Claremont Colleges

Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

1-1-2010

Figs, Wasps, Gophers, and Lice: A Computational

Exploration of Coevolution

Ran Libeskind-Hadas
Harvey Mudd College

Recommended Citation

R. Libeskind-Hadas, “Figs, Wasps, Gophers, and Lice: A Computational Exploration of Coevolutoin,” in Bioinformatics for Biologists,
P. Pevzner and R. Shamir, editors. Cambridge University Press, 2010.

This Book Chapter is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for
inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please

contact scholarship@cuc.claremont.edu.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

TR

 CHAPTER TWELVE

Figs, wasps, gophers, and lice:
a computational exploration
of coevolution

Ran Libeskind-Hadas

This chapter explores the topic of coevolution: the genetic change in one species in response
to the change in another. For example, in some cases, a parasite species might evolve to
specialize with its host species. In other cases, the relationship between two species may be
mutually beneficial and coevolution may serve to strengthen the benefits of that relationship.
One important way to study the coevolution of species is through a computational
technique called cophylogeny reconstruction. In this technique, we first obtain the evolutionary
(phylogenetic) trees for the two species and then try to map one tree onto the other in the
“simplest” (most parsimonious) possible way. We can then use these mappings to determine
how likely it is that the two species coevolved.
This chapter begins with descriptions of several pairs of species that are believed to have
coevolved: figs and the wasps that polinate them; gophers and the lice that infest them; and
a bird species that “tricks" another species to tend to its young. Next, we describe the ‘
cophylogeny reconstruction problem, its computational complexity, and a technique for finding
good solutions for this problem. Finally, the reader is invited to use this computational
method — through a freely accessible software package called Jane — to investigate the
relationships between the pairs of species described at the beginning of the chapter.

Bioinformatics for Biologists, ed. P. Pevzner and R. Shamir. Published by Cambridge University Press.
@© Cambridge University Press 2011,

227

228 Part IV Phylogeny

I can understand how a flower and a bee might slowly become, either simultaneously or one
after the other, modified and adapted in the most perfect manner to each other, by the continued
preservation of individuals presenting mutual and slightly favourable deviations of structure,
(Charles Darwin, The Origin of Species)

The prescient thought experiment that Darwin describes in The Origin of Species is, in
fact, borne out in bees and flowers (as documented in the book The Sex Life of Flowers
[1]). One particularly interesting example is the symbiotic relationship between figs,
their tiny flowers, and the miniature wasps that pollinate them.!

The story goes something like this. The flowers or “florets” of a fig are in its interior
and are protected by the fig’s thick membrane. Pollinating a fig is a real challenge!
However, each fig species has a species of wasp (usually just one species, but sometimes
more) that pollinates it. When a female wasp of the right species finds a fig that she
likes, she tunnels into the interior, generally losing her wings in the process. Once
inside, she lays her eggs on some of the tiny interior flowers, and, in the process,
pollinates the fig. As the host fig develops, the wasp eggs hatch and the larvae feed
on the fig tissue. After several weeks, the wasps reach maturity. The wingless males
have a short life with only two objectives: they mate with the females and then burrow
holes to help the females escape from the fig. The males then die inside the fig and the
females fly off in search of their own fig homes to repeat the reproductive cycle. This
bizarre story is true [2, 3] and not merely a figment of our imagination!

Biologists refer to the genetic change of one species in response to the change
in another as coevolution. In the case of figs and wasps, the coevolution is known
as mutualism since the two species are mutually dependent on one another for their
survival. While there are several hundred varieties of figs (Ficus) and fig wasps, many
pairs of fig and wasp species have become highly specialized to one another over
approximately 60 million years of evolution.

Coevolution is not always mutually beneficial. For example, there are a variety of |
species of pocket gophers and an equal variety of lice that have specialized to their
particular gopher hosts. This form of coevolution, known as parasitism, is a sort of
evolutionary war: the gophers have evolved to defend themselves from the parasitic
lice and the lice have evolved along with them to defeat their hosts’ defenses [4].

A truly bizarre form of parasitism arises between finches from the family Estrildidae
and another family commonly known as indigobirds [5, 6]. Each species of indigobird
has evidently specialized to exploit a specific finch host species. The parasitic indigo-
birds very slyly lay their eggs in the nests of the host finches. The indigobird eggs look

! Wasps are not bees, but they are in the same order called Hymenoptera.

aneously or one
oy the continued
ns of structure.

f Species is, in
Life of Flowers
) between figs,

e in its interior
real challenge!
but sometimes
s a fig that she
process. Once
n the process,
the larvae feed
vingless males
nd then burrow
the fig and the
ive cycle. This
!

to the change
ition 1s known
10ther for their
o wasps, many
e another over

wre a variety of
ialized to their
s, 1s a sort of
m the parasitic
fenses [4].

nily Estrildidae
s of indigobird
arasitic indigo-
obird eggs look

12 Figs, wasps, gophers, and lice: a computational exploration of coevolution 229

virtually identical to the corresponding host finch eggs and the juvenile indigobirds
have markings and begging behaviors that are nearly identical to those of their finch
nestmates. In this way, the parasitic indigobirds trick the host finches into caring for
their eggs and feeding their young!

Finally, an urgent and compelling case of parasitism is the evolution of HIV, Studies
of the evolutionary history of HIV indicate that it has close relatives including SIV
(simian immunodeficiency virus) that infects non-human primates and FIV (feline
strains) that infects cats. Interestingly, SIV and FIV do not appear to have deleterious
effects on their hosts. By understanding the relationships between these different
parasite viruses and their human, non-human primate, and feline hosts, researchers
hope to develop better treatments and, ultimately, vaccines against HIV [7].

Indeed, there are countless cases of coevolution that have been studied, both of
mutually beneficial and parasitic types. How do biologists determine whether two taxa
coevolved and, if there is evidence that they did, what did that coevolution look like?
This is known as the cophylogeny problem and is the topic of this chapter.

While we will soon examine figs and wasps, gophers and lice, and finches and indigo-
birds, let’s begin with a simpler case of contrived taxa that we’ll call Groodies and
Cooties. (Google “Purves Groody” to learn about Groodies.)

Imagine that biologists have observed that Cooties are parasites of their Groody
hosts and have constructed evolutionary histories, or phyvlogenetic trees, for Groodies
and similarly for Cooties as shown in Figure 12.1.2 The Groody tree is shown in black
on the left and the Cootie tree is shown in blue on the right. From now on, we’ll refer
to one of the trees as the host tree (the Groody tree, in our example) and the other the
parasite tree (the Cootie tree in this case).

The nodes in a tree represent hypothesized ancestral species. The end nodes, or
“tips,” of each tree represent the currently living, or extant, species. In Figure 12.1,
we’ve given these names Groody 1 through 4 and Cootie 1 through 4. All the other
nodes in the trees represent hypothesized species, named X, ¥, Z in the Groody tree
and x, y, z in the Cootie tree. More precisely, those nodes represent speciation events
when the hypothesized ancestral species divided into two new species. Therefore, an
edge in the tree can be thought of as the lifetime of the species with the node at the end ‘

“ The construction of phylogenetic trees is itself a fascinating and important field in computational biology, but
here we’ll assume that the phylogenetic trees have already been constructed using one of several known

techniques.

230 Part IV Phylogeny

Groody 1 Cootie 1

Cootie 3

Groody 4 Cootie 4

Figure 12.1 A tanglegram for Groodies and Cooties.

of that edge indicating the speciation event. Finally, the associations between the tips
of the Groody and Cootie trees are indicated by dotted lines. A figure like this showing
two phylogenetic trees and the associations between their tips is called a tanglegram.

You might expect that coevolution should imply that the Groody and Cootie trees
are exactly identical. However, such perfect congruence almost never happens even for
species that have coevolved. Figure 12.2(a) and (b) show two possible ways in which
the species might have coevolved. In each case, the Cootie tree in blue is superimposed
on the Groody tree in black. Each of these 1s called a reconstruction since it attempts
to reconstruct the histories of the two species.

In the reconstruction in Figure 12.2(a), we see that Cootie speciation event z occurs
at the same time as Groody event Z. This is called a cospeciation event and corresponds
to two lineages speciating contemporaneously. For example, consider a species of louse
living on a species of gopher. Imagine that the gopher species becomes geographically
distributed with one population living in a warmer climate and another in a colder
climate. Eventually, the gopher species splits into two new species, one with short hair
and one with thick long hair adapted for the colder climate. The parasitic louse species
may also split to specialize to the two new species of gophers — one new louse species
may adapt to the short-haired gophers and the other to the thick long-haired gophers.
In general, if two species coevolved, we would expect to see a significant number of
cospeciation events between their two phylogenetic trees.

Notice that in Figure 12.2(a), events x and y in the Cootie tree occurred in the
“prehistory” of the Groody species, that is, before the first inferred Groody speciation
event. Speciation events in the Cootie tree that are not contemporaneous with speciation
events in the host tree are called duplications. Duplications suggest that the Cootie
speciation was independent of the Groody speciation, which does not contribute to

12 Figs, wasps, gophers, and lice: a computational exploration of coevolution 231

Cootie 2
Groody 1

Duplications

| ‘ Cootie 1
X o Groody 2
'—_
(a)
Groody 3
i Cootie 3
Losses
Groody 4
Cospeciation Cootie 4
en the tips Duplication
is showing with host switch
Cootie 2
nglegram.
.) \ y Groody 1
ootie trees Cospeciation
ns even for | _
s in which Cootie 1
E . Groody 2
erimposed
it attempts (b)
Cootie 3
Groody 3
nt z occurs
orresponds Cootie 4
i€S DFIOUSC Groody 4
sraphically

Cospeciation

in a colder

: Figure 12.2 Two possible reconstructions of the Cootie tree on the Groody tree.
1 short hair

use species

use species evidence of coevolution of the two species. Finally, the edge from y to Cootie 1 passes
d gophers. through X and Y as does the edge from x to z. These are called loss events, Loss events
number of may be due to a failure of the Cootie lineage to speciate, or there may have been a
speciation but one of the lineages became extinct.
rred in the The reconstruction in Figure 12.2(b) suggests another possible way in which the
' speciation two species may have coevolved with two cospeciation events (x maps to X and z
1speciation maps to Z), a loss event at Y, and a duplication event where y occurs independently
the Cootie of a speciation event in the Groody tree. Another interesting thing happens here: one

ntribute to of the two descendant lineages from y switches to a different part of the Groody tree.

232 Part IV Phylogeny

This is called a host switch, or horizontal transfer event; such events are thought to
be quite common in evolution. For example, it is known that one strain of HIV host
switched from chimpanzees to humans sometime around the end of the nineteenth
century [7].

There are many other possible reconstructions of these two phylogenetic trees and
biologists would like to know which reconstructions, if any, are most plausible under
the assumption that the two species coevolved. One approach is to estimate the relative
likelihood of each of the four types of events (cospeciation, duplication, host switch,
and loss) assuming coevolution has occurred and assign each such event a numerical
“cost” so that likely events have low cost and unlikely ones have a higher cost. For
example, cospeciation is a very likely event under the assumption that our two species
coevolved, so the cost of this event might be (0 whereas duplication is a much less
likely event and would therefore have some positive cost.

Now our objective becomes that of finding a reconstruction of minimum total cost
under the given cost scheme. This is called the cophylogeny reconstruction problem. 1If
there exists a reconstruction of very low cost, this gives strong evidence of coevolution.
For example, imagine that cospeciation is assigned a cost of 0 and each duplication,
host switch, and loss is assigned cost 1. Then, in the reconstruction in Figure 12.2(a),
the total cost is 5 (2 duplications plus 3 losses), whereas in the reconstruction in
Figure 12.2(b) the total cost is 3 (1 duplication, 1 loss, and 1 host switch). You might
be wondering if there is a better reconstruction for the Groody and Cootie trees. The
answer is yes, there is a reconstruction of cost 2 and you might want to pause here to
find it. (Note that event x in the Cootie tree could be associated with something after X
in the Groody tree. Moreover, the edge leading into x is not considered to be involved
in loss events because we have no putative ancestor for x.)

Imagine that we enumerated every possible reconstruction of the Groody and Cootie
trees and, for each one, we computed its total cost. We then selected the reconstruction
of minimum total cost. In our example, that cost is 2. How do we know whether that
cost of 2 suggests coevolution? Certainly, if the cost had been 0, we'd probably feel
pretty confident that there was coevolution here because that would mean that the two
trees were identical. However, is a cost of 2 suggestive of that as well?

One way to find out is to use a basic idea in statistical hypothesis testing. Specifically,
we can formulate the null hypothesis that the two phylogenies and the associations of
their tips were random. Under this hypothesis, we'd like to measure the probability
that there was a reconstruction of cost 2 or less. We can do so by writing a computer
program that generates random pairs of trees and associations between their tips.?

@ There is some controversy on the issue of what should be randomized in such tests. Generally, the host trec 18
not modified but the parasite tree is randomized. Another school of thought is that neither tree should be
changed but only the associations between the tips should be randomized.

ought to
[TV host
neteenth

rees and
le under
: relative
£ switch,
imerical
ost. For
) species
uch less

otal cost
sblem. If
rolution.,
lication,

12.2(a),
iction in
u might
ces. The
> here to
> after X
involved

d Cootie
struction
ther that
ably feel
t the two

cifically,

ations of

ybability
omputer
eir tips.’

108t tree is

ild be

12 Figs, wasps, gophers, and lice: a computational exploration of coevolution

Next, we find the reconstruction of least cost and record that value. We repeat this
computational experiment some large number of times, say 100 times. Imagine that
we did this and discovered that for 96% of these random pairs, the cost of a minimum
reconstruction was 3 or higher and in only 4% were the minimum costs 2 or less. In
this case, we would say that the p-value is 0.04 because the probability of doing at
least as well as 2, assuming that the trees were just random, is 0.04. If the p-value is
low (typically less than or equal to 0.05), then we can reject the null hypothesis that
the pairs of trees were simply random.

Our statistical hypothesis testing depends on our ability to solve the cophylogeny
reconstruction problem. Moreover, once biologists are confident that a pair of species
coevolved, they would like to see what minimum cost reconstructions look like to get
a sense of some plausible ways in which the species coevolved.

Unfortunately, there are far too many different possible reconstructions for a pair of
phylogenetic trees for us to enumerate them all. The number of possible reconstructions
for two trees, each with n tips, can be shown to be an exponential function of n.
Just to get a sense of how bad that is, imagine that there were “only” 2" possible
reconstructions for a pair of host and parasite trees with » tips each. (The actual
number of reconstructions can be significantly larger than this!) If we have a pair of
trees with 100 tips each (small relative to some of the trees that biologists would like
to evaluate), we have 2'"" reconstructions to evaluate. Even if we had a supercomputer
capable of examining a billion reconstructions per second, it would take over 40 #rillion
years to examine them all! Considering that the sun will burn out in about nine billion
years, this is very very bad news.

“Let’s just wait a few years for faster computers; they should be able to do the job!”
you might be thinking to yourself. Let’s explore that for a moment. Under the very
optimistic assumption that computers get twice as fast every year, waiting 20 years
would result in computers that are about one million times faster than they are now.
With such a fast computer we could solve the problem for trees with 100 tips in a
mere 40 million years! In the off chance that this seems like a significant improvement,
consider that if we increased the number of tips in the trees from 100 to 120, wed
be back to taking 40 trillion years to solve the problem, even with our super-fast
futuristic computer. Considering that biologists have developed cophylogeny data sets
in which the trees have over 200 tips, it appears that we’re in serious trouble if we try to

solve the problem this way. The moral of this story is that computational methods that

233

234 Part IV Phylogeny

|

|
consider an exponential number of possibilities are useless for even relatively small
phylogenetic trees.

For some computational problems, there are clever ways of finding the desired opti-
mal solution without brute-force examination of every possible option. For example,
you’ve probably used a program like Mapquest or Google Maps and asked for driving
directions from one location to another. Those programs can find the shortest path
between two locations without actually looking at every one of the large number of
different paths. Computer scientists have found very clever algorithms that are abso-
lutely guaranteed to find you a shortest path and the computation time is lightning
fast.

It would be nice if this was possible for the cophylogeny reconstruction problem,
Unfortunately, this appears to be very unlikely. The cophylogeny reconstruction prob-
lem was recently shown to be NP-hard, which essentially means that a fast algorithm
for solving the cophylogeny reconstruction problem probably doesn’t exist [8].

So what is to be done about the cophylogeny reconstruction problem? If the NP-
hardness of the problem meant that there was absolutely no hope, then evolutionary
biologists would be very disappointed and this chapter would be over. Fortunately,
computational biologists have developed several strategies for solving the cophylogeny
problem reasonably well. One approach is to try to use clever computational techniques
to avoid examining certain reconstructions that can’t be optimal. Professor Michael
Charleston, at the University of Sydney in Australia, has developed a technique called
jungles [9] that does exactly this. This approach still takes exponential time in many
cases so it can only be used with relatively small trees. The technique has been
implemented in a software tool called TreeMap [10].

Another approach is to use heuristics. A heuristic is a computational method that
doesn’t guarantee an optimal solution but foregoes optimality for efficiency. For exam-
ple, Professors Daniel Merkle and Martin Middendorf at the University of Leipzig in
Germany developed a very fast heuristic [11] used in a package called Tarzan [12].
(First there were jungles and then there was Tarzan.) Tarzan is known to find solutions
that are not necessarily optimal and sometimes even finds solutions that don’t quite
make sense biologically (e.g. reconstructions that are impossible because they require
a speciation event x to occur before another speciation event y but also for y to occur
before x, creating an irreconcilable inconsistency). Nonetheless, Tarzan often finds
very good solutions and can handle very large phylogenetic trees.

We have recently developed a different kind of heuristic for cophylogeny recon-
struction that uses a paradigm, called genetic algorithms, that computer science has
borrowed from biology. The irony here is that we are trying to use computational meth-
ods to solve a biological problem but the computational method was one that computer
scientists learned from biology! Unlike jungles, but like Tarzan, our approach does not
guarantee optimal solutions. However, our approach is guaranteed to always produce

E B

ly small

red opti-
xample,
r driving
test path
imber of
ire abso-
ightning

problem.
on prob-
Igorithm
3].
“the NP-
lutionary
‘tunately,
hylogeny
chniques
Michael
ue called
1 many
has been

thod that
‘or exam-
eipzig in
zan [12].
solutions
n’t quite
>y require
» to occur
ften finds

ny recon-
ience has
nal meth-
computer
1 does not
s produce

12 Figs, wasps, gophers, and lice: a computational exploration of coevolution

Beesburg 1 Ceefield

Aville

Deesdale

Eetown

Figure 12.3 Cities and flight costs.

good and biologically reasonable solutions in a reasonable amount of time. Continuing
the jungles and Tarzan theme, our software is called Jane. In section 5, we explain
how Jane works. Then, you’ll have a chance to try it out for the fig/wasp, gopher/louse,
and finch/indigobird relationships. In the meantime, you can download Jane from
http://www.cs.hme.edu/~hadas/jane.

In this section we’ll examine genetic algorithms. In the next, we’ll see how Jane uses
genetic algorithms to solve the cophylogeny problem. Finally, we’ll use Jane to explore
some real data in coevolution.

To explain the concept of a genetic algorithm — the key idea behind the Jane
software — we now take a short aside to discuss a famous computational problem
called the Traveling Salesperson Problem. The problem goes like this. Imagine that
you are a salesperson who needs to travel to a set of cities to show your products to
potential customers. The good news is that there is a direct flight between every pair
of cities and, for each pair, you are given the cost of flying between those two cities.
Your objective is to start in your home city, visit each city exactly once, and return
back home. For example, consider the set of cities and flights shown in Figure 12.3
and imagine that your start city is Aville,

A tempting approach to solving this problem is to use an approach like this: starting
at our home city, Aville, fly on the cheapest flight. That’s the flight of cost 1 to Beesburg.

235

236 Part IV Phylogeny

From Beesburg, we could fly on the least expensive flight to a city that we have not
yet visited, in this case Ceefield. From Ceefield we would then fly on the cheapest
flight to a city that we have not yet visited. (Remember, the problem stipulates that you
only fly to a city once, presumably because you’re busy and you don’t want to fly to
any city more than once — even if it might be cheaper to do so.) So now, we fly from
Ceefield to Deesdale and from there to Eetown. Uh oh! Now, the constraint that we
don’t fly to a city twice means that we are forced to fly from Eetown to Aville at a
cost of 42. The total cost of this “tour” of the citiesis 1 + 1 + 1 + 1 + 42 = 46. This
approach is called a “greedy algorithm™ because at each step it tries to do what looks
best at the moment, without considering the long-term implications of that decision.
This greedy algorithm didn’t do so well here. For example, a much better solution that
goes from Aville to Beesburg to Deesdale to Eetown to Ceefield to Aville has a total
costof | +2 + 1 + 2+ 3 = 9. In general, greedy algorithms are fast, but often fail to
find optimal or even particularly good solutions.

It turns out that finding the optimal tour for the Traveling Salesperson Problem is
very difficult. Of course, we could simply enumerate every one of the possible different
tours, evaluate the cost of each one, and then find the one of least cost. However, there
are a huge number (exponential or worse!) of different tours and this approach is
not viable for even a moderate number of cities. Like the cophylogeny reconstruction
problem, the problem is in the category of NP-hard problems — problems for which
there is strong evidence that no fast algorithms exist. So, we are in the same predicament
for the Traveling Salesperson Problem as for cophylogeny reconstruction.

Now for the clever idea that computer scientists borrowed from biology. Let’s call
the cities in Figure 12.3 by their first letters: 4, B, C, D, and £. We can represent
a tour by sequence of those letters in some order, beginning with 4 and with each
letter appearing exactly once. For example, the tour Aville to Beesburg to Deesdale to
Eetown to Ceefield and back to Aville would be represented as the sequence A BDEC.
Notice that we don’t include the A4 at the end because it is implied that we will return
to A at the end.

Now, let’s imagine a collection of some number of orderings such as 4ABDEC,
ADBCE, AECDB, and AEBDC. Let’s think of each such ordering as an “organ-
ism” and the collection of these orderings as a “population.” Pursuing this biological
metaphor further, we can evaluate the “fitness” of each organism/ordering by simply
computing the cost of flying between the cities in that given order.

Now let’s push this idea one step further. We start with a population of organisms/
orderings. We evaluate the fitness of each organism/ordering. Now, some fraction of
the most fit organisms “mate,” resulting in new “child” orderings where each child
has some attributes from each of its “parents.”” We now construct a new population
of such children for the next generation. Hopefully, the next generation will be more

ve have not
1e cheapest
tes that you
int to fly to
we fly from
iunt that we
Aville at a
= 46. This
what looks
at decision,
olution that
- has a total
often fail to

Problem is
le different
vever, there
ipproach is
onstruction
s for which
redicament

y. Let’s call
n represent
I with each
Deesdale to
> ABDEC.

-will return

ABDEC,
an “‘organ-
s biological
> by simply

organisms/
fraction of
each child
population
11l be more

12 Figs, wasps, gophers, and lice: a computational exploration of coevolution

fit — that is, it will, on average, have less expensive tours. We repeat this process for
some number of generations, keeping track of the most fit organism (least cost tour)
that we have found and report this tour at the end.

“That’s a cute idea,” we hear you say, “but what's all this about mating traveling
salesperson orderings?” That’s a good question — we’re glad you asked! There are many
possible ways we could define the process by which two parent orderings give rise to
a child ordering. For the sake of example, we’ll describe a very simple (and not very
sophisticated) method; better methods have been proposed and used in practice.

Imagine that we select two parent orderings from our current population to reproduce
(we assume that any two orderings can mate): 4B DEC and AC DE B. We choose some
point at which to split the first parent’s sequence in two, for exampleas ABD|EC. The
offspring ordering receives 4 B D from this parent. The remaining two cities to visit
are £ and C. In order to get some of the second parent’s “genome™ in this offspring,
we put £ and C in the order in which they appear in the second parent. In our example,
the second parent is AC DE B and C appears before E, so the offspring is ABDCE.

Let’s do one more example. We could have also chosen ACDE B as the parent to
split, and split it at AC|DE B, for example. Now we take the AC from this parent. In
the other parent, ABDEC, the remaining cities DE B appear in the order BDE, so
the offspring would be ACBDE.

In summary, a genetic algorithm is a computational technique that is effectively
a simulation of evolution with natural selection. The technique allows us to find
good solutions to hard computational problems by imagining candidate solutions to
be metaphorical organisms and collections of such organisms to be populations. The
population will generally not include every possible “organism” because there are
usually far too many! Instead, the population comprises a relatively small sample of
organisms and this population evolves over time until we (hopefully!) obtain very fit
organisms (that is, very good solutions) to our problem.

Just as evolution makes no promises that it results in optimally fit organisms, this
technique cannot guarantee that the solutions that it finds will be optimal. However,
carefully crafted genetic algorithms have been shown to find very good solutions to
some very hard problems. Now, let’s see how these ideas are used in Jane.

Earlier, we noted that the cophylogeny reconstruction problem is computationally very
hard; the only known approaches for solving this problem would take nearly an eternity.
On the other hand, here’s some good news: if we happen to know the order in which

237

238 Part IV Phylogeny

Figure 12.4 (a) A host tree and three different possible orderings of the speciation events
shown in (b), (c), and (d).

speciation events occurred in the host phylogeny, the problem turns out to be solvable
very quickly!

What do we mean by the order of the speciation events? Consider the host phylogeny
shown in Figure 12.4(a). Obviously, speciation event 4 occurred before speciation
events B and C. Similarly, speciation event B occurred before speciation events 1) and
E. However, which speciation event occurred first: B or C? Similarly, did D occur
before E, or vice versa? There are many possible orderings for these events and three
of them are shown in Figure 12.4(b), (c), and (d). Recall that we assume that all of the
tips of the tree occur at the same time — that is, at current time.

1 events

e solvable

phylogeny
speciation
ents D and
d D occur
s and three
it all of the

12 Figs, wasps, gophers, and lice: a computational exploration of coevolution

Surprisingly, if we happen to know the ordering of the speciation events in the host
tree, even if we know nothing about the ordering of the events in the parasite tree,
then we can find a least-cost solution in next-to-no-time using a clever computational
technique called dynamic programming [8]. While we won’t go into that technique here,
it is one of the mostly widely used methods in computational biology. For example,
sequence alignment, RNA folding, and various other computational biology problems
can be solved using this technique. In the case of cophylogeny reconstruction, we can
solve the problem in about one second (on a typical laptop computer) when the host
and parasite trees have 100 tips each. That’s fast!

“Wait a second!” we hear you exclaim. “Why does the ordering of the speciation
events in the host tree matter at all?” Take a look again at Figures 12.4(c) and (d). In
these figures let (4, C) denote the edge from node 4 to node C and let (B, E) denote
the edge from node B to node E. Notice that in the ordering shown in (c), speciation
event C' occurs before speciation event B. Thus, a parasite that duplicates on edge
(4, C) cannot host switch to edge (B, £) because (4, C) ends before (B, E) begins.
On the other hand, in the ordering shown in (d), such a switch is possible because
speciation event ¢ occurs after speciation event B so edges (4, C) and (B, E) overlap
in time. It might be that the best solution (the one that minimizes the total cost of the
cospeciation, duplication, host switch, and loss events) requires a switch from (4, C)
to (B, E), in which case the ordering in (¢) might not be as “good” as the ordering
in (d).

There’s just one problem. How do we know the order in which the speciation events
occurred in the host tree? If we're very lucky, we might have this information from
the fossil record, but generally we will have little or no reliable information on the
orderings of these events. Perhaps we could just try out all possible orderings of the host
tree events and see which one permits us to find the best reconstruction of the parasite
tree on the host tree? Unfortunately, there are way too many different orderings of the
host (an exponential number, to be specific!), so that’s totally impractical.

This is essentially the same problem that we had in the Traveling Salesperson
Problem; there were too many possible orderings of the cities to explore them all. So,
we used a genetic algorithm that kept a population that was a relatively small sample
of the totality of all possible orderings and we artificially “evolved” better solutions.

The Jane software package does exactly this for the cophylogeny reconstruction
problem. It starts with a population comprising some relatively small population of
random orderings of the speciation events in the host tree as illustrated in Figure 12.5(a).
For each such ordering of events in the host tree, we use our very fast dynamic
programming algorithm to find the best solution for reconstructing the parasite tree on
the host tree with this particular ordering of events. The cost of the best solution can be

thought of as the fitness for that ordering. Figure 12.5(b) shows the orderings scored

239

240 Part IV Phylogeny

(a) The genetic algorithm maintains a
population of “organisms,” each of which is
a different ordering of the events in the host
tree.

algorithm is used to find the best
reconstruction of the parasite tree onto
each of the orderings of the host tree. The
cost of that reconstruction is used as the
fitness of that ordering. Example fitness
scores are shown in the upper left corner
of each ordering.

(b) A very fast dynamic programming

(¢) Two orderings are chosen at random,
but biased in favor of orderings with lower
cost (better fitness). These orderings are |
then “mated” to construct a new offspring

ordering that maintains some properties of

its parent orderings. This offspring ordering

is placed into the population for the next

generation.

(d) The parents are placed back into their
mating population and the mating process is
repeated until a new population of orderings
of the desired size is constructed. We

now go back to step (a) using this new
generation as the mating population.

Figure 12.5 The steps of the genetic algorithm used by Jane.

‘ by their fitness. Keep in mind that in this context, a lower-cost solution is more fit than
a higher-cost solution.

Next, we repeatedly choose pairs of orderings to “mate.” While a pair of orderings is
chosen at random, our random choice is biased to prefer more fit (lower-cost) orderings

1S a
f which is
n the host

ing

onto
ree. The
as the
itness
corner

indom,

th lower
1gs are
ffspring
erties of
| ordering
e next

1to their
process is
orderings
We

new

on.

more fit than

forderings is
»st) orderings

12 Figs, wasps, gophers, and lice: a computational exploration of coevolution 241

to less fit (higher-cost) ones. That is, we tend to prefer orderings of the speciation events
in the host tree that permit us to find better solutions. We mate that pair of orderings
in some way, resulting in a new ordering that preserves some attributes from each of
its two parent orderings.* The offspring is a new ordering of the host tree events that
has some attributes from each of its two parent orderings. Our hope is that this new
ordering of the speciation events in the host tree might be one for which there exists
an even better solution. This is illustrated in Figure 12.5(c).

We repeat this process of constructing new offspring orderings until we’ve built
a population of new orderings of some desired size. This is our next generation as
illustrated in Figure 12.5(d). We now start all over again with this new population
serving as the mating population. This process is iterated for a user-specified number
of generations. At the end, we report the best solutions that were found during this
evolutionary process.

Now that we have an understanding of the computational challenge posed by the
cophylogeny reconstruction problem, and the approach taken by Jane, let’s try using
Jane on some real cophylogeny data for figs and wasps and for gophers and lice.
If you haven’t done so already, download Jane from the website http:/www.cs.hme.
edu/~hadas/jane. After you download it you can simply click on the the icon for that
file and Jane will start up on your computer. From the Jane page, there is also a link that
contains several example trees for you to download. One file is for figs and wasps, one
is for pocket gophers and chewing lice, and one is for finches and indigobirds. You may
also wish to read the Jane tutorial on the website, but the following is a self-contained
demonstration of Jane in action.

Now click on Jane to start the program. You’ll see the Jane window shown in
Figure 12.6. In the “File” menu at the top of the Jane window, select “Open Trees”
and find the Ficus-Ceratosolen.tree file that you downloaded from the Jane site. These
are trees for figs and wasps that pollinate them. When the file loads, you’ll see that
the Jane window reports that the trees have 16 tips each. Notice that there are sliders
in the Jane window that let you choose the “Number of Generations” (the number of
generations of the genetic algorithm) and the “Population Size” (the number of tree
orderings in each population maintained by the genetic algorithm). The defaults for
both of these values are 30, which is fine for now. Click “Go” to start Jane running.

* We won’t go into the details of the mating of orderings here, but if you're interested, you can find a detailed

description online at [13].

242 Part IV Phylogeny

Problem Information Actions
Current File: none Estimated Time: N/A Estimate Time
Host Tips: N/A Parasite Tips: N/A Status: Idle

Go

Solve Mode Stats Mode

Genetic Algorithm Parameters

Number of Generations (30
Population Size = 30
Solutions
Cospeciations # Duplications # Host Switches ~ # Losses Cost

Figure 12.6 The Jane window.

Within a second or so, Jane will complete the genetic algorithm and will display a
list of solutions in the “Solutions™ window. (Since there is some randomness employed
in the genetic algorithm, you won’t necessarily get exactly the same solutions that
are shown here, nor will you necessarily get the same solutions each time you run
Jane.) Jane presents you with a list of best solutions that it found along with their
costs. By default, Jane assumes that cospeciations have cost 0, duplications and host
switches have cost 1, and losses have cost 2. While these values have been used in
many studies, biologists often try to infer appropriate relative values of these costs from
other biological data. The values of these parameters can be changed in the “Settings”
menu in Jane.

Coming back to our example, you can see that these solutions had 9 cospeciations,
12 duplications, 6 host switches, and 1 loss for a total cost of 9 x 04+ 12 x 1 + 6 x
I 4+ 1 x 2 = 20. These are valid solutions, but since Jane uses a heuristic, there is no
guarantee that they are optimal solutions.

12 Figs, wasps, gophers, and lice: a computational exploration of coevolution 243

C. appendiculatus
F varieqata

C. blommersii
F. botrvoides
te Time ‘ |

C. arabicus
0 — | I F. svcomorus

S | C. capensis
F. sur

—* C. fusciceps
— F. racemosa

C. nexilis
— 4 F. robusta

C. grandii
F. nodosa

C. corneri
F. botrvocarpa

—* C. bisulcatus
F. septica

C. hooglandii
— F hispidicides

b C. dentifer
F. bernavsii

C. armipes
— — Fitoana

e . C. ‘kaironkenis'
—Emicrodictva

C. ex F. subcuneata
F. subcuneata
C. medlerianus
I_ F. ochrochlora
L C. ‘riparianus’
F. adenosperma

1 display a
Figure 12.7 A sample solution found by Jane.

s employed
utions that
1e you run Now, click on a solution to see what it looks like. You will see a new window with a
with their solution that might look something like the one shown in Figure 12.7. The black tree is
1s and host the host tree and the blue tree is the parasite tree. The hollow dots indicate cospeciation
en used in events while the solid red dots indicate duplication events. Some duplication events
costs from are accompanied by host switches as can be seen by the edges with arrows on them.
“Settings” Finally, loss events are indicated by dashed lines. To learn more about the meaning of
the colors of the nodes, please read the tutorial on the Jane website. (You might notice
peciations, that there appear to be only 6 duplications rather than 12. In this cost model, each
x146x duplication actually counts as two duplications — one for each of the two child species
there is no that result from the duplication event.) Try this out for the gopher_louse.tree file that

you downloaded.

244 Part IV Phylogeny
Next, let’s take a look at the finch and indigobird data set in the file Vidua.tree. The

trees here are larger than the others that you’ve experimented with previously; the host
tree has 33 tips and the parasite tree has 21 tips (some host species have no parasites).
Open this file in Jane and, this time, choose the “Number of Generations” used in
the genetic algorithm to be small — let’s try 3 generations. Similarly, let’s use a small
population size in the genetic algorithm — let’s make it 4. Click on “Go” and Jane will
run its genetic algorithm for 3 generations with 4 orderings per generation. You’ll see

resulted from our artificial evolution of solutions in this case. Note the cost of these
solutions.

As biologists, we know that natural selection works slowly and more effectively
in large populations. So, let’s now increase the “Number of Generations” to a larger

some solutions reported in the “Solutions™ window — these are the best solutions that
value — say 20 — and let’s increase the size of the population in each generation to
something larger as well, perhaps 100. Now, click “Go” again. The old solutions will
still be listed here, but below them will be the new solutions found from this longer and
larger evolutionary simulation. Take a look at the cost of these solutions! You should
see that much better solutions were found in this second run.
Now, you can perform a statistical experiment to get a sense of whether or not the
cost of the best solution found by Jane is suggestive of coevolution. More precisely,
you can test the null hypothesis that the best solution found for the observed data —
that is, the least-cost mapping of the given parasite tree onto the host tree given the
observed mapping between the tips of the parasite tree and the tips of the host tree — is
no better than we would find for random trees and tip mappings. If that’s true, then the
case for coevolution for these species is weak. If it’s false, we are likely to accept that
coevolution was at work here.
To try this out for yourself, click on the “Stats Mode” tab in the middle of the Jane
window. By clicking “Go,” Jane will find the best solution it can for the observed
data and compare it with the best solution it can find for 50 random samples, each of
\ which is the same pair of trees but with a completely random mapping between the
tips of the host and parasite trees. The histogram at the bottom right shows the costs
of the 50 samples: our original tip mapping is indicated in the histogram in red and
the 50 random mappings are indicated by blue bars. If the majority of the random
samples have higher cost than the original mapping, it is likely that the low cost for
the observed tip mapping is not due to randomness. In particular, if 5% or fewer of
the random solutions are better than the observed, this is considered strong evidence
against the null hypothesis. Notice that you can change the sample size from 50 to any
l value that you like. Try it!
You can also test an alternative null hypothesis that the solution for the observed data

is no better than random when the parasite tree and the tip mapping are randomized.

12 Figs, wasps, gophers, and lice: a computational exploration of coevolution 245

dua.tree. The
usly; the host

To do so, click on the “Random Parasite Tree” button in the “Statistical Parameters”
panel and then press “Go” again. Now, try these computational experiments all over

no parasites). again with the other data sets. You will discover that, indeed, the case for coevolution

ions” used in
's use a small
and Jane will
on. You’ll see
solutions that
cost of these

re effectively
s” to a larger
generation to
solutions will
1is longer and
! You should

1er or not the
ore precisely,
served data —
ree given the
host tree — is
true, then the
‘0 accept that

e of the Jane
the observed
ples, each of
between the
ows the costs
m in red and
[the random

low cost for
o or fewer of
ng evidence
om 50 to any

bserved data

randomized.

il

i o .“;

(1)

is very compelling in each case.

DISCUSSION

This chapter has explored aspects of the field of cophylogeny - the study of the
evolutionary associations of species. Since we can't travel backwards in time to
study these relationships in vivo, we do the next best thing and study them in
silico — that is, using computational methods. We've explored one computational
approach for cophylogeny reconstruction and the Jane software that uses this
approach.

Using computational tools, biologists are developing a better understanding of
how parasites such as HIV and malaria have coevolved with their primate hosts
which may ultimately lead to new approaches te combatting these diseases.
Professor Michael Charleston, one of the leading researchers in the field of
cophylogeny writes: “The global melt-down of ecolegical diversity is leading to
greater chances of unrelated organisms interacting, leading in turn to greater
potential of new pathogens crossing the species barrier into the human
population. Understanding the way in which such cross species transmissions
occur is of fundamental importance and it is through phylogenetic tools such as
cophylogenetic maps which will shed the light we need."[14]

In addition to this pragmatic need, cophylogeny allows us to explore some of
the beautiful and surprising ways that nature works, as Darwin himself imagined
over 150 years ago.

QUESTIONS

The Jane website (http://www.cs.hmc.edu/~hadas/jane) contains a number of sample host
and parasite trees, including several that were discussed in this chapter. If you haven't
done so already, download the “Ficus and Ceratsolen” file (called Ficus-Ceratosolen.tree)
for the fig/wasp mutualism. Open this file in Jane and you will see in the upper-left corner
of the Jane panel that these trees both have 16 tips.

246 Part IV Phylogeny
(a) Use Jane to find solutions for this pair of trees. You may use the default settings of 30
generations and a population size of 30. Jane will present a number of different
solutions found. Click on a solution to view it. Then, click on another solution to view
it. Finally, click on a third solution. You will now have three solution windows open.
These solutions will differ in some places but will agree in others. Describe where these
solutions differ.
(b) Next, enter “Stats Mode” and click the “Go" button. Take a look at the histogram
produced. The dashed red line shows the cost of the best solution found for the
original data and the blue bars indicate the best solutions found for 50 random
samples. What do these results suggest?
(2) Using the Ficus—Ceratosolen data set, make a note of the number of cospecation,
duplication, host switch, and losses in the solutions found by Jane. {If you are still in ”Stats
Mode," you will need to go back to “Solve Mode" to do this.) Jane allows biologists to set
the relative costs of each of these four event types. This is done by clicking on the
“Settings” menu and selecting "Set Costs.” (You will be asked if you would like to clear
the solution table. Click “Yes".) Now, change the cost of a loss (sorting) event from 2 to 1,
click "Go" to re-solve the problem, and note the number of each of the four event types
used in the best solutions found. Explain why the solutions to the first case differ from the
second case.
(3) Do a web search for “cophylogeny” and/or "host parasite” to find at least one more
|
!
|
|

example of a host-parasite system. Briefly describe this system and the results found by
the authors.

REFERENCES

[1] B. Meeuse and S. Morris. The Sex Life of Flowers. Facts on File, 1984,

[2] figweb. http://www.figweb.org/.

[3] G.D.Weiblen and G. W. Bush. Polination in fig pollinators and parasites. Molec. Fcol.,
11:1573-1578, 2002.

[4] M. S. Hafner and S. A. Nadler. Phylogenetic trees support the coevolution of parasites and
their hosts. Nature, 332:258-259, 1988.

[5] J. DaCosta and M. Sorenson. http:/fwww.indigobirds.com.

[6] M. D. Sorenson, C. N. Balakrishnan, and R. B. Payne. Clade-limited colonization in brood
parasitic finches (Vidua spp.). System. Biol., 53:140-153, 2004.

[7] Understanding evolution: HIV's not-so-ancient history. http://evolution.berkeley.edu/
evolibrary/news/081101 _hivorigins.

B

30

ese

tats
set

r
01,

the

ol.,

5 and

rood

12 Figs, wasps, gophers, and lice: a computational exploration of coevolution

(8]
9]
[10]

(1]

[12]

[13]

R. Libeskind-Hadas and M. Charleston. On the computational complexity of the reticulate
cophylogeny reconstruction problem. J. Comput. Biof., 16(1):105-117, 2009.

M. Charleston. Jungles: A new solution to the hostparasite phylogeny reconciliation
problem. Math. Biosci., 149:191-223, 1998.

Michael Charleston. TreeMap. http:/fwww.it.usyd.edu.au/ mcharles/software/treemap/
treemap.html.

D. Merkle and M. Middendorf. Reconstruction of the cophylogenetic history of related
phylogenetic trees with divergence timing information. Theor. Biosci., 123(4):277-299,
2005.

D. Merkle and M. Middendorf. Tarzan. http://pacosy.informatik.uni-leipzig.de/pv/
Software/Tarzan/PV-Tarzan.engl.html.

C. Conow, D. Fielder, Y. Ovadia, and R. Libeskind-Hadas. Jane: A new tool for cophylogeny
reconstruction problem. Algorith. Mol. Biol., 5(16), 2010. http://www.almaob.org/content/5/
1/16.

M. Charleston. Principles of cophylogeny maps. In M. Lassig and A. Valleriani (eds)
Biological Evolution and Statistical Physics. Springer-Verlag, 2002.

247

	Claremont Colleges
	Scholarship @ Claremont
	1-1-2010

	Figs, Wasps, Gophers, and Lice: A Computational Exploration of Coevolution
	Ran Libeskind-Hadas
	Recommended Citation

	tmp.1391214211.pdf.OIY1c

