figure 1a shows both a rough
physical interpretation of the functional requirements, plac-
ing energy and material flows spatially while also defining
basic size goals; Figure 1b captures the desired functional-
ity as a black-box function–structure using the functional
basis vocabulary: typically verb–object pairs. Together, these
representations encode the need for a device of a certain
basic size that supports the hand, receives human force input
from it, generates a force reacted against a reference sur-
face, and measures its own displacement with respect to the
reference surface. Performance goals ~not shown! include
targets for cost, force generated, noise generated, position
accuracy, and so forth.

3.1.5. Issues

Even though functionality at this stage is abstract, get-
ting here has already required many decisions. From the
client standpoint, initial functional requirements are for a
pointing0indicating device that generates feedback in
response to position0velocity0indication; selecting the hand
as the input interface to the user and the desktop as a refer-
ence surface drives the solution process toward mouse-
style devices. Other interface definitions would generate
different types of designs. The process of transforming cli-
ent objectives situated in the rich context of the “real” world
into the function–structure abstraction challenges computa-
tion: capturing context is extremely difficult; encoding it in
computable form is even harder. For this reason, functional
synthesis within the client layer is largely a human process.
Separating performance goals from functional goals helps
to partition the problem, making it easier to focus the human
effort on establishing a black-box function–structure. Alter-

natively, MacAdams et al. ~1999! explore using case-based
reasoning to identify critical functional units using an index
based on preliminary performance goals elicited in the QFD
process. Although this technique appears to hold promise,
its inability to capture the totality of context for a design
means it is best used as a heuristic to focus attention rather
than as the basis for formal design composition.

3.2. Functional design

Functional design encompasses a range of abstractions, start-
ing with the black-box function–structure generated at the
client objectives layer and decomposing it into progres-
sively more concrete networks of functions. Functional
design terminates with a topology of solution principles:
functions distilled into distinct components or subsystems.

3.2.1. Representation

The function–structure is the primary representation; but
where the black-box function–structure idealizes the sys-
tem as a single functional unit, functional design decom-
poses this system-level view of the design into a network of
simpler functions that, in aggregate, accomplish this ideal.
Although the representation remains constant, its form
changes to one in which each functional unit accomplishes
only a single function and operates on only the flows nec-
essary for that function. Figure 2 shows a “design” level
decomposition of the black-box function–structure of
Figure 1b.

3.2.2. Building blocks

The basic building blocks are defined by the function–
structure framework instantiated with functions and flows
defined in the controlled vocabulary of the functional basis.
The expressiveness afforded by function–structures exacts
a price: there is no well-defined set of valid function0flow
relationships from which to choose. The set of meaningful
functions is a tiny subset of function–structures expressible
using the functional basis. As in natural language, a dictio-
nary ~i.e., the functional basis! and a grammar ~i.e., function–

Fig. 1. ~a! Spatial and ~b! functional requirements for the force-feedback mouse example.
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structures! are much more effective for interpreting human
ideas than for generating them.

At the high level of abstraction at which functional design
receives its goals ~e.g., the function–structure of Fig. 1b!,
there is no well-defined catalog of functional units. As in
any application without a strong logical basis, case experi-
ence can be applied ~Maher & Pu, 1997!. Generating build-
ing blocks from prior design instances for recombination
into new designs can bias the synthesis of new functionality
toward valid subfunction units. However, because function
is an observer-centered human abstraction, it is not neces-
sarily straightforward for to induce function from existing
artifacts. Kurfman et al. ~2003! find that the functional basis
helps to regularize the representation of function in a reverse
engineering context. Verma and Wood ~2004! formalize the
reverse engineering process, requiring functional descrip-
tions for each individual part in a system. Such formaliza-
tion produces consistent functional descriptions across the
human reverse engineers, but results in a rather low level of
abstraction in the resulting representation. Further compli-
cating the issue, Gietka et al. ~2002! find that high-level
black-box and “design” function–structures of a product
have little correspondence with the low-level function–
structures derived from actual products, even when all func-
tionality is represented using the functional basis. Thus,
although building blocks can be induced from existing prod-
ucts, the shift in functional viewpoint between design and
reverse engineering presents a significant challenge to the
direct reuse of reverse engineering cases.

3.2.3. Composition

Function–structures are hierarchical; at high levels of
abstraction, relatively few functions and flows are defined.
As strange as it sounds, decomposition is the main compo-
sitional process in functional design. From the black-box
level, flows and functions are segregated into distinct flow
paths. Navinchandra et al. ~1988! demonstrate the effective-
ness of this type of composition in the CADET system where
means–ends analysis is applied between overall input and

output flow definitions; each functional unit is represented
as a set of qualitative input0output relationships over a canon-
ical set of flow variables. In addition to using qualitative
functional relationships to compose functional units along
flow paths, CADET also stores “chunks” of functional units
as cases for future reuse; compiling useful compositions
can improve reasoning efficiency as the system gains func-
tional “experience.”

One basic lesson from CADET is the need ~or more appro-
priately the lack thereof ! of expressing functionality:
CADET’s representation focuses exclusively on flow infor-
mation from a function–structure. Functions are defined
only by qualitative relationships between input and output
flows. Although it seems counterintuitive to eliminate con-
sideration of function from functional synthesis, remember
that function at this stage is still subjective and changes
with abstraction level. In contrast, flows are largely objec-
tive: although an electrical energy flow may be abstract in
terms of frequency or voltage, its existence is objective.
Verma and Wood ~2003! identify several strategies for bridg-
ing the gap from reverse engineering case to design- and
black-box level function–structures, the most successful of
which focuses on aggregating functional units around the
creation and destruction of flows “internal” to the design
~i.e., any flow that is both created and consumed within the
system!. The combination of using reverse engineering to
populate a case base of low-level design functions and of
applying straightforward aggregation rules to compose these
units into higher level functional “chunks” is similar in spirit
to the case compilation used by CADET. In our framework,
composition is less sound than in CADET due to the lack of
even basic qualitative relationships for the functions. How-
ever, soundness is traded for completeness: virtually any
functional arrangement can be constructed. This, coupled
to relatively abstract encodings of flow information pro-
duces computational synthesis on the weak end of the spec-
trum. As a result, a large number of unsound results flow to
lower levels of abstraction where more sound reasoning
methods can identify and filter out poor high-level designs.

Fig. 2. “Design” level decomposition of a force feedback mouse ~dotted boxes surround functions repeated for the y axis!.
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3.2.4. Evaluation

Although CADET uses qualitative physics to model func-
tional behavior, these models bias the system toward mono-
tonic elements. Removing this bias, important in a domain
where digital signals are pervasive, also removes much of
the ability to evaluate behavior at the functional level. Care-
ful mapping of flow types will generate classes of designs
that will do something; it is up to the synthesis processes at
lower levels of abstraction to flesh out each design class in
response to more detailed behavior0performance goals. In
the end, whereas CADET focused on a single level of
abstraction for both generation and evaluation, it could nei-
ther accurately predict the behavior of the resulting designs
nor respond to nonmonotonic functional goals.

3.2.5. Example

The black-box function–structure of Figure 1b is handed
down to the functional level, essentially as a query of input0
output flows and internal functions to the reverse engineer-
ing case base, which contains functions structures of design
instances stored at multiple levels of abstraction ~generated
from low-level structures through the application of inter-
nal flow-based aggregation rules!. For example, a common
component in mass-produced computer mice is an encoder
wheel, shown in Figure 3b. The light introduced internally
to the device provides a path toward aggregating function,
generating the function–structure shown in Figure 3a ~func-
tion is labeled at this level of abstraction for clarity, aggre-
gation rules for generating such functional descriptions are
still under development!.

The result of the query identifies several possibilities for
constructing the function of a force feedback mouse: func-
tional units from different types of computer mice ~mechan-
ical “ball” mice and electronic-optical mice! lead the retrieval
list, along with hand-held devices that generate force0
displacement, like a power screwdriver. Essentially, the
whole of the mouse functionality is retrieved ~Fig. 4a, b!,
although only the main force0reaction flow from the screw-
driver is retrieved ~Fig. 4c!. Composing the screwdriver
and the two different mouse types can be done in different
ways: for the mechanical mouse, there are already mechan-
ical displacement energy flows in the system, so the mechan-
ical force flow need merely be coupled into one of them;

for the optical mouse, a parallel mechanical force0dis-
placement flow must be introduced into the system.

3.2.6. Issues
Although the case-based methodology can create sub-

systems of arbitrary abstraction, in new designs these
subsystems must still be integrated with each other.
Function–structure flows provide a ready means of integrat-
ing subsystems by tapping off of existing flows or interpos-
ing functional units along a flow path. However, function–
structures have an inherent weakness in this area; due to
their reliance on “flow,” they are more readily adaptable to
what is typically labeled a “through” variable ~e.g., current,
displacement, fluid flow, etc.! in bond-graph notation. For
these through variables, it is appropriate to perform com-
position in function–structures by inserting functions into a
flow. However, for across variables ~e.g., voltage, force,
pressure, etc.!, it can be difficult to tell where in a functional–
structure chain one might interpose a new unit. In the force
feedback mouse example, we need to insert a functional
unit that generates a force between the reference surface
and the user’s hand. A long string of functional units is
defined in the through variable of displacement: how should
composition inject a force into this flow? Should it just be
done in parallel? Of course, bond graphs “know” that through
and across variables are related; function–structures con-
found the two, allowing them to be used interchangeably.
Removing modeling rigor complicates the composition pro-
cess. The main issue is the interpretation of function: in
formal models, function is often implied by mathematical
models of input0output transformations; relaxing this bias
to include function as a semantic concept greatly reduces
the soundness of design generation. Replacing formal mod-
els with names creates ambiguity. In the end, flow defini-
tions and interactions may be a much stronger form of design
information.

Other issues arise at the terminal end of the functional
design spectrum. It is at the solution principle level where
one of the primary product design decisions is made: make
versus buy. Because they are single parts, off the shelf com-
ponents are generally encoded at a higher level of func-
tional abstraction than customized assemblies: Figure 3a
shows the function–structure for a rotational encoder; Fig-
ure 3b shows the same basic device implemented as a set of

Fig. 3. Function–structures for the “sense” function in Figure 2: ~a! an abstract function and ~b! the actual functional unit in the ball
mouse, reverse engineered at the “parts” level.
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components in a mass-produced product. This example points
out not only the need to allow different levels of abstraction
at the solution principle level, it also illustrates the need to
pass multiple design candidates to lower levels of abstrac-
tion where more detailed evaluations ~like cost in the make0
buy decision! can be made accurately. If enforced at this
abstract stage, heuristics for manufacturability ~like reduc-
ing part count! would likely favor the single-component
solution over the one using multiple parts. Only at the detail
design level does one find that the custom implementation
leads to fewer total parts and a lower cost. Such uncertainty
in performance predictions further reinforces the need to
generate a large set of candidate designs and continue to
flesh them out at lower levels of abstraction.

3.3. Phenomenon-level design

The function–structures defined at the functional stage are
examined at the phenomenon level for functions in which
the primary flow changes class ~e.g., pressure to transla-
tion, electrical energy to rotation! or domain ~e.g., energy
to information!. Such transduction is usually accomplished
by exploiting physical phenomena. Functions that create
flows not present at black-box level of abstraction represent
critical decisions in the design process; the functional level
of abstraction is identifies sets of physical phenomena around
which the new design can be constructed. In our force-
feedback example, one candidate set of physical phenom-

ena is electric motors and optical encoders; a second is
electric motors and optical displacement sensors. It is at the
physical phenomena level that these components are instan-
tiated as physical objects whose behavior can be modeled
and whose basic performance trade-offs can be assessed.

3.3.1. Representation: Building blocks
Physical phenomena are well-defined components, such

as sensors and actuators that transform flows from one
domain to another. The building blocks that make up this
set of components can be drawn from catalogs. Unfortu-
nately, most catalogs provide access to components only at
the instance level ~i.e., a single part number!. For example,
a catalog might contain AC motors, DC motors, DC Brush-
less motors, or stepper motors. From the standpoint of the
function–structure, each of these does the same thing: con-
vert electrical energy into mechanical energy. As with
function-level design, building blocks must span abstrac-
tion levels. Wood and Agogino ~2005! provide a design
space modeling methodology based on the induction of prob-
ability density functions from design instances. The use of
probabilistic modeling allows for the representation of het-
erogeneous phenomena at high level of abstraction. Abstrac-
tion is spanned by extending the representation to capture
more functional detail as selection reduces heterogeneity.

3.3.2. Composition
Composition is absent at the phenomenon level because

the focus of this stage is more selection than synthesis. The

Fig. 4. Function–structures for two mice and a power screwdriver ~dotted boxes surround functions repeated for the y axis!.
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function level is charged with passing precomposed units
as function–structures whose phenomena are to be instan-
tiated. Multiple abstractions of the same basic design ~e.g.,
Fig. 2! are treated as different designs requiring different
phenomena instantiations.

3.3.3. Evaluation

The physical phenomenon level is the first stage at which
objective evaluation of candidate designs can be made. The
broad spectrum of performance metrics elicited from the
customer at the client objectives knowledge-state layer fil-
ter down to the physical phenomenon layer as system require-
ments. These include not only aspects of functional0
behavioral performance ~e.g., power, efficiency, accuracy,
etc.!, but also evaluations based on size, shape, cost, lead
time, and so forth. The same design space modeling meth-
odology that is useful for spanning abstraction is equally
useful for inducing models of performance for which there
is little analytical basis. By using probability densities to
encode these models, notions of input and output can be
discarded. Instead, performance goals can be applied as
constraints whose impact is felt by design variables.

3.3.4. Example

Figure 5 shows a set of probabilistic models derived from
a catalog query on motors with power appropriate to the
force feedback mouse. Functional parameters like torque
and speed of a motor as well as physical parameters like
length and diameter are related to a system-level require-
ment like mass. Because initial performance requirements
are often uncertain, Wood and Agogino ~2005! apply a
decision–theoretic methodology that balances design selec-
tion against design requirement refinement. Here, torque
specification can be used to induce properties like size and
shape of a motor. Alternatively, size and shape can be used
to induce likely torque ranges that could then be passed
down to the embodiment knowledge-state layer for synthe-
sis of a torque multiplication0reduction system.

3.3.5. Issues

The main technical issues at this stage of functional syn-
thesis relate to selection of components in isolation from
the system in which they are to be inserted. This selection
process is driven by system-level performance require-
ments that must be related to component-level perfor-
mance. In both cases, the design must be further fleshed out
before final component selection can take place. For this
reason, the emphasis is on eliminating infeasible designs.
For example, one of the performance requirements for our
force-feedback mouse might include the amount of force
required from the system and the velocities at which the
force will act. Together, these generate a power require-
ment that can be related to other requirements like size or
cost. Together, these requirements might lead to selection
of a small, high-speed motor ~or at least the elimination of
larger, higher torque motors! for generating the power nec-
essary for the design while still fitting within the physical
envelope of a computer mouse. This then presents a start-
ing point for synthesis at the next knowledge-state layer or,
if system-level requirements cannot be met ~e.g., in this
case, there is no motor that can generate the necessary power
within the provided envelope!, reconsideration of either the
current function-level design or the current system-level
requirements.

3.4. Embodiment design

Embodiment design addresses functions with less extreme
transformations on flows ~e.g., changing magnitude,
direction, or position of a flow!. Functionality at this embodi-
ment knowledge-state layer builds on the topologies gener-
ated at the functional level of abstraction, introducing spatial
aspects of function. Functional design provides a set of
possible component topologies; these “components” are still
abstract transformations from one flow type to another.
Embodiment design must synthesize final topologies of real
components and orient them spatially.

Fig. 5. Probability density contours for motor behavior in the desired range ~design instances drawn from a motor catalog!.
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3.4.1. Representation

Function at this stage is much less subjective than before,
more closely tied to physical behavior. Representation then
focuses partly on behavior and partly on spatial relation-
ships. For electrical energy and information flow domains,
spatial relationships are generally unimportant, but for mate-
rial and mechanical energy flows, spatial and impedance
transformations are interrelated. Material flows are often
defined by the size, shape, and mechanical behavior of the
material under question. Due to their strong dependence on
the context of the problem, these are best dealt with at higher
levels of abstraction. Verma and Wood ~2003! augment the
functional basis language of material flows to help improve
functional retrieval performance ~retrieval being the key-
word, little synthesis can take place without detailed descrip-
tion of the material in question!.

For mechanical energy flows, the representation used at
this stage is a hybrid of two different representations from
the literature. Kota et al. ~1997, 1999! use a matrix-oriented
approach to capture the behavior of a set of standard mechan-
ical components in terms of input and output rotations and
translations. In addition to basic behavior, second-order
effects are included like reversibility and linearity. The sec-
ond representation comes from Chakrabarti and Bligh ~1994,
1996a, 1996b!; like Kota et al. ~1997, 1999!, first-order
transformations of rotation and translations are captured.
Second-order considerations in this case involve spatial infor-
mation about the flows: do flow axes intersect or are they
offset? Although both of these representations are built

around a standard set of components, adding in a case-
based component can help to overcome their basic inherent
limitations: evaluation. Each representation can generally
produce a large set of possible solutions; selecting among
them becomes a problem ~Chakrabarti & Bligh, 2001!. Kota
et al. ~1997, 1999! turn to a heuristic to focus effort: favor
the transformation of all translation flows into rotation. Dong
and Wood ~2004! use cases to generate estimates of size,
number of parts, and power from actual implementations of
the catalog components.

3.4.2. Building blocks

The physical phenomena laid out at the preceding stage
establish the basic transformations that will take place within
the system, these transformations must be oriented spatially
and their “impedances” ~i.e., force0velocity, torque0
rotational velocity! matched with the rest of the system.
Because flow domains remain constant throughout each
transformation, building blocks are much more restricted in
embodiment. For example, for designing mechanical sys-
tems a catalog of machine elements defines a set of build-
ing blocks. Table 1 shows a selection from such a catalog
for components that transform rotation into displacement,
along with representations from both the Kota et al. ~1997,
1999! and Chakrabarti and Bligh ~2001! perspectives.

3.4.3. Composition

Function–structures and physical phenomena provide a
skeleton of flow transformations that must take place within

Table 1. Configuration design building blocks

Functional Unit Kota et al. ~1997, 1999! Charkrabarti & Bligh ~2001! CADET

Key In: {Tx Ty Tz Rx Ry Rz}
Out: {Tx Ty Tz Rx Ry Rz}
C: ~cont lin rev @I0O# !

Axes Rotation
Translation
Inline
Offset

A � B�: A is an increasing function of B

Crank-slider In: @0 0 0 1 0 0#
Out: @0 1 0 0 0 0#

C: �1 0 1�0 0 0

0 0 0

1 1 0
��

Ty � Rx
�

Lead screw In: @0 0 0 1 0 0#
Out: @1 0 0 0 0 0#

C: �1 0 0�0 0 0

0 0 0

0 0 1
��

Tx � Rx
�

Rack & pinion In: @0 0 0 1 0 0#
Out: @0 1 0 0 0 0#

C: �1 1 1�0 0 0

0 0 0

0 0 1
��

Ty � Rx
�
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the system; matching the impedances among these transfor-
mations often requires interposing intermediate compo-
nents like gear reductions. In addition, transformations within
a flow domain are often required; for example, transform-
ing rotational torque into linear force. Finally, spatial con-
straints on input and output flow positions as well as overall
system size and shape must be satisfied. Composition must
satisfy all three of these main types of constraints while
providing for the overall input0output goals handed down
in the phenomenon-enhanced function–structures. Ab-
straction again is present in this process: class-level trans-
formation ~e.g., xx rotation r y translation! is generally
accomplished through the application of simple rules.
Potential solutions can then be screened for satisfaction
of second level functional constraints ~e.g., spatial- or
impedance-based constraints!.

3.4.4. Evaluation
From the standpoint of functionality, the design is “com-

plete” at this stage of the process. Idealized behavioral mod-
els for each component can be composed into overall system-
level behavior. System behavior can then be evaluated with
respect to the functional goals established at the client objec-
tives layer. This can help to establish some of the param-
eters of the embodiment building blocks: gear ratios, link
lengths, and so forth. Because functional goals are only
part of the design equation, these parameters are linked to
issues like size, cost, power, and so forth, previously used
for component selection at the physical phenomenon layer.
Design screening is much finer at this stage because fairly
accurate models of function, performance, size, and cost
are all available.

3.4.5. Example
For our force feedback mouse, designs for several differ-

ent combinations of physical phenomena must be consid-

ered. Focusing on the use of rotational motors and the need
to generate translational forces that span 2-D space, the
building blocks of Table 1 create several possibilities. Fig-
ure 6 shows four such possibilities: two that apply crank-
slider linkages to the problem, and two that apply cam-
follower mechanisms. Each combination is broken down
into two subcases: those for which the mechanisms are
applied serially ~e.g., the “y” crank-slider is mounted on the
“x” slider! and those that act in parallel ~e.g., “x” and “y”
sliders are conjoined into a single element!. The former
combination rule produces sound machines that are guar-
anteed to produce the desired result; the latter is an example
of an unsound composition rule that might create designs
that do not function or whose functionality is not quite what
is desired ~the parallel crank-slider has 3 degrees of free-
dom, x and y translation, along with zz rotation!.

3.4.6. Issues
Composition rules at this stage must be oriented toward

the design “best practice” of function sharing. A function–
structure might treat sensing position and generating force
as separate flow streams; displacement and force are sepa-
rated. In actuality, these bond graph conjugates can be com-
bined into a single flow stream that contains both sets of
functionality: force and displacement can be combined.
Designs based on direct optical sensing of position cannot
combine displacement sensing and force generation in the
same way.

Multiple input0multiple output system designs must be
generated with both serial and parallel composition rules;
the combinatorics of this greatly increases the size of the
design space, placing pressure on the system modeling0
evaluation methods. In addition to the largely holonomic
components used by Kota et al. ~1997, 1999!, completeness
issues dictate the availability of nonholonomic components
like friction drives. The standard mechanical “ball” mouse

Fig. 6. Serial and parallel combinations of x and y crank-sliders and cam-followers.
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is a simple parallel combination of two orthogonal friction
drives, accomplished by merging the frictional elements:
two “wheels” become a single “ball.” The same combina-
tion is not feasible for the holonomic rack and pinion design.
Such parallel combination can be encoded in composition
rules ~e.g., nonholonomic components can be combined off
axes; an unsound but potentially useful composition!, or at
higher levels of abstraction where multiple input0multiple
output “components” derived from design cases.

Adding to the combinatorial complexity is the introduc-
tion of spatial issues into the design evaluation. In general,
function directions ~e.g., the fixed x–y orientation of the
mouse! constrain the orientation of mechanical compo-
nents. In addition, sensors are often placed on or near cir-
cuit boards to eliminate manufacturing issues related to
electrical cables, so the layout of mechanical devices must
respond to the ability to place sensors on or around them as
well. Merging spatial issues of function and packaging across
two domains provides a significant challenge for both syn-
thesis and evaluation.

The final issue is a windfall from the computation at the
core of most mechatronic systems: the removal of strict
spatial constraints ~e.g., direction, orthogonality! through
software transformations. In our example, many of the mech-
anisms useful for generating the 2-D forces produce poor
packaging, placing at least one motor to the side of the
mouse, causing access problems. Figure 7 shows a design
in which both motors are packaged at the top of the mouse
and their position information transformed in software. For-
malizing this shift of constraint across domains from the
mechanical to the information side of the problem is poten-
tially tricky: simply inserting a “wild card” function into
the mechanical function side of the representation seems
simple enough, but guaranteeing that the information side
of the representation is well informed enough to actually
accomplish the necessary transformations is difficult.

With its mechanical formality, the embodiment level of
design has received the most research attention. However,
even here the role of abstraction within a single knowledge-
state layer is significant. In addition, the need to consider
multiple-input0multiple output systems as whole rather than
as isolated flow streams means that prior formal methods
must afford the introduction of less sound, more informal

types of components and compositions. Finally, the preva-
lence of systems in mechatronics that mix information and
mechanical flows increases the significance of decisions
like where and how to place the domain boundaries and
which functionality is accomplished on each side. Although
the final decision might best be delayed to the artifact type
layer, the embodiment stage is at least charged with the
need to produce a rich range of design topologies and layouts.

3.5. Artifact type

From an end-user perspective, little functionality is added
at the artifact type knowledge-state layer. Given proposed
configurations, two major aspects of the design remain
undone: connections among components to enable the
desired “flows” to actually flow and the provision of a ref-
erence from which functional units can act. This latter aspect
may seem insignificant but plays a large role in the manu-
facturability of the final design: Verma and Wood’s ~2001!
study of the functional role of geometric features in small
products reveals two findings: the functional reference
~referred to as the “ground”! can account for well over 50%
of the geometric complexity of modern products; and most
of this geometric complexity is related to improving the
manufacturability of the product, either forming the parts
themselves or easing the assembly process. Thus, function-
ality at the artifact type knowledge-state layer is primarily
directed toward manufacturing. Fortunately, these “func-
tions” tend to be rather generic across assembly processes
and within part forming process classes.

3.5.1. Goals

The main goals at this stage of the design are to establish
connections among parts that provide the desired client-
oriented functionality while minimizing the manufacturing
costs of the system. Manufacturing costs are generally either
associated with the cost of forming parts or the cost of
assembling them into systems. In design for manufacture,
Boothroyd et al. ~2001! typically stress reducing part count,
possibly through part combination. However, part combi-
nation must be done in a way that is sensitive to the part
forming processes and production volume: Fagade and
Kazmer ~1999! find that increasing the geometric complex-
ity of low-volume parts can result in additional unjustified
tooling costs.

3.5.2. Representation

Manufacturing function is rather straightforward: a sys-
tem is merely an assembly of parts, each of which must be
formed out of raw material and assembled along with other
parts into the final product. The representation follows this
basic layout: parts are the main entity, their basic manufac-
turing process is captured ~e.g., machining, molding, defor-
mation, etc.! along with primary ~e.g., fixture plane, parting
plane, etc.! and secondary ~e.g., mold slide axes! manufac-
turing process axes. Assembly models connect parts to eachFig. 7. Software-transformed axis, parallel crank-slider.
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other; the interfaces between parts are captured as connec-
tions. These connections have a dual role; in addition to
modeling the process of joining two parts, connection mod-
els must also capture the degree of freedom of the con-
nected system. For the former, primary and secondary
assembly axes ~relative to a functional axis! are captured
for each connection. Functional aspects of connections are
modeled using the contact type and contact matrices of Roth
~1987!. Table 2 illustrates these representations for a num-
ber of flexible joints available as building blocks at the
artifact type layer.

3.5.3. Building blocks
Although the representation is relatively straightforward,

the geometric nature of parts and connections makes repre-
senting a complete set of building blocks prohibitively expen-
sive. To deal with this problem we again turn to reverse
engineering: “part” level decomposition produces building
blocks containing connections between functional units and
connections from functional units to the local reference.
Note again that abstraction plays a major role. As Table 2
demonstrates, a functional connection can be composed of
a single part or assembled from multiple parts. Building
blocks must thus respond both to the functional demands of
the configuration design ~generally degree of freedom issues
in connections among components! and to the relevant man-
ufacturing functions in terms of part forming and assembly
processes.

3.5.4. Composition
Composition processes follow this dual path: one goal of

design at the artifact type layer is to connect together func-

tional units defined at the embodiment layer, a second goal
is to minimize the number of parts, the number of process
axes, and the number of assembly axes. For the former
goal, connection details that provide the required connec-
tion type are drawn from the reverse engineering database.
If the manufacturing process and process axes are known
for the components to be connected, composition can fur-
ther select specific design details that support the manufac-
turing functionality of the components to be connected.
Finally, composition further narrows the choice of connec-
tion to align assembly directions for the system as a whole.
Of course, these selection processes must also be resolved
with other functional and economic goals for the system, so
they serve as heuristics for focusing attention rather than as
strict composition rules. This trade-off is especially acute
for the reference component ~i.e., ground!, which must sat-
isfy these constraints over multiple connections; composi-
tion here must explore multiple ground components in
multiple manufacturing process classes.

3.5.5. Evaluation

As the lowest level of abstraction in our investigation,
the artifact type layer provides the final word on evalua-
tion. In terms of client-oriented function, the ideal models
of the embodiment layer give way to more accurate models
that include friction or stiffness in the connections ~mod-
eled in the connection matrices of Table 2!. In addition,
good estimates of size and shape are available as well as
reasonable estimates of part and assembly costs for the sys-
tem. Although significant screening has taken place as a
design passes through increasingly less abstract representa-

Table 2. Detail design building blocks

Process Axis

Contact Type Form
No.

Parts Part
Connect0
Ground Assy. Axis

� s s E E

s s s s

s s s s
� 1

� f f r r

f f f f

f f f f
� 2

� f f r r

f f f f

f f f f
� 5

Single DOF joint connections

Contact matrix � �1 1 0 0

1 1 1 1

1 1 1 1
�

Legend: �x� x� xx� xx�

y� y� yy� yy�

z� z� zz� zz�
�
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tions, final evaluation often depends on this lowest level of
abstraction. This evaluation can then be fed back up the
search tree, shaping exploration at successively higher lev-
els of abstraction.

3.5.6. Example

In taking the embodiment of Figure 6 as the set of con-
nections to be instantiated, we see three single degree of
freedom rotational joints along with two connections between
motor and ground. Focusing on the former, Table 2 pro-
vides a set of building blocks for composition of the joints.
The reverse engineering database ranges from single part
flexure joints to fully bushed pin joints requiring five parts.
Valid designs can be composed for any combination of these
connections; the contact matrices for each provides a basic
model for the behavior of the joint; the flexure joint acts as
a torsional spring element, the other joints as sources of
Coulomb friction. The behavior of the system to input dis-
placements and output forces can thus be ascertained: the
spring elements, while reducing part count and greatly eas-
ing the assembly process, produce a self-centering effect in
the system that conflicts with the basic requirements. Other
joint instantiations are subject to relationships between
force capacity, friction, and play, all of which can be cap-
tured as probabilistic design models composed from design
experience.

3.5.7. Issues

Estimating manufacturing cost can be a costly exercise.
In examining the available metrics, it appears unnecessary
to define component geometries fully. Swift and Booker
~1997! provide a method in which shape complexity is esti-
mated within a basic shape class ~i.e., revolute, prism, thin
wall, etc.!, increasing as additional off-axis features are
added. Shape complexity factors are then established for a
suite of manufacturing process classes ~and through them,
indirectly, to materials!. Thus, the artifact type layer need
not produce a detailed geometric design, it need only pro-
duce a “skeleton” design containing parts, part orienta-
tions, connections among parts, connections between parts
and the ground~s!, and a spatial layout of ground part details.
Shape class and complexity is then captured in connection
details instantiated from the connection case base. For parts
composed of multiple connections, the shape class can be
estimated from the basic shape class of each connection
and the sum of the manufacturing process axes throughout
the part. In a parallel effort, Fagade and Kazmer ~1999!
regress even simpler measures of design complexity on tool-
ing costs for injection molding, finding that the dominating
factor in tooling expense is the number of toleranced fea-
tures in the design. These are also simple to capture for
each connection and perhaps even easier to process as con-
nections are composed into parts: tolerances associated with
each connection can simply be summed for the overall part.

Perhaps the most critical issue in design at the artifact
type knowledge-state layer is the development of the func-

tional ground. Maybe even more significant is that the ground
itself is completely absent from all functional representa-
tions above the artifact type layer: it is simply taken for
granted that components can be selected and organized with
the proper spatial relationships. If manufacturing function-
ality is not considered, a large part of the design process
is left unresolved, leaving design search at higher levels
of abstraction unresolved with it and design evaluation
incomplete.

An alternative to the proposed, abstract representation of
manufacturing function is to capture more specific aspects
of function tied directly to geometry. Raghavan and Stahov-
ich ~1998! have attempted to induce function from geom-
etry by examining behavior with and without a geometric
feature. In reverse engineering studies, most geometry has
nonunique functionality; a shape can often be attributed
both to end-user function and to assembly or manufacturing
function. This ambiguity makes it difficult to capture detailed
manufacturing function with consistency across reverse engi-
neers; essentially, this is the same function interpretation
problem experienced at high levels of abstraction. In addi-
tion, even if manufacturing function could be captured con-
sistently, manufacturing-oriented functions are generally
absent from the functional goal set, leaving no product-
specific goals. For this reason, a generic approach has been
chosen for composition. However, informal visual informa-
tion in the case base can play a significant role in presenting
the designer with multiple alternative design details from
which to draw.

4. DISCUSSION

4.1. Abstraction

The utility of mirroring human abstraction mechanisms
within computational design is readily demonstrated; rep-
resenting function at multiple levels of abstraction helps
not only to control the search process within each level but
also to generate goals for lower level processes. In a generate-
test design paradigm, search is controlled on the generate
side through the application of formal representations and
composition logics in “strong” functional synthesis or
through “weak” synthesis that draws heavily on case com-
pilation and abstraction. Search is also controlled on the
“test” side of the paradigm as design candidate perfor-
mance is estimated, these estimates improving as abstrac-
tion is reduced. Thus, the separation of overall design goals
into functional and performance goals at the client objec-
tive stage provides a representational distinction that shapes
synthesis throughout the design process.

Abstraction is also important within each knowledge-
state layer, whether embodied in the fluid decompositions
typical at the functional layer or the more distinct gross0
fine behavioral models at the embodiment layer. Functional
synthesis has often been treated at multiple abstraction lev-
els in the past: Schmidt et al. ~2000! using multilevel gram-
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mars primarily at the embodiment level, Sharpe and
Bracewell ~1996! extending bond graph-generated topolo-
gies with behavioral models for the generated designs. In
general, this type of abstraction has been geared toward
dealing with functional versus performance goals. Our exam-
ple application extends these ideas of intralevel abstraction
to all knowledge-state layers: client objectives separated
into function and performance, functional decomposition
supported through multiabstraction aggregation of reverse
engineering cases, embodiment separated into gross and
fine transformation, and artifact type connections into
general contact-type specific contact mode. Physical phe-
nomena capture transformation type in addition to multi-
abstraction behavioral models that can be applied for
estimating performance at all levels of abstraction.

Abstraction is also a key component to the horizontal
integration of functional synthesis. Operating at high levels
of abstraction that generalize across domain boundaries
opens the door to domain-independent solutions to prob-
lems. At the same time, once domains are mapped out at the
physical phenomenon level, their functional boundaries can
still shift to support specific heuristics like the “soft” axis
transformation that generated the final mouse embodiment.
There is still much work to be done in terms of merging
representations across mechanical, electrical, and informa-
tion domains. Our initial step of simply integrating a “soft-
ware” mechanical transformation element must be extended
carefully to cover additional situations while not obviating
mechanical solutions altogether.

Even as abstraction makes much of the horizontal and
intralayer vertical integration possible, the need to translate
results from high abstraction levels into goals at lower lev-
els is a significant issue for overall vertical integration. The
representations chosen for the mechatronics application
dovetail nicely: function–structures pervade the top two
knowledge-state layers, these give way readily to physical
phenomena, which in turn, present straightforward mechan-
ical embodiment goals. The resulting design configurations
map directly to the part0connection goals at the artifact
type layer. In our case, off the shelf representations could
be cobbled together to form a fairly cohesive whole; where
direct translation cannot be forged, abstraction levels might
be bridged by case-based, multiabstraction building blocks
and weak computational synthesis. Still, the translation task
remains difficult to formalize, especially at the extremes of
the design process: the derivation of functional require-
ments from user needs and the development of final design
details from skeleton designs.

4.2. Search

As mentioned in the discussion of abstraction, search can
be managed both in the generation of designs and through
the elimination of poorly performing alternatives. This is
not typically an either0or proposition but a matter of trad-
ing one versus the other within and between abstraction
levels. A key trade-off is between the soundness and com-

pleteness of design space generation. Where formal repre-
sentations allow building blocks and composition rules that
can generate the whole of the design space without gener-
ating infeasible designs, search can be controlled primarily
during function generation. This is typical for the type gen-
eration steps at the embodiment and artifact type layers.
Where such formality of representation places too much
bias on the generation step, completeness can only be assured
through a sacrifice of soundness. The function–structure
based representations used at high levels of abstraction dem-
onstrate this: to maintain solution neutrality we must allow
the generation of unsound designs. However, this relax-
ation of bias is not total; case-based reasoning biases design
generation, drawing on functional units from existing designs
rather than from the entire space of functions possible within
the function–structure0functional basis representation. Sim-
ilar biases are introduced at the artifact type layer for the
generation of skeleton designs according to connections
drawn from cases. In both instances, the quality of reason-
ing is determined largely by the size of the case base from
which design fragments can be drawn and by the quality of
information embodied in each case.

In the mechatronics application, soundness is sacrificed
at both the highest and lowest levels of abstraction. Even at
the embodiment stage, where soundness and completeness
are both high, the topological designs that are generated are
not guaranteed to produce feasible spatial configurations.
This is true of all of the transitions, whether they lie within
or between the abstraction layers in the example: functional
designs are not guaranteed to have valid configurations;
configuration designs are not guaranteed to have good detail
designs; and the skeleton detail designs are not guaranteed
to be manufacturable. To some degree, search control takes
place automatically: as candidate designs from higher
abstraction levels are propagated downward, those for which
no feasible lower level design can be synthesized are pruned
from the search. On the surface, this appears to be a simple
solution to the problem of search control, but the weak
synthesis modes at the initial stages of the design process
mean that many infeasible function-level designs are passed
down to levels where perfectly feasible designs result.
Detailed behavioral models may be required to identify the
high-level infeasibility.

An additional search control mechanism uses perfor-
mance evaluation in the “test” phase of design synthesis. In
integrated functional synthesis not only must performance
models span multiple levels of abstraction, they must eval-
uate heterogeneous design candidate sets. Throughout the
above discussion, reference is made to a decision-based
design technique developed by Wood and Agogino ~2005!.
By capturing design requirements as probabilistic targets
and by generating design performance models based on
design experience, this methodology meshes well with the
needs of integrated design. Performance models based on
function can be induced directly from the reverse engineer-
ing database to establish probabilities on many aspects of
performance: size, cost, number of parts, power, and so forth.

198 W.H. Wood et al.



In addition, because each of these aspects is part of a large
joint probability density function, the relationships among
them are also modeled. “Test” might use performance eval-
uations with high uncertainty to focus on promising designs
at the highest levels of abstraction. As design abstraction is
reduced, the increased design detail conditions the joint prob-
ability with higher accuracy; based on designs with higher
similarity to the described concept, the joint itself is a much
more accurate representation of the local design space. In the
end, through, design concept pruning is a decision process
that responds not only to performance estimates but also to
performance goals. In most design processes, refining these
evaluation goals is as much a part of the design as generating
the designs themselves ~Yoshikawa, 1981; Takeda et al.,
1990!. In the end, controlling synthesis in an integrated design
environment is a challenging mix of representational bias,
abstraction, and evaluation.

4.3. Representation and knowledge

Building blocks and composition rules embody the “back-
ground knowledge” typical of any artificial intelligence
application. Both abstraction and search depend on the abil-
ity to generate design building blocks and manipulate them
toward satisfying design goals. By integrating functional
synthesis across abstractions, we are faced with several
choices: Should building blocks at different levels of abstrac-
tion be designed to optimize design generation and evalua-
tion within that level or to optimize translation between
levels? Are building blocks at each level independent or are
they tied together across abstraction levels? Should build-
ing blocks be based on theory or experience?

The reverse engineering methodology employed in the
example application creates building blocks from experi-
ence. By examining cases from multiple levels of abstrac-
tion, we can generate building blocks that span abstraction
levels. Translation is largely automatic: many to one map-
pings of design–configuration–function from the case base
provide one to many mappings as the design process is
executed and candidates are generated at each level of
abstraction. Perhaps the most important advantage of inte-
grating synthesis is the ability it affords of controlling at
which abstraction level which type of knowledge should be
applied. It is rather pointless to use function–structures to
synthesize mechanical elements when this can be done with
greater soundness and completeness at the embodiment level
of abstraction. In fact, other than capturing information valu-
able for estimating performance, all mechanism informa-
tion drawn from the case base at the function–structure stage
is discarded. Synthesis at the functional stage draws from
patterns of flow transformation useful in the past to create
very abstract designs. Phenomena are then selected based
on evaluation and instantiated within the basic flow struc-
ture, which is passed as an input0output specification to the
embodiment layer. Here, synthesis follows first principles
and building blocks draw from a small, well-defined set.
This reliance on first principles is short-lived, extending

briefly into artifact type synthesis where reasoning reverts
to weaker, case-based methods for the final skeleton design.
In the end, the ability to tailor the representation and rea-
soning modes to the background knowledge available within
each layer is a significant argument for maintaining abstrac-
tion for functional synthesis.

Finally, because the set of building blocks used for most
of the synthesis process is drawn from reverse engineering,
the knowledge that is embodied is highly dependent on the
case bases. Design search can only be as complete as the
underlying case base. In addition, because knowledge is
implied by the cases rather than explicitly stated, soundness
of design generation is not guaranteed. Simply because
design representations are drawn from cases does not elim-
inate the need to design a good knowledge representation.
By drawing from a range of representations for function
rather than attempting to create a monolithic model for func-
tion, the mechatronics application demonstrates the power
of tailoring representation to subtask and placing subtasks
within the overall design context.

5. CONCLUSION

Computational synthesis holds the promise of expanding
the search space in design. Function is the foundation of
design; developing computational methods for generating
function is a key toward supporting present and future
designers. However, because the very notion of function is
so context dependent, care must be taken in the selection of
the representation in which functional synthesis is done.
Because no synthesis method can circumvent the constraint
of resource limitations that plague all search processes, a
balance must be struck between completeness and sound-
ness in synthesis. Where a lack of soundness produces weak
functional synthesis, evaluation plays an important role in
limiting search.

As the success of computational synthesis in circum-
scribed domains is generalized, the need to support search
at several levels of abstraction arises. Translation of goals
across knowledge representations is a significant step toward
supporting cross-abstraction synthesis. Selecting which
design activities to perform within each level of abstraction
is also critical: balancing overall soundness and complete-
ness of synthesis requires careful selection of both the
abstraction levels needed for design and the representations
and knowledge used within them. Focusing functional syn-
thesis only on abstraction levels where strong methods per-
tain serves only to generate many solution candidates that
satisfy only a subset of possible functional requirements
and can be evaluated with limited accuracy. Extending func-
tional synthesis both upward toward less computable but
more expressive function–structures and downward toward
more geometric detail increases both the range of designs
considered and the accuracy of selection among the candi-
dates generated. Part of the bargain for potentially better
designs is a sacrifice in soundness that requires additional
effort on the part of the designer to ensure feasibility.
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