Claremont Colleges

Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

1-1-1995

Approximation Algorithms: Good Solutions to
Hard Problems

Ran Libeskind-Hadas
Harvey Mudd College

Recommended Citation

R. Libeskind-Hadas, “Approximation Algorithms: Good Solutions to Hard Problems,”The American Mathematical Monthly, Vol. 102,
No. 1, January 1995, pp. 57-61.

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact

scholarship@cuc.claremont.edu.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

THE COMPUTER SCIENCE SAMPLER

Edited by: Catherine C. McGeoch

Approximation Algorithms:
Good Solutions to Hard Problems

Ran Libeskind-Hadas

1. INTRODUCTION. Consider a computer network represented by an undirected
graph where the vertices represent computer nodes and the edges represent links
between the nodes. Since some of the links in the network may become faulty, link
testing devices are placed at some of the nodes. A tester at a particular node can
test all links incident to that node. Since the testers are expensive, however, we
wish to deploy the minimum number of these devices such that every link is
incident to at least one node containing a tester. In graph theoretic terms, a vertex
cover is a subset of the vertices such that every edge is incident to at least one
vertex in this set. Our objective then is to find a minimum vertex cover. This is
known as the vertex cover problem.

The vertex cover problem is one of many computational problems known to be
NP-complete (see “Turing Machines and Computational Complexity” in the
January 1994 issue of the Monthly). NP-complete problems can be solved in a
number of steps that grows exponentially in the size of the problem, but no
“efficient” algorithms are known for these problems. By “efficient” we mean that
the number of steps, or time, is bounded by some polynomial in the size of the
problem. In fact, not only are no polynomial time algorithms known for NP-com-
plete problems, but the theory of NP-completeness tells us that if a polynomial
time algorithm is found for any single NP-complete problem, then all NP-com-
plete problems are solvable in polynomial time. Theoretical computer scientists
generally believe, but have so far been unable to prove, that there do not exist
polynomial time algorithms for NP-complete problems.

Let us reconsider the vertex cover problem. A simple -algorithm enumerates all
possible subsets of the vertices in increasing order of cardinality, and tests each set
to see if it is a vertex cover for the graph. This process terminates when the first
vertex cover is discovered. In the worst case, this algorithm will terminate at the
very last set, since the set of all vertices is certainly a vertex cover. For a graph with
n vertices, essentially 2” subsets must be considered by the algorithm in the worst
case. For example, if this algorithm was applied to deploy link testers in a network
with 100 nodes and the algorithm was executed on a supercomputer capable of
considering 10'? subsets per second, the computer would require over 40 billion
years to consider all possible subsets! Since the vertex cover problem is NP-com-
plete, it is unlikely that a dramatically faster algorithm can be found for this
problem.

1995] COMPUTER SCIENCE SAMPLER 57

What, then, can we do when confronted with an NP-complete problem such as
the vertex cover problem? One approach is to use heuristic algorithms. These
algorithms employ simple rules of thumb and, consequently, tend to be very fast,
However, heuristics do not guarantee that an optimal solution, or even anything
close to an optimal solution, will be found. A natural heuristic for the vertex
problem, for example, begins by selecting a vertex of highest degree (that is, the
vertex with the maximum number of edges incident to it), in this way “covering” as
many edges as possible. This step is repeated until every edge is covered. Unfortu-
nately, there are many graphs for which this heuristic performs quite poorly. In
fact, for any positive value of e, it is possible to construct a graph such that the
solution found by the heuristic on this graph is « times larger than the optimal
solution [8]! Tt would certainly be much more desirable to have an algorithm that
finds a vertex cover that is guaranteed to be at most some fixed constant times
larger than optimal. Such an algorithm is called an approximation algorithm and an
approximation algorithm that runs in polynomial time is called a polynomial time
approximation algorithm. The mere existence of polynomial time approximation
algorithms is somewhat surprising, since we have no efficient way of determining
optimal solutions to NP-complete problems. Using a number of clever techniques,
however, researchers have discovered approximation algorithms for many impos-
tant NP-complete problems.

2. APPROXIMATION ALGORITHMS. We begin by describing a surprisingly
simple polynomial time approximation algorithm for the vertex cover problem. Let
G = (V, E) denote a given graph. The algorithm comprises the following steps:

1. S is initially the empty set.

2. While edges remain in the graph, select an edge (u, v) arbitrarily. Add u
and v to the set S and remove u, v, and all edges incident to these vertices
from G.

We claim that when this algorithm terminates, S is a vertex cover for graph G
and the cardinality of § is at most twice that of a vertex cover of minimum size.

The first part of this claim is easily established, since at any step the edges
remaining in G are exactly those edges that are not yet covered by vertices in S.
To verify the second part of this claim, let E' = {e,, ..., e,} denote the set of edges
selected by the algorithm. By definition, every vertex cover must include at least
one of the two endpoints of each of these edges. Observe also that these edges
have no vertices in common, since once an edge is selected, both of its endpoints
and all incident edges are removed from G. Therefore, every vertex cover, and in
particular a minimum vertex cover, must have size at least k. However, the vertex
cover constructed by this algorithm has size exactly 2k since § consists of both
endpoints of each edge in E’. Thus, this algorithm obtains a vertex cover that is at
most twice as large as a minimum vertex cover. Finally, it is not difficult to show
that this algorithm runs in a number of steps that grows polynomially (in fact
linearly) in the number of vertices and edges in the graph.

We have demonstrated a polynomial time approximation algorithm that finds
vertex covers that are at most twice as large as optimal. In fact, our analysis is
tight: It is not difficult to construct graphs for which this algorithm finds vertex
covers that are exactly twice as large as optimal. In general, let 4 denote an
approximation algorithm and let A(J) denote the size of the solution obtained by
this algorithm for a particular instance / of the problem. Similarly, let OPT(/)
denote the size of an optimal solution for instance I of the problem. We define the

58 COMPUTER SCIENCE SAMPLER [January

ratio R ,(I) by

A(D
OPT({)

and the absolute performance ratio R , of algorithm A is defined by

R (I) =

inf{r|R () < r, for all instances I of the problem}.

Is it possible that more sophisticated approximation algorithms for the vertex
cover problem achieve absolute performance ratios better than 2? The answer is
indeed “yes”, although surprisingly the best algorithm currently known improves
this ratio only slightly to 2 — (log log n /2 log n) where #n is the number of vertices
in the graph [2]. Thus, asymptotically, this algorithm is no better than our simple
approximation algorithm. Generalizing the notion of the absolute performance
ratio, the asymptotic performance ratio R of algorithm A is defined by

R = inf{r[AN,, s.t. R,(I) < r, for all instances I of the problem s.t. OPT(I) > N,}.

We now turn to another problem, known as the bin packing problem, for which
approximation algorithms with much better absolute and asymptotic performance
ratios are known. In the bin packing problem we are given a finite set of items,
each with size between 0 and 1. Our objective is to pack these items into unit
capacity bins, minimizing the total number of bins used. More formally, let
I={s;,8,,...,5,L, VI, s, €[0,1] denote the set of items. We wish to partition 7
into disjoint subsets (bins) B,, B,,..., B, such that Vi, ;cp5 <1and k is as
small as possible.

Like the vertex cover problem, the bin packing problem is NP-complete. Like
the vertex cover problem as well, a very simple polynomial time approximation
algorithm for bin packing finds solutions that are at most twice as large as optimal.
This approximation algorithm, known as the first fit algorithm, operates as follows:
Select one item at a time in arbitrary order and place this item in the first bin
which can accommodate it.

The ratio of 2 for the first fit algorithm follows from two observations. First, we
show that when the algorithm terminates, at most one of the used bins is half full
or less. Assume that this is not the case. Then when the algorithm terminates,
there are two bins B; and B;,i < j, that are each at most half full. Then the last
item placed in B; clearly has size at most ;- Since bin B, has capacity at least +
throughout execution of the algorithm, the first fit algorithm would have placed
this item in B; rather than in B,, a contradiction. Now, letting FF(/) denote the
number of bins used by the first fit algorithm on a given problem instance I, this
observation implies that

FF(1) < {2 Y s,.l.
s; el
Our second observation is that the total number of bins used in any solution is at
least the sum of the sizes of all the items. In particular, letting OPT(I) denote the
number of bins used in an optimal solution, we have

[Y s,.] < OPT(I).

s;el
Combining these two observations, we now have
FF(I) <2 - OPT(I)
and thus Rpp < 2.

1995] COMPUTER SCIENCE SAMPLER 59

The above analysis shows that the absolute performance ratio of the first fit
algorithm is less than 2. In fact, more careful analysis shows that for all instances [

of the bin packing problem
17
FF(I) < 1—O—OPT(I) + 2
and that there exist instances I with arbitrarily large values of OPT(I) such that
17
FF(I) = —IB(OPT(I) ~1).

Therefore, the asymptotic performance ratio of the first fit algorithm R, is in fact
1.7. Moreover, a minor modification of the first fit algorithm achieves an even
better performance ratio. The modified algorithm, known as the first fit decreasing
algorithm is identical to the first fit algorithm except that items are selected for
insertion in the bins in decreasing order of size. The analysis of this algorithm,
which is quite long and complicated, shows that this modification results in an
asymptotic performance ratio of 11 /9 [5].

3. APPROXIMATION SCHEMES. Do approximation algorithms exist for all NP-
complete problems? Unfortunately, it appears that the answer to this question is
probably “no”. For many NP-complete problems, including the infamous traveling
salesperson problem, it can be shown that the existence of a polynomial time
approximation algorithm with any fixed performance ratio would imply that
P = NP, that is, all NP-complete problems could be solved exactly in polynomial
time.

On the other hand, for some NP-complete problems we can do even better than
finding approximation algorithms with fixed performance ratios. For many impor-
tant problems there exist families of approximation algorithms that allow us to
obtain performance ratios arbitrarily close to 1 in exchange for increasingly larger
polynomial time bounds. A polynomial time approximation scheme (PTAS) is a
family of approximation algorithms {A_|e > 0} where for each € >0, 4, is a
polynomial time approximation algorithm with absolute ratio bound R, at most
1+e

Although it is unlikely that PTAS can be found for all NP-complete problems
(since this would imply approximation algorithms for all NP-complete problems
and thus that P = NP), it is natural to ask whether they at least exist for all
problems with approximation algorithms. In a result hailed by many theoretical
computer scientists as one of the most important in the field in over two decades, a
group of researchers from Berkeley, Stanford, and Bell Labs showed in 1992 [1]
that this too would imply that P = NP. Specifically, it was shown that if a PTAS
exists for any problem in a rich subset of the NP-complete problems known as the
MAXSNP-complete problems, then P = NP. Among the many important prob-
lems known to be MAXSNP-complete is the vertex cover problem.

4. FURTHER READING. Garey and Johnson’s [4] classic text offers an eminently
readable introduction to NP-completeness, including a discussion of approximation
algorithms and schemes. Texts by Papadimitrion and Steiglitz [8] and Cormen,
Leiserson, and Rivest [3] have very good discussions and a number of illustrative
examples. Motwani’s technical report on approximation algorithm [7] is also
excellent. Finally, the recent result on the intractability on the hardness of

60 COMPUTER SCIENCE SAMPLER [January

MAXSNP-complete appeared in [1] accompanied by an entertaining story in the
New York Times [6].

REFERENCES

I

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of
approximation problems. In Proceedings of the 33rd Annual Symposium on Foundations of Computer
Science, pages 14-23, 1992.

R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex cover
problem. Annals of Discrete Mathematics, 25:27-45, 1985,

T. Cormen, C. Leiserson, and R. Rivest. Infroduction to Algorithms. McGraw-Hill and MIT Press,
1990.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Com-
pleteness. W. H, Freeman and Company, 1979.

D. Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis, Dept. of Mathematics, Mas-
sachusetts Institute of Technology, 1973.

G. Kolata. New short cut found for long math proofs. New York Times, April 7, 1992.

R. Motwani. Lecture notes on approximation algorithms. Technical report, Dept. of Computer
Science, Stanford University, 1992,

C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Pren-
tice-Hall, 1982.

Department of Computer Science
Harvey Mudd College

301 E. 12th Street

Claremont, CA 91711
hadas@cs.hmec.edu

1995] COMPUTER SCIENCE SAMPLER 61

	Claremont Colleges
	Scholarship @ Claremont
	1-1-1995

	Approximation Algorithms: Good Solutions to Hard Problems
	Ran Libeskind-Hadas
	Recommended Citation

	tmp.1391468608.pdf.djxlI

