
Claremont Colleges
Scholarship @ Claremont

CMC Senior Theses CMC Student Scholarship

2014

Block Kaczmarz Method with Inequalities
Jonathan Briskman
Claremont McKenna College

This Open Access Senior Thesis is brought to you by Scholarship@Claremont. It has been accepted for inclusion in this collection by an authorized
administrator. For more information, please contact scholarship@cuc.claremont.edu.

Recommended Citation
Briskman, Jonathan, "Block Kaczmarz Method with Inequalities" (2014). CMC Senior Theses. Paper 862.
http://scholarship.claremont.edu/cmc_theses/862

http://scholarship.claremont.edu
http://scholarship.claremont.edu/cmc_theses
http://scholarship.claremont.edu/cmc_student
mailto:scholarship@cuc.claremont.edu

CLAREMONT MCKENNA COLLEGE

Block Kaczmarz Method with Inequalities

SUBMITTED TO

Professor Deanna Needell

AND

DEAN NICHOLAS WARNER

BY

Jonathan Briskman

for

SENIOR THESIS

Spring 2014

April 28, 2014

Abstract

The Kaczmarz method is an iterative algorithm that solves overdetermined systems

of linear equalities. This paper studies a system of linear equalities and inequalities. We

use the block version of the Kaczmarz method applied towards the equalities with the

simple randomized Kaczmarz scheme for the inequalities. This primarily involves com-

bining Needell and Tropp’s work on the block Kaczmarz method with the application of

a randomized Kaczmarz approach towards a system of equalities and inequalities per-

formed by Leventhal and Lewis. We give an expected linear rate of convergence for this

kind of system and find that using the block Kaczmarz scheme for the equalities can

improve the rate compared to the simple Kaczmarz method.

Contents

1 Introduction 3
1.1 Model and Notation . 4
1.2 Details of the Kaczmarz Method . 5
1.3 Pavings for the Block Kaczmarz Method . 10
1.4 Contribution . 12
1.5 Organization . 15

2 Analysis of the Block Kaczmarz Algorithm for a System with Inequalities 16
2.1 Main Result and Proof . 16
2.2 Analysis of the Main Result . 20

3 Experiments 22

4 Blocking Inequalities 26

5 Related Works 29

6 Appendix 31
6.1 MATLAB Code: Kaczmarz Convergence Example 1 31
6.2 MATLAB Code: Kaczmarz Convergence Example 2 32
6.3 MATLAB Code: Simple Kaczmarz . 33
6.4 MATLAB Code: Simple Kaczmarz for Inequalities, Block Kaczmarz for Equal-

ities . 34
6.5 MATLAB Code: Block Kaczmarz for Inequalities and Equalities 36
6.6 MATLAB Code: Residual Calculation . 39

3

Chapter 1

Introduction

The Kaczmarz method [16] is an iterative algorithm for solving linear systems of

equations. Each iteration projects from one constraint to the next in a cyclic manner,

coverging to the solution at a linear rate.1 This method was rediscovered for computer

tomography, referred to as "algebraic reconstruction technique" (ART) [11], and is also

used as a special case of Projection onto Convex Sets (POCS) for signal and image pro-

cessing [9, 27]. The simple Kaczmarz method has been modified for systems of linear

equalities and inequalities [17]. It has also been adapted in the form of the block Kacz-

marz algorithm. Unlike the simple Kaczmarz algorithm, which enforces a single con-

straint at each iteration, the block Kaczmarz approach enforces multiple constraints

simultaneously [22]. This paper attempts to demonstrate convergence for a system of

linear equalities and inequalities by combining a randomized block Kaczmarz method

for the equalities with a randomized Kaczmarz algorithm for the inequalities. These re-

sults indicate that the block Kaczmarz method can be used for a system of equalities and

inequalities, and in some cases may quicken convergence.

1Mathematicians often use the term exponential convergence for the concept numerical analysts call
linear convergence.

4

1.1 Model and Notation

Consider a linear system

Ax = b, (1.1.1)

where A is a real or complex n ×d matrix.

The `p vector norm for p ∈ [1,∞] is denoted ‖·‖p , while ‖·‖ is the spectral norm

and ‖·‖F refers to the Frobenius norm. λmin and λmax are the algebraic minimum and

maximum eigenvalues for a Hermitian matrix. For n ×d matrix A, the singular values

are arranged such that

σmax(A) :=σ1(A) ≥σ2(A) ≥ ·· · ≥σmin{n,d}(A) =:σmin(A).

In this paper we assume that each row ai of A has

‖ai‖2 = 1 for each i = 1, . . . ,n. (1.1.2)

A is called standardized when (1.1.2) is true.

The condition number κ(A) :=σmax(A)/σmin(A). The Moore-Penrose pseudoinverse

of matrix A is denoted A†. For matrix A with full row rank, the pseudoinverse A† :=
A∗(A A∗)−1.

Now consider a system of linear equalities and inequalities with S as the nonempty

set of feasible solutions to the linear system. Each row i is set so that

aT
i x ≤ bi (i ∈ I≤) (1.1.3)

aT
i x = bi (i ∈ I=),

where the set of rows {1,2, ...,n} are partitioned such that the first ne rows are equalities

5

({1,2, ...,ne } ∈ I=), and the remaining ni n rows are inequalities ({ne +1,ne +2, ...,n} ∈ I≤).

A= is the submatrix of rows that are equalities in A, and A≤ represents the submatrix of

rows of the inequalities. The rows can be arranged such that

A =

 A=

A≤

 . (1.1.4)

The expected value for function f over these submatrices are denoted E=
[

f
]

:= E
[

f |i ∈ I=
]

and E≤
[

f
]

:= E
[

f |i ∈ I≤
]
.

The error bound for this system of linear inequalities uses function e : Rn → Rn de-

fined as

e(y)i =

 y+
i : i ∈ I≤

yi : i ∈ I=
, (1.1.5)

where for vector x ∈ Rm , x+ is defined as (x+)i := max(xi ,0) [17]. In addition, the dis-

tance between vector x and set S is denoted

d(x ,S) := min
w∈S

‖x −w‖2 = ‖x −PS(x)‖.

PS(x) is the projection of x onto S.

1.2 Details of the Kaczmarz Method

The simple Kaczmarz method is an iterative algorithm that approximates a solution

to the system in (1.1.1). It takes an arbitrary initial approximation x0, where at each

iteration j the current iterate is projected orthogonally onto the solution hyperplane

6

〈ai , x〉 = bi , using the algorithm

x j+1 = x j +
bi −

〈
ai , x j

〉
‖ai‖2

2

ai , (1.2.1)

where i = j mod n +1.

To demonstrate convergence for this method, consider the extremely simple exam-

ple of a 2×2 matrix A. Let us examine a system of two equations and two unknowns:

2x+3y = 9 and x−2y = 1. Basic algebra can give us the solution x = 3 and y = 1. Matrices

can also be used to give us the desired result:

A =

 2 3

1 −2

 , x =

 3

1

 , b =

 9

1

and

A · x = b,

where we can solve for x given A and b by multiplying A−1 on both sides.

x = A−1 ·b.

For large and non-square matrices where the linear algebra approach is computation-

ally extensive (inverting large matrices is challenging), the Kaczmarz approach may be

desirable. This involves taking an arbitrary initial guess x0 and use of update rule (1.2.1).

To demonstrate this using the simple example above, we can set arbitrary initial approx-

imation x0 = [−1 1]T . Using (1.2.1), we project onto the equation represented in the first

row of A and b. This calculation gives us x1 = [3/13 37/13]T , which satisfies the first

equation (2x +3y = 9). Next, we project onto the second equation. The process contin-

ues, projecting from one equation to the other. As shown in Figure 1-1, approximation

7

xk converges to x = [3 1]T .

Figure 1-1 (Convergence Using Simple Kaczmarz Method).

The randomized Kaczmarz method uses a random selection method for the selec-

tion of the rows, such that each row i is selected with probability proportional to ‖ai‖2
2.

Randomization provides an algorithm that is both simple to analyze and enforce [22].

Numerical simulations have shown an improved convergence rate for a randomized

Kaczmarz method compared to the simple method in which the rows are selected se-

quentially [28]. To demonstrate how a randomized selection mechanism improves con-

vergence, consider another example:

A =

2 3

4 5

−6 1

1 −2

1 −5

, x =

 3

1

 , b =

9

17

−17

1

−2

8

and

A · x = b.

If the rows are selected sequentially, it is possible that convergence will be quite slow.

See Figure 1-2 [Left Panel] for convergence using the cyclic pattern. Compared to the

randomized method, displayed in Figure 1-2 [Right Panel], convergence is noticeably

slower. Thus in practice a randomized Kaczmarz method is preferred to the cyclic selec-

tion method.

Figure 1-2 (Convergence Using Cyclic vs Randomized Kaczmarz Method). [Left] The simple
Kaczmarz method with cyclic selection mechanism. Convergence is shown in red. The first
5 projections are in bold. [Right] The simple Kaczmarz method with a uniform random se-
lection mechanism. Convergence is shown in blue. Again, the first 5 projections are in bold.
Note how this algorithm has progressed much closer to the solution through 5 projections
than with the cyclic selection approach.

For non-standardizd matrices, rows are selected with probability proportional to

their norms [28]. In this paper we assume standardized matrices where each row has

unit norm, so each row is selected uniformly at random from {1,...,n} with our simple

randomized Kaczmarz approach. Strohmer and Vershynin [28] find a linear rate of con-

vergence that depends on the scaled condition number of A, and not on the number of

9

equations n.

E‖x j −x?‖2
2 ≤

[
1− 1

κ(A)2

] j

‖x0 −x?‖2
2. (1.2.2)

In the case of a linear system of equalities and inequalities described in (1.1.3), the

randomized Kaczmarz method can be adapted to fit this system. Leventhal and Lewis [17]

apply the Kaczmarz method to a consistent system of linear equalities and inequalities.

At each iteration j , the previous iterate only projects onto the solution hyperplane if the

inequality is not already satisfied. If the inequality is satisfied for row i selected at itera-

tion j (aT
i x ≤ bi), the approximation x j is set equal to x j−1 [17]. The update rule for this

algorithm is

x j+1 = x j −
e(aT

i x j −bi)

‖ai‖2
2

ai . (1.2.3)

This algorithm converges linearly in expectation, with

E
[
d(x j ,S)2|x j−1

]≤ d(x j−1,S)2 − ‖e(Ax j−1 −b)‖2
2

‖A‖2
F

or equivalently for a standardized matrix A

E
[
d(x j ,S)2|x j−1

] ≤
[

1− σ2
min(A)

n

]
·d(x j−1,S)2. (1.2.4)

for iteration j [17]. This results in expected error bound

E
[
d(x j ,S)2] ≤

[
1− σ2

min(A)

n

] j

·d(x0,S)2. (1.2.5)

The randomized Kaczmarz method has been modified by Elfving [8] and Eggermont

et al. [7] in the form of the block Kaczmarz method to improve the convergence rate

in certain cases. The block Kaczmarz scheme first partitions the rows {1, ...,n} into m

blocks, denoted τ{1,...,m}. Instead of selecting one row per iteration as done with the sim-

10

ple Kaczmarz method, the block Kaczmarz algorithm chooses a block uniformly at ran-

dom at each iteration. Thus the block Kaczmarz method enforces multiple constraints

simultaneously. At each iteration, the previous iterate x j−1 is projected onto the solution

space Aτx = bτ, which enforces the set of equations in block τ [22]. Aτ and bτ are writ-

ten as the row submatrix of A and the subvector of b indexed by τ respectively, giving

equation to update approximation x j as

x j = x j−1 + (Aτ)†(bτ− Aτx j−1). (1.2.6)

1.3 Pavings for the Block Kaczmarz Method

Needell and Tropp [22] define an (m, α, β) row paving of matrix A as a partition

T = {τ1, ...τm} of the row indices such that

α≤λmin(AτA∗
τ) and λmax(AτA∗

τ) ≤β for each τ ∈ T .

The size of the paving, or number of blocks, is m, and α and β are the lower and upper

paving bounds respectively. Needell and Tropp show that these values determine the

performance of the algorithm, with expected error bound for matrix A with full column

rank and paving T

E‖x j −x?‖2
2 ≤

[
1− σ2

min(A)

βm

] j

‖x0 −x?‖2
2. (1.3.1)

Therefore the convergence rate depends on size m and upper bound β, with the algo-

rithm’s performance improving with low values of m and β, and large σ2
min(A) [22].

Vershynin [30, Cor. 1.5] and Tropp [29, Thm. 1.2] built on work from [2, 3] to demon-

strate that every standardized matrix has a good row paving.

Proposition 1.3.1 (Existence of Good Row Pavings) For fixedδ ∈ (0,1) and standardized

11

n ×dmatrix A, A admits a row paving satisfying

m ≤ Cpave ·δ−2‖A‖2 log(1+n) and 1−δ≤α≤β≤ 1+δ.

where Cpave is a absolute constant.

This result is important because the existence of a good row paving enables the use of

the block Kaczmarz method for any standardized matrix A.

A paving can be chosen such that convergence will depend only on the condition

number κ(A) and a universal paving constant [22, Cor. 1.4]. Given row pavings de-

scribed in Proposition 1.3.1 and δ = 1/2, Needell and Tropp [22] find expected conver-

gence

E‖x j −x?‖2 ≤
[

1− 1

6Cpaveκ2(A) log(1+n)

] j

‖x0 −x?‖2
2.

Depending on the characteristics of the submatrix Aτ, the block method can provide

better convergence than the simple method. Note how the error bounds given in (1.2.2)

and (1.3.1) can be written in the form

E‖x j −x?‖2
2 ≤ e− jρ · ‖x0 −x?‖2

2

for some per iteration convergence rateρ. Needell and Tropp [22] give convergence rates

ρsimp ≥ σ2
min(A)

n
and ρblock ≥

σ2
min(A)

βm
(1.3.2)

for the simple and block methods respectively.

If we assume that the submatrices Aτ are well conditioned and admit a fast multi-

ply, then the computational cost of the block algorithm (1.2.6) is similar to the cost of

the simple update rule in (1.2.1) [22]. In this case, switching to the block method can

improve the convergence rate by approximately n/βm, as the computational cost per

12

iteration is about equal. Therefore when the paving gives small values of β and m rela-

tive to n, the block method can greatly increase the convergence rate. When the block

Kaczmarz scheme is constructed so that it is the same as the simple Kaczmarz method

(m = n), β= 1 so that the convergence rates are equivalent as anticipated.

Next, consider the case when the submatrices Aτ are unstructured and dense. The

block algorithm for this system might require much more arithmetic per iteration, so

it will have a higher computational cost. To account for this, Needell and Tropp [22]

compare the convergence rate per epoch, not per iteration. An epoch is the minimum

number of iterations it could take to touch every row of A once. This assumes that the

computational cost of each algorithm is similar per row touched, not per iteration. An

epoch is n iterations for the simple Kaczmarz approach and m iterations for the block

method. The convergence rates can be compared as

n ·ρsimp ≥σ2
min(A) and m ·ρblock ≥

σ2
min(A)

β
(1.3.3)

The per-epoch convergence rate for the block method is worse or equal to that of the

simple method. However, Needell and Tropp [22] argue that the block Kaczmarz algo-

rithm can still be preferable to the simple method in some applications, such as signal

processing and computer architectures. They found improved per epoch convergence

for the block process in numerical simulations as well.

1.4 Contribution

This paper analyzes the system with matrix described in (1.1.1) and (1.1.4) using

an algorithm with the block Kaczmarz approach for the equalities contained in A= and

the random Kaczmarz method for the inequalities contained in A≤. A paving is created

for the equality rows with the inequalities excluded. At each iteration, there is given a

13

Algorithm 1.4.1 Block Kaczmarz Method for a System with Inequalities

Input:

• Matrix A with dimension n ×d

• Right-hand side b with dimension n

• Number of rows representing equalities ne

• Partition T = {τ1, . . . ,τm} of the row indices {1, . . . ,ne }

• Initial iterate x0 with dimension d

• Convergence tolerance ε> 0

Output: An estimate x̂ for the solution to minx‖e(Ax −b)‖2
2

j ← 0
repeat

j ← j +1
Draw uniformly at random q from [0,1]

if q ≤ βm
ne+βm

Choose a block τ uniformly at random from T
x j ← x j−1 + (Aτ)†(bτ− Aτx j−1) { Solve least-squares problem }

else
Choose a row i uniformly at random from {ne +1, . . . ,n}

x j = x j−1 − e(aT
i x j−1−bi)

‖ai ‖2
2

ai

until ‖e(Ax j −b)‖2
2 ≤ ε2

x̂ ← x j

probability p of choosing uniformly at random from the blocks of equalities (p ∈ [0,1]),

and a 1−p chance of choosing an inequality row uniformly at random. In the case of a

block of equalities being selected, the algorithm proceeds by updating x j using (1.2.6).

When an inequality row is selected, x j is updated using the rule (1.2.3).

The most arithmetically expensive step of Algorithm 1.4.1 is taking the pseudoin-

verse A†
τ when applying update rule (1.2.6) for the blocks of rows representing equali-

ties. This can be performed using an iterative least-squares solver such as CGLS [1] to

14

approximate the pseudoinverse when each row of submatrix Aτ is well-conditioned or

there is a fast-multiply method for structured blocks [22].

We propose a selection method that demonstrates an expected linear convergence

rate for the system proposed in (1.1.1) and (1.1.4) using Algorithm 1.4.1. As expected, in-

troducing a block Kaczmarz scheme for the equalities tends to increase the per iteration

convergence rate relative to a simple randomized Kaczmarz method. This comparison

is most applicable when the per iteration computational cost of the two methods are ap-

proximately equivalent. For situations where the paving results in submatrix Aτ which

admits a fast multiply and is well conditioned, the computational costs of the two meth-

ods are comparable.

In the case of unstructured or dense submatrix Aτ, the block Kaczmarz approach

is significantly more computationally expensive per iteration. To account for this, we

can compare the convergence rates per epoch instead of per iteration. Theoretical re-

sults suggest that Algorithm 1.4.1 slows down the per epoch convergence rate relative

to the simple Kaczmarz scheme, or at best results in approximately equivalent conver-

gence. Needell and Tropp [22] ran numerical experiments that suggest results favorable

to this theory’s predictions for a system with no inequalities. Their experiments yielded

faster per epoch convergence when the equalities were blocked. Our numerical sim-

ulations indicate that the inequalities (where for i ∈ I≤, bi = Ai x +γ for some γ ≥ 0)

make convergence less precise for large γ. This results in the linear convergence rate

stops much earlier compared to a system without inequalities, such that both our block

Kaczmarz approach and the simple Kaczmarz scheme cease to converge after only a few

epochs. Thus the methods converge at approximately the same per epoch rate in our ex-

periments. Still, this suggests the experimental results may perform better than theory

predicts in some cases.

15

1.5 Organization

Section 2 lays out our main result, Theorem 2.1, and provides a proof. It also includes

analysis of this result. Section 3 explains numerical experiments and compares conver-

gence using simulated results. In Section 4, we discuss an alternative block Kaczmarz

approach where the inequalities are blocked as well as the equalities, and give results of

experimental simulations for this method. We highlight related works in Section 5. The

Appendix includes the MATLAB code for the numerical experiments in Section 4 and

Section 5, as well as the examples in Section 1.

16

Chapter 2

Analysis of the Block Kaczmarz

Algorithm for a System with Inequalities

2.1 Main Result and Proof

This section begins with our main result, which gives linear convergence for the

method described by Algorithm 1.4.1. The proof combines work on the convergence of

the block Kaczmarz algorithm for a system of linear equalities with the application of

the randomized Kaczmarz method to a system that includes equalities and inequalities.

This primarily builds on the Needell and Tropp’s [22] paper on convergence using the

block Kaczmarz approach, and the Kaczmarz convergence demonstrated by Leventhal

and Lewis [17] for a system with inequalities. The proof methods used in these papers

can be combined to give the desired result.

Theorem 2.1.1 (Convergence) Let A be an n × d matrix that admits an (m,α,β) row

paving for A=. The first ne rows of A represent equalities and the remaining ni n = n −ne

rows are inequalities (aT
i x ≤ bi ∀ row i ∈ I≤). Set the probability p of selecting from A=,

p = βm
ni n+βm (and the probability of selecting from A≤ as 1−p). Let x0 be an arbitrary ini-

17

tial estimate. S is the nonempty feasible region. Then the Algorithm 1.4.1 satisfies for each

iteration j = 1,2,3,...,

E
[
d(x j ,S)2|x j−1

] ≤
[

1− σ2
min(A)

(ni n +βm)

]
·d(x j−1,S)2. (2.1.1)

Proof. Let row index i be chosen during iteration j .

If i ∈ I=, then we set bτ = AτPS x j−1 since PS x j−1 ∈ S. Starting with update rule (1.2.6)

we have

x j = x j−1 + A†
τ(bτ− Aτx j−1).

Substituting in our value for bτ gives us

x j = x j−1 + A†
τAτ(PS x j−1 −x j−1).

We can subtract PS x j−1 from both sides to obtain

x j −PS x j−1 = x j−1 −PS x j−1 − A†
τAτ(x j−1 −PS x j−1)

= (I− A†
τAτ)(x j−1 −PS x j−1).

We take the expected value of the norm of both sides as follows:

E‖x j −PS x j−1‖2
2 ≤ E‖(I − A†

τAτ)(x j−1 −PS x j−1)‖2
2.

Analyzing the right-hand side, we can use the following facts.

E‖(I− A†
τAτ)u‖2

2 = ‖u‖2
2 −E‖A†

τAτu‖2
2 and E‖A†

τAτu‖2
2 ≥

1

βm
‖Au‖2

2.

18

These can be used to applied to our case, resulting in

E‖x j −PS x j−1‖2
2 ≤ E‖(I − A†

τAτ)(x j−1 −PS x j−1)‖2
2

= ‖x j−1 −PS x j−1‖2
2 −E‖A†

τAτ(x j−1 −PS x j−1)‖2
2

≤ ‖x j−1 −PS x j−1‖2
2 −

1

βm
‖A=(x j−1 −PS x j−1)‖2

2.

We can substitute our definition of distance from x j to S, such that

E
[
d(x j ,S)2|x j−1

]≤ d(x j−1,S)2 − 1

βm
‖A=(x j−1 −PS x j−1)‖2

2.

Furthermore, we rewrite the norm on the right-hand side using the error bound in (1.1.5).

E
[
d(x j ,S)2|x j−1

]≤ d(x j−1,S)2 − 1

βm

∑
i∈I=

e(A=x j−1 −b=)2
i .

Next, consider the alternative case where i ∈ I≤. For the inequality case, the error

bound is given by

d(x j ,S)2 ≤ d(x j−1,S)2 − e(A≤x j−1 −b≤)2
i

‖ai‖2
2

,

and as each row has unit norm, ‖ai‖2
2 = 1, we find

E
[
d(x j ,S)2|x j−1

]≤ d(x j−1,S)2 −E
[
e(A≤x j−1 −b≤)2

i

]

when we take the expectation of both sides. The right term on the right-hand side can

be treated similarly to a probability distribution, satisfying

E
[
d(x j ,S)2|x j−1

]≤ d(x j−1,S)2 − 1

ni n

∑
i∈I≤

e(A≤x j−1 −b≤)2
i .

19

Combining the results for i ∈ I= and i ∈ I≤, we can find the expected error bound for

the system as

E
[
d(x j ,S)2|x j−1

]= p ·E=
[
d(x j ,S)

]2 + (1−p) ·E≤
[
d(x j ,S)

]2 .

Substituting in the error bounds for each case gives us

E
[
d(x j ,S)2|x j−1

]≤ d(x j−1,S)2 −p · 1

βm

∑
i∈I=

e(A=x j−1 −b=)2
i − (1−p) · 1

ni n

∑
i∈I≤

e(A≤x j−1 −b≤)2
i .

If we set p = βm
ni n+βm , combining the terms on the right-hand side finds

E
[
d(x j ,S)2|x j−1

]≤ d(x j−1,S)2 − 1

ni n +βm

[∑
i∈I=

e(A=x j−1 −b=)2
i +

∑
i∈I≤

e(A≤x j−1 −b≤)2
i

]

= d(x j−1,S)2 − 1

ni n +βm

[∑
i

e(Ax j−1 −b)2
i

]
.

Substituting back to the norm using the definition of the error bound, we have

E
[
d(x j ,S)2|x j−1

]≤ d(x j−1,S)2 − 1

ni n +βm
‖e(Ax j−1 −b)‖2

2,

and we reach our proposed error bound

E
[
d(x j ,S)2|x j−1

]≤ [
1− σ2

min(A)

(ni n +βm)

]
d(x j−1,S)2,

which concludes the proof.

20

2.2 Analysis of the Main Result

Theorem 2.1.1 gives linear convergence in expectation for Algorithm 1.4.1. In addi-

tion, probability p of selecting from A= can be chosen so that the expected convergence

rate only depends on the number of inequalities ni n , paving size m, and upper bound

β.

The result from Theorem 2.1.1 gives us error bound

E
[
d(x j ,S)2] ≤

[
1− σ2

min(A)

(ni n +βm)

] j

·d(x0,S)2.

This is in the same form as (1.2.5),

E
[
d(x j ,S)2]≤ e− jρ ·d(x0,S)2.

for convergence rate ρ.

The convergence rates for the simple and block Kaczmarz methods for system of

equalities and inequalites are

ρsimp ≥ σ2
min(A)

n
and ρblock ≥

σ2
min(A)

ni n +βm
,

respectively. It is evident that the expected convergence rate will be faster per iteration

than the method used by Leventhal and Lewis [17] for ni n +βm < n, or equivalently

βm < ne , since the block method utilizes multiple rows at once. This result is similar

to that found by [22] given in (1.3.2) when comparing convergence rates for a system of

equalities. Both systems give a speed-up in convergence that depends on paving values

β and m relative to the number of equalities. In our system, this is different than the total

number of rows n, as it excludes the number of inequalities. We provide no evidence that

our selection of p is most efficient, or any more efficient than selecting p proportional

21

to the number of equality rows ne .

In this paper, we count an iteration j towards an epoch only if x j 6= x j−1. In the case

of choosing a row that represents an inequality that is already satisfied, no arithmetic

is required to update the approximation x j , so that iteration is not counted towards the

epoch. The simple method [17] will have approximately n iterations per epoch, com-

pared to ni n+m iterations per epoch with the block method. The approximate per epoch

convergence rates can be compared as

n ·ρsimp ≥σ2
min(A) and (ni n +m) ·ρblock ≥σ2

min(A)
ni n +m

ni n +βm

This result is similar to that found by Needell and Tropp [22] in (1.3.3), with block con-

vergence rate at best equal to that of the simple convergence rate whenβ= 1. The differ-

ence in convergence rates between the two methods, however, appears to be dampened

by the number of inequalities. This is not surprising, as the inequalities are treated the

same by both approaches and thus should result in similar convergence rates.

Overall, our results seem consistent with previous work. The convergence rates for

the block Kaczmarz scheme depend on the paving T , as well as the number of inequali-

ties. The number of inequalities simply seem to dampen the difference in rates between

the simple and block Kaczmarz methods. Therefore for a system with few inequalities,

the change in convergence from implementing a block Kaczmarz approach instead of

the simple Kaczmarz method should be similar to that of a system with only equalities.

22

Chapter 3

Experiments

We use MATLAB to run some experiments using random matrices to test the conver-

gence of the block Kaczmarz method applied to a system of inequalities. In each experi-

ment, we create a random 500 by d matrix Arand, where each element is an independent

standard Gaussian random variable. Each entry is then divided by the norm of its row

so that the matrix is standardized. The first 400 rows of matrix A compose A=, and the

remaining 100 rows are set as inequalities of A≤ in the method described by (1.1.3). The

experiments are run using the following procedure: For each of 100 trials,

1. Create matrix Arand in the manner described above.

2. Create bi n . The first 400 components are set as 0, and the remaining 100 take

independent random uniform values from
[
0,1×10−9

]
.

3. Create x? where each entry is selected independently from a unit normal distri-

bution. Set b = Arandx?+bi n .

4. Pave submatrix A= into 16 blocks with 25 equalities per block without replace-

ment.

5. Draw uniformly at random q from [0,1].

23

(a) If q ≤ ne
n , choose block {1, ...,16} uniformly at random and update iterate

{xmixed
j : j ≥ 0} using (1.2.6).

(b) Else, choose row uniformly at random from {401, ...,500} and update iterate

{xmixed
j : j ≥ 0} using (1.2.3).

(c) Update iterate {xsimp
j : j ≥ 0} using (1.2.3).

For both the simple and block algorithms, the median, minimum, and maximum values

of the residual ‖e(Ax j −b)‖2
2 of the 100 trials are recorded for each iteration j . See the

appendix for the MATLAB code for the simple randomized Kaczmarz method and block

Kaczmarz method applied to the inequalities.

Figure 3-1 demonstrates convergence for the block Kaczmarz approach for a 500×d

matrix, with d = 50,100,150,200. The results are similar to those found by Leventhal and

Lewis [17].

Figure 3-1 (Convergence for a Random Matrix with Block Method). The matrix A is a 500 by
d matrices for d = 50, 100, 150, 200. The first 400 rows represent equalities and the last 100
rows are inequalities. The equalities are partitioned uniformly at random into 16 blocks with
25 rows in each block. The approximation error ‖e(Ax j −b)‖ is plotted against iterations j .
The plots represent the median of 100 trials.

Figure 3-2 compares the performance of Algorithm 1.4.1 and the simple Kaczmarz

method described by Leventhal and Lewis [17]. Matrix A is a 500×50 matrix. Figure 3-2

24

[left panel] compares convergence per iteration. As the block Kaczmarz method en-

forces multiple equalities per iteration, it is unsurprising that it performs better in this

experiment.

Figure 3-2 (Block Kaczmarz Method vs. Simple Kaczmarz Method). The matrix A is a 500
by 50 matrix. The approximation error ‖e(Ax j −b)‖ is plotted against iterations, epochs,
and CPU Time (in seconds). Convergence for the simple Kaczmarz method is displayed in
blue and the block Kaczmarz method in red. The lines represent the median of 100 trials,
with the shaded region containing the area between the minimum and maximum value of
the 100 trials.[Left] Approximation error as a function of the number of iterations. [Center]
Approximation error as a function of epochs. [Right] Approximation error as a function of
CPU time.

Figure 3-2 [middle panel] displays the convergence of the two methods per epoch.

The block Kaczmarz algorithm has a epoch of m +ni n , which is the minimum number

of iterations required to enforce each equality and inequality. The epoch for the simple

Kaczmarz method is again n in the inequalities case. In this paper we only count an

iteration towards an epoch if the estimated solution x j 6= x j−1. Thus in the case where a

chosen inequality is already satisfied for iteration j , this iteration does not count towards

an epoch. The numerical experiments suggest that block Kaczmarz method is no better

than the simple Kaczmarz method. This result differs from experiments run by Needell

and Tropp [22], in which the block Kaczmarz method improved convergence per epoch.

However, the results still indicate that blocking the equalities does not slow convergence

per epoch, and actually suggests that the block Kaczmarz method may outperform the

results that are predicted by theory.

25

Finally, Figure 3-2 [right panel] compares the rate of convergence of the two algo-

rithms by plotting the residual against the CPU time expended in the simulation. While

the block Kaczmarz approach takes more computing time to create the paving, the in-

creased convergence rate quickly gives the method improved convergence per second

relative to the simple Kaczmarz algorithm.

26

Chapter 4

Blocking Inequalities

We considered an adjusted block Kaczmarz strategy in which the inequalities are

blocked together as well as the equalities. If a block of inequalities is selected, the al-

gorithm proceeds by selecting each row from the block that is not already satisfied, and

projecting onto those rows. Therefore unlike for a block of equalities in which every row

in the block is used, the inequality block updates only using some of the rows in the

given block. For consistency, the update only counts toward an iteration if any of the

inequalities in the selected block are not satisfied, and will count each unsatisfied row

towards an epoch. While we do not provide theoretical evidence of convergence using

this approach, numerical simulations suggest that this method results in quicker con-

vergence than the method where the block strategy is applied to only the equalities. The

experiment procedure, similar to that given in Section 3, runs as follows:

For each of 100 trials,

1. Create matrix Arand in the manner described in Section 3.

2. Create bi n . The first 400 components are set as 0, and the remaining 100 take

independent random uniform values from
[
0,1×10−9

]
.

3. Create x? where each entry is selected independently from a unit normal distri-

27

bution. Set b = Arandx?+bi n .

4. Pave submatrix A= into 16 blocks with 25 equalities per block without replace-

ment.

5. Pave submatrix A≤ into 4 blocks with 25 inequalities per block without replace-

ment.

6. Draw uniformly at random q from [0,1].

(a) If q ≤ ne
n , choose equality block {1, ...,16} uniformly at random and update

iterate {xblock
j : j ≥ 0} using (1.2.6).

(b) Else, choose inequality block uniformly at random from {17, ...,20}

i. For each row i in the block: If Ai ·x j−1 ≤ bi , remove row i from the block

submatrix for this projection.

ii. Update iterate {xblock
j : j ≥ 0} using (1.2.6) for the remaining inequalities.

The MATLAB code for the block method was modified to block the inequalities as

well (see Appendix). Figure 4-1 illustrates the per iteration convergence of the previous

block method with the new block algorithm including blocking inequalities, and Fig-

ure 4-2 displays the per epoch convergence. The plots display the median of 100 trials

for each method, with shaded regions representing the area between the minimum and

maximum values of the 100 trials. The numerical experiments suggest improved con-

vergence when the inequalities are blocked.

28

Figure 4-1 (Block Kaczmarz Method Applied to Equalities vs. Block Kaczmarz Method Ap-
plied to Equalities and Inequalities). Per iteration convergence of the two variants for matrix
A with dimensions 500×100. The red line represents the block Kaczmarz algorithm applied
to equalities and the simple randomized Kaczmarz algorithm applied to inequalities (Sec-
tion 3). The black line shows convergence for the block Kaczmarz method applied to both
the equalities and inequalities in the method described in Section 4.

Figure 4-2 (Block Kaczmarz Method Applied to Equalities vs. Block Kaczmarz Method Ap-
plied to Equalities and Inequalities). Per epoch convergence of the two variants for matrix A
with dimensions 500×100. The red line represents the block Kaczmarz algorithm applied to
equalities and the simple randomized Kaczmarz algorithm applied to inequalities described
in Section 3. The black line shows convergence for the block Kaczmarz method applied to
both the equalities and inequalities in the method described in Section 4.

29

Chapter 5

Related Works

The Kaczmarz algorithm was first proposed in [16]. This method is also called "al-

gebraic reconstruction technique" when used in computer tomography [11, 4, 19, 13].

Kaczmarz [16] demonstrated that the method converged to the solution of linear sys-

tem Ax = b for square, non-singular matrix A. Many have analyzed convergence re-

sults of the Kaczmarz method [5, 6, 31, 10].Empirical results suggested that random-

ized selection improved convergence over the cyclic scheme [12, 14, 9, 19]. Strohmer

and Vershynin [28] were the first to prove an expected linear convergence rate using

a randomized Kaczmarz algorithm. This result was extended by Needell [20] to apply

to an inconsistent system. Needell found a linear convergence rate to a fixed radius

around the least-squares solution. Zouzias and Freris [32] also extend [28] in the in-

consistent case, using a variant of a Kaczmarz method described in [24] to reduce the

residual and thus prove convergence to the least-squares solution, unlike the standard

methods. Needell, Srebro, and Ward [21] use a connection between stochastic gradi-

ent descent and the randomized Kaczmarz algorithm to present a tradeoff between the

convergence rate and the radius of convergence (the residual described in [20]). Liu,

Wright, and Sridhar [18] discuss applying a parallelized variant of the randomized Kacz-

30

marz method, demonstrating that the linear convergence rate can be increased almost

linearly by bounding the number of processors by a multiple of the number of rows of

A.

The Block Kaczmarz updating method was introduced by Elfving [8], and focused

to the case used in this paper by Eggermont et al. [7]. Xu and Zikatanov [31] give esti-

mates of the convergence rates for algorithms including the block Kaczmarz approach.

Needell and Tropp [22] extend this result, giving an expected linear convergence rate

which depends on the properties of matrix A and of the submatrices Aτ resulting from

the paving, connecting pavings and the block Kaczmarz scheme. Popa’s paving litera-

ture used blocks with orthogonal rows that give results favorable to the block Kaczmarz

method [24, 25, 26]. Needell, Zhao, and Zouzias [23] expand on the results from [22]

and [31] to demonstrate convergence to the least-squares solution for an inconsistent

system using the block Kaczmarz method. Again the block approach can yield faster

convergence than the simple method.

The Kaczmarz method was first analyzed for a system of equalities and inequalities

by Leventhal and Lewis [17]. They give a linear convergence rate to the feasible solu-

tion space S, using ‖A‖2
F and the Hoffman constant [15]. We apply the block Kaczmarz

scheme to the system described in [17], combing their result with that of Needell and

Tropp [22].

31

Chapter 6

Appendix

6.1 MATLAB Code: Kaczmarz Convergence Example 1

1 A = [2 3; 1 -2];
2 a1 = [2 3];
3 a2 = [1 -2];
4 b1 = 9;
5 b2 = 1;
6 x = [3; 1];
7 b = [9; 1];
8

9 x0 = [-1 1];
10 xk = zeros(100,2);
11

12

13 xk(1,:) = x0 + ((b1 - a1*transpose(x0))/(norm(a1)^2))*a1;
14 for i = 2:100
15 if rem(i,2) == 0
16 xk(i,:) = xk(i-1,:) + ((b2 - a2*transpose(xk(i-1,:)))/(norm(a2)^2))*a2;
17 else
18 xk(i,:) = xk(i-1,:) + ((b1 - a1*transpose(xk(i-1,:)))/(norm(a1)^2))*a1;
19 end
20

21 end
22 xk
23

24

25 x = linspace(-2,6,1000);
26 y = 3 - x*2/3;
27 z = .5*x - .5;

32

28

29 plot(x,y, 'black')
30 hold all
31 plot(x,z,'blue')
32

33 x = linspace(-1,xk(1,1),100);
34 y = ((xk(1,2)-1)/(xk(1,1)+1))*(x+1)+1;
35 hold all
36 plot(x,y,'red')
37

38 for j = 2:10
39 x = linspace(xk(j-1,1),xk(j,1),100);
40 y = ((xk(j,2)-xk(j-1,2))/(xk(j,1)-xk(j-1,1)))*(x-xk(j-1,1))+xk(j-1,2);
41 hold all
42 plot(x,y,'red')
43 end

6.2 MATLAB Code: Kaczmarz Convergence Example 2

1 A = [2 3; 4 5; -6 1; 1 -2; 1 -5];
2 a1 = [2 3];
3 a2 = [4 5];
4 a3 = [-6 1];
5 a4 = [1 -2];
6 a5 = [1 -5];
7 b1 = 9;
8 b2 = 17;
9 b3 = -17;

10 b4 = 1;
11 b5 = -2;
12 x = [3; 1];
13 b = [9; 17; -17; 1; -2];
14

15 x0 = [-1 1];
16 xk = zeros(100,2);
17

18

19 xk(1,:) = x0 + ((b1 - a1*transpose(x0))/(norm(a1)^2))*a1;
20 for i = 2:100
21 %For cyclic selection:
22 j = i;
23 j = randi([1,5],1,1);
24 %For random selection:
25 if rem(j,5) == 2
26 xk(i,:) = xk(i-1,:) + ((b2 - a2*transpose(xk(i-1,:)))/(norm(a2)^2))*a2;
27 end
28 if rem(j,5) == 3
29 xk(i,:) = xk(i-1,:) + ((b3 - a3*transpose(xk(i-1,:)))/(norm(a3)^2))*a3;
30 end
31 if rem(j,5) == 4

33

32 xk(i,:) = xk(i-1,:) + ((b4 - a4*transpose(xk(i-1,:)))/(norm(a4)^2))*a4;
33 end
34 if rem(j,5) == 0
35 xk(i,:) = xk(i-1,:) + ((b5 - a5*transpose(xk(i-1,:)))/(norm(a5)^2))*a5;
36 end
37 if rem(j,5) == 1
38 xk(i,:) = xk(i-1,:) + ((b1 - a1*transpose(xk(i-1,:)))/(norm(a1)^2))*a1;
39 end
40

41

42 end
43

44 x = linspace(-2,6,1000);
45 y = 3 - x*2/3;
46 z = .5*x - .5;
47 w = -.8*x + 17/5;
48 q = 6*x -17;
49 r = .2*x + .4;
50

51 plot(x,y, 'black')
52 hold all
53 plot(x,z,'black')
54 hold all
55 plot(x,w,'black')
56 hold all
57 plot(x,q,'black')
58 hold all
59 plot(x,r,'black')
60

61 x = linspace(-1,xk(1,1),100);
62 y = ((xk(1,2)-1)/(xk(1,1)+1))*(x+1)+1;
63 hold all
64 plot(x,y,'red')
65

66 for j = 2:15
67 x = linspace(xk(j-1,1),xk(j,1),100);
68 y = ((xk(j,2)-xk(j-1,2))/(xk(j,1)-xk(j-1,1)))*(x-xk(j-1,1))+xk(j-1,2);
69 hold all
70 plot(x,y,'red')
71 end

6.3 MATLAB Code: Simple Kaczmarz

1 function [resid, cpu] = Simple (A, b, x, n, d, its, epoch)
2

3 x0 = zeros(d,1);
4 xk = x0;
5 % eq = # of equalities. n Ű eq = # of inequalities
6 eq = 400;
7 ineq = n - eq;

34

8 %Number of equalities in a block
9 blocksize = 25;

10 % m is size of paving (number of blocks)
11 m = eq/blocksize;
12

13 %probability of choosing equality
14 se = eq/n;
15 j = 1;
16 time = cputime;
17

18 resid(1) = err(A,xk,b,eq,m);
19 cpu(1) = cputime-time;
20

21 while j <= its*epoch
22 %Choose equality or inequality
23 choice = rand;
24 %If select equality
25 if choice<se
26 row = randi([1,eq]);
27 ai = A(row,:);
28 bi = b(row,:);
29 xk = xk + ((bi - ai*xk)*(ai)/(norm(ai)^2))';
30 %If select inequality
31 else
32 row = floor(rand*(n-eq))+1+eq;
33 ai = A(row,:);
34 bi =b(row,:);
35 beta = -(bi - ai*xk);
36 if beta < 0
37 beta = 0;
38 %Only count iteration if inequality not satisfied
39 if j > 0
40 j = j-1;
41 end
42 end
43 xk = xk + ((beta)*(ai)/(norm (ai)^2))';
44 end
45 j = j + 1;
46 if rem(j, epoch) == 0
47 resid(j/epoch) = err(A,xk,b,eq,m);
48 cpu(j/epoch) = cputime-time;
49 end
50 end

6.4 MATLAB Code: Simple Kaczmarz for Inequalities, Block
Kaczmarz for Equalities

1 function [resid, cpu] = Block (A, b, x, n, d, its, epoch)
2 % eq = # of equalities. n Ű eq = # of inequalities

35

3 eq = 400;
4 ineq = n - eq;
5 %Number of equalities in a block
6 blocksize = 25;
7 % m is size of paving (number of blocks)
8 m = eq/blocksize;
9

10 %Block just equalities:
11 x0 = zeros(d,1);
12 xk = x0;
13 %empty matrix for paving
14 t = zeros(m, blocksize);
15 %keep track of rows used
16 used = zeros(eq, 1);
17

18

19 %First step: pave
20 %Make t an m by eq/m matrix with each row k represents paving k
21 for h = 1:m
22 for j = 1:blocksize
23 i = floor(rand*eq)+1;
24 while any(used == i)
25 i = floor(rand*eq)+1;
26 end
27 t(h,j) = i;
28 used((h-1)*m+j) = i;
29 end
30 end
31

32 %disp(t);
33

34 At = zeros(eq/m, d, m);
35 Attemp = zeros(eq/m, d);
36 bttemp = zeros(eq/m, 1);
37 bt = zeros(eq/m, 1, m);
38

39 for q = 1:m
40 for r = 1:eq/m
41 Attemp(r,:) = A(t(q,r),:);
42 bttemp(r,:) = b(t(q,r),:);
43 end
44 At(:,:,q) = Attemp;
45 bt(:,:,q) = bttemp;
46 end
47

48 %probability of choosing equality
49 se = eq/n;
50 %counts rows touched
51 tot = 1;
52 values = 1;
53 resid(values) = err(A,xk,b,eq,m);
54 time = cputime;

36

55 cpu(values) = cputime - time;
56 values = values + 1;
57

58

59 while tot <= its*epoch
60 %Choose equality or inequality
61 choice = rand;
62 %If select equality
63 if choice<se
64 part = randi([1,m]);
65 Atd = At(:,:,part)'*(At(:,:,part)*At(:,:,part)')^(-1);
66 xk = xk + ((Atd)*(bt(:,:,part)-At(:,:,part)*xk));
67 %Increase counter depending if by iteration or epoch
68 if epoch == 1
69 tot = tot + 1;
70 else
71 tot = tot + blocksize;
72 end
73 %If select inequality
74 else
75 row = floor(rand*ineq)+1+eq;
76 ai = A(row,:);
77 bi =b(row,:);
78 beta = -(bi - ai*xk);
79 if beta < 0
80 beta = 0;
81 tot = tot-1;
82 end
83 xk = xk + ((beta)*(ai)/(norm (ai)^2))';
84 tot = tot + 1;
85 end
86 if tot/epoch >= values
87 resid(values) = err(A,xk,b,eq,m);
88 cpu(values) = cputime - time;
89 values = values + 1;
90 end
91 end

6.5 MATLAB Code: Block Kaczmarz for Inequalities and Equal-
ities

1 function [resid, cpu] = AllBlock (A, b, x, n, d, its, epoch)
2 % eq = # of equalities. n Ű eq = # of inequalities
3 eq = 400;
4 ineq = n - eq;
5 %Number of equalities in a block
6 blocksize = 25;
7 %Number of equality blocks
8 m = eq/blocksize;

37

9 %Number of inequalities in a block
10 blocksizei = 25;
11 %Number of inequality blocks
12 mi = ineq/blocksizei;
13 x0 = zeros(d,1);
14 xk = x0;
15

16 %empty matrix for paving
17 t = zeros(m, blocksize);
18 %keep track of rows used
19 used = zeros(eq, 1);
20 ti = zeros(mi,blocksize);
21 usedi = zeros(ineq,1);
22

23 %Pave equalities
24 for h = 1:m
25 for j = 1:blocksize
26 i = floor(rand*eq)+1;
27 while any(used == i)
28 i = floor(rand*eq)+1;
29 end
30 t(h,j) = i;
31 used((h-1)*m+j) = i;
32 end
33 end
34

35 %Pave inequalities
36 for h = 1:mi
37 for j = 1:blocksizei
38 i = floor(rand*ineq)+eq+1;
39 while any(usedi == i)
40 i = floor(rand*ineq)+eq+1;
41 end
42 ti(h,j) = i;
43 usedi((h-1)*mi+j) = i;
44 end
45 end
46

47 %Get paving matrices
48 At = zeros(eq/m, d, m);
49 Attemp = zeros(eq/m, d);
50 bttemp = zeros(eq/m, 1);
51 bt = zeros(eq/m, 1, m);
52

53 for q = 1:m
54 for r = 1:eq/m
55 Attemp(r,:) = A(t(q,r),:);
56 bttemp(r,:) = b(t(q,r),:);
57 end
58 At(:,:,q) = Attemp;
59 bt(:,:,q) = bttemp;
60 end

38

61

62 for q = 1:mi
63 for r = 1:ineq/mi
64 Attempi(r,:) = A(ti(q,r),:);
65 bttempi(r,:) = b(ti(q,r),:);
66 end
67 Ati(:,:,q) = Attempi;
68 bti(:,:,q) = bttempi;
69 end
70

71 %probability of choosing equality
72 se = eq / n;
73 %counts rows seen
74 tot = 1;
75 values = 1;
76 resid(values) = err(A,xk,b,eq,m);
77 time = cputime;
78 cpu(values) = cputime - time;
79 values = values + 1;
80

81 while tot <= its*epoch
82 %choose equality or inequality
83 choice = rand;
84 %If select equality
85 if choice<se
86 part = randi([1,m]);
87 Atd = At(:,:,part)'*(At(:,:,part)*At(:,:,part)')^(-1);
88 xk = xk + ((Atd)*(bt(:,:,part)-At(:,:,part)*xk));
89 if epoch == 1
90 tot = tot + 1;
91 else
92 tot = tot + blocksize;
93 end
94 %If select inequality
95 else
96 part = randi([1,mi]);
97 Atik = Ati(:,:,part);
98 btik = bti(:,:,part);
99 passed = 1;

100 Attemp = zeros(passed,d);
101 bttemp = zeros(passed,1);
102 for v = 1:ineq/mi
103 %check to see if inequality satisfied- if not, add it to
104 %temporary matrices
105 if Atik(v,:)*xk < bti(v)
106 Attemp(passed,:) = Atik(v,:);
107 bttemp(passed) = btik(v);
108 passed = passed + 1;
109 %only if by per epoch, not per iteration, update by number
110 %of inequalities not satisfied
111 if epoch > 1
112 tot = tot + 1;

39

113 end
114

115 end
116 end
117 %if not all inequalities already satisfied, update xk
118 if passed > 1
119 Attemp = Attemp(1:passed-1,:);
120 bttemp = bttemp(1:passed-1);
121 Atdi = Attemp'*(Attemp*Attemp')^(-1);
122 xk = xk + ((Atdi)*(transpose(bttemp)-Attemp*xk));
123 end
124 %in iteration case, update by 1 if any inequality not satisfied
125 if epoch == 1
126 if passed > 1
127 tot = tot + 1;
128 end
129 end
130 end
131 if tot/epoch >= values
132 resid(values) = err(A,xk,b,eq,m);
133 cpu(values) = cputime - time;
134 values = values + 1;
135 end
136

137 end

6.6 MATLAB Code: Residual Calculation

1 function residual = err(A, xk, b, eq, m)
2 resid = A*xk - b;
3 for i = eq+1:m
4 if resid(i) < 0
5 resid(i) = 0;
6 end
7 end
8 residual = norm(resid);
9 end

40

References

[1] Åke Björck. Numerical methods for least squares problems. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1996.

[2] J. Bourgain and L. Tzafriri. Invertibility of “large” submatrices with applications to
the geometry of Banach spaces and harmonic analysis. Israel J. Math., 57(2):137–
224, 1987.

[3] J. Bourgain and L. Tzafriri. On a problem of Kadison and Singer. J. Reine Angew.
Math., 420:1–43, 1991.

[4] Charles L. Byrne. Applied iterative methods. A K Peters Ltd., Wellesley, MA, 2008.

[5] Frank Deutsch. Rate of convergence of the method of alternating projections. In
Parametric optimization and approximation, pages 96–107. Springer, 1985.

[6] Frank Deutsch and Hein Hundal. The rate of convergence for the method of
alternating projections, ii. Journal of Mathematical Analysis and Applications,
205(2):381–405, 1997.

[7] P. P. B. Eggermont, G. T. Herman, and A. Lent. Iterative algorithms for large parti-
tioned linear systems, with applications to image reconstruction. Linear Algebra
Appl., 40:37–67, 1981.

[8] Tommy Elfving. Block-iterative methods for consistent and inconsistent linear
equations. Numer. Math., 35(1):1–12, 1980.

[9] Hans G Feichtinger, C Cenker, M Mayer, H Steier, and Thomas Strohmer. New vari-
ants of the pocs method using affine subspaces of finite codimension with appli-
cations to irregular sampling. In Applications in Optical Science and Engineering,
pages 299–310. International Society for Optics and Photonics, 1992.

[10] A Galántai. On the rate of convergence of the alternating projection method in
finite dimensional spaces. Journal of mathematical analysis and applications,
310(1):30–44, 2005.

[11] R. Gordon, R. Bender, and G. T. Herman. Algebraic reconstruction techniques (ART)
for three-dimensional electron microscopy and X-ray photography. J. Theoret. Biol.,
29:471–481, 1970.

41

[12] C. Hamaker and D. C. Solmon. The angles between the null spaces of X-rays. J.
Math. Anal. Appl., 62(1):1–23, 1978.

[13] Gabor T Herman. Fundamentals of computerized tomography: image reconstruc-
tion from projections. Springer, 2009.

[14] G.T. Herman and L.B. Meyer. Algebraic reconstruction techniques can be made
computationally efficient. IEEE Trans. Medical Imaging, 12(3):600–609, 1993.

[15] Alan J. Hoffman. On approximate solutions of systems of linear inequalities. J.
Research Nat. Bur. Standards, 49:263–265, 1952.

[16] S. Kaczmarz. Angenäherte auflösung von systemen linearer gleichungen. Bull. Int.
Acad. Polon. Sci. Lett. Ser. A, pages 335–357, 1937.

[17] D. Leventhal and A. S. Lewis. Randomized methods for linear constraints: conver-
gence rates and conditioning. Math. Oper. Res., 35(3):641–654, 2010.

[18] Ji Liu, Stephen J Wright, and Sridhar Srikrishna. An asynchronous parallel random-
ized kaczmarz algorithm. Available at arXiv:1401.4780, January 2014.

[19] F. Natterer. The mathematics of computerized tomography, volume 32 of Classics
in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2001. Reprint of the 1986 original.

[20] Deanna Needell. Randomized Kaczmarz solver for noisy linear systems. BIT,
50(2):395–403, 2010.

[21] Deanna Needell, Nathan Srebro, and Rachel Ward. Stochastic gradient descent and
the randomized kaczmarz algorithm. arXiv preprint arXiv:1310.5715, 2013.

[22] Deanna Needell and Joel A Tropp. Paved with good intentions: Analysis of a ran-
domized block kaczmarz method. Linear Algebra and its Applications, 441:199–221,
2014.

[23] Deanna Needell, Ran Zhao, and Anastasios Zouzias. Randomized block kaczmarz
method with projection for solving least squares. arXiv preprint arXiv:1403.4192,
2014.

[24] Constantin Popa. Block-projections algorithms with blocks containing mutually
orthogonal rows and columns. BIT, 39(2):323–338, 1999.

[25] Constantin Popa. A fast Kaczmarz-Kovarik algorithm for consistent least-squares
problems. Korean J. Comput. Appl. Math., 8(1):9–26, 2001.

[26] Constantin Popa. A Kaczmarz-Kovarik algorithm for symmetric ill-conditioned
matrices. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat., 12(2):135–146, 2004.

42

[27] M Ibrahim Sezan and Henry Stark. Applications of convex projection theory to
image recovery in tomography and related areas. Image Recovery: Theory and Ap-
plication, pages 155–270, 1987.

[28] Thomas Strohmer and Roman Vershynin. A randomized Kaczmarz algorithm with
exponential convergence. J. Fourier Anal. Appl., 15(2):262–278, 2009.

[29] Joel A. Tropp. Column subset selection, matrix factorization, and eigenvalue opti-
mization. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 978–986, Philadelphia, PA, 2009. SIAM.

[30] R. Vershynin. John’s decompositions: selecting a large part. Israel J. Math., 122:253–
277, 2001.

[31] Jinchao Xu and Ludmil Zikatanov. The method of alternating projections and the
method of subspace corrections in Hilbert space. J. Amer. Math. Soc., 15(3):573–
597, 2002.

[32] Anastasios Zouzias and Nikolaos M Freris. Randomized extended kaczmarz for
solving least squares. SIAM Journal on Matrix Analysis and Applications, 34(2):773–
793, 2013.

43

	Claremont Colleges
	Scholarship @ Claremont
	2014

	Block Kaczmarz Method with Inequalities
	Jonathan Briskman
	Recommended Citation

