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Synopsis

We analyze and model the neck of the classical harp based on the length of the
strings, their tension and density. We then use the results to design new and
innovative harp shapes by adjusting the parameters of the model.
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190 The Mathematics of the Harp

1. Introduction

Dating back to at least 3500 B.C.E. [12], the musical instrument we know
today as the harp has a rich and captivating history. Throughout the cen-
turies, it has evolved to reach an amazing beauty and complexity, from lap
harps to concert pedal harps and even electric harps. In order to fully under-
stand the evolution of this magnificent instrument, however, it is important
to study the science, and in particular the mathematics, within its structure
and function.

The shape of the harp’s neck is highly mathematical and can be modeled
by a harmonic curve. The equation of this curve is far from trivial and
is dependent on several parameters including the length of the strings, the
pitch at which they are tuned, the tension in each string and the string
material (especially its density). Due to the ample flexibility in choosing
these parameters, each harp model is unique and so is its shape.

A practical review of the literature on the mechanical and acoustical proper-
ties of the harp has been given by Waltham in [19]. He discusses the major
acoustical components of the harp including the strings, the soundboard and
the soundbox, their contributions to the sound of the harp and their historical
evolution. There is a rich literature analyzing the mechanical properties of
different strings (nylon, gut, etc) and how they influence the sound quality of
a stringed instrument [10], [11], [16], [17], [22], [23]. The vibration of a harp’s
soundbox and its acoustical radiation was studied in [2], [3], [13]. Waltham
and Kotlicki [20] have argued that a key factor for the musical quality of a
harp is the soundboard and that the shape of the soundbord can be modified
to optimize the balance between the strings. The resonance and higher air
modes of the harp soundbox cavity have also been explored by Bell in [4].

In this paper we study the mathematical connection between the shape of
the harp and the length of its strings, the pitch at which they are tuned,
the tension in each string and the string material (especially its density).
Our goal is to discover a formula that models the harmonic curve traced
by the neck of the harp.1 We base our model on a specific instrument, a
36-string harp tuned in the equal temperament scale, with regular diatonic
tuning, in the key of F major and capable of producing notes in five octaves,

1 For a similar exploration involving a cello instead, see [14].
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from a low B♭1 to a high B♭6. Our particular goal is to find a formula for the
length of the strings L as a function of x, where x is the distance in semitones
from the note A4, i.e. x = 0 describes the note A4, x = 1 describes B♭4,
x = 3 describes C5 and so on (see Figure 1). A complete table with all of
the notes played by such a harp is shown in Table 1.

The shape of a harp’s neck is a result of the variation in the length of each
string. Accordingly, having a formula for L(x), the length of the strings as
a function of their relative distance in semitones from the reference note A4,
is an effective way to model this curve.

The paper is structured as follows. In Section 2 we discuss the wave equation
modeling a vibrating string and its solution, which leads to a relationship
between the length of the strings, the fundamental frequency of vibration,
the tension and the density of the string material. In Sections 3, 4 and 5 we
discover formulas for the frequency, length and density as functions of x and
use these parameters to develop the formula for the length L(x) in Section
6. Lastly, we use the model of the classical harp to uncover new designs in
Section 7 and draw conclusions in Section 8.

Figure 1: Section of the neck of the harp with the notes played by various
strings and the respective value of the variable x. A complete list is given in
Table 1.
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x Note ν(x) x Note ν(x)
25 B♭6 1864.66 -5 E4 329.63
24 A6 1760 -7 D4 293.66
22 G6 1567.98 -9 C4 261.63
20 F6 1396.91 -11 B♭3 233.08
19 E6 1318.51 -12 A3 220
17 D6 1174.66 -14 G3 196.00
15 C6 1046.50 -16 F3 174.61
13 B♭5 932.33 -17 E3 164.81
12 A5 880 -19 D3 146.83
10 G5 783.99 -21 C3 130.81
8 F5 698.46 -23 B♭2 116.54
7 E5 659.25 -24 A2 110
5 D5 587.33 -26 G2 98.00
3 C5 523.25 -28 F2 87.31
1 B♭4 466.16 -29 E2 82.41
0 A4 440 -31 D2 73.42
-2 G4 392.00 -33 C2 65.41
-4 F4 349.23 -35 B♭1 58.27

Table 1: The notes played by the 36-string harp modeled in this paper and
the respective values of the variable x.

2. Length of a string in relation to frequency

The small transverse displacement of a vibrating string u(y, t) is modeled by
the one-dimensional wave equation (see for example [9])

∂2u

∂t2
= c2

∂2u

∂y2

where y is the position variable along the string, t is time, and c = T
ρ
where

T is the tension in the string and ρ is the linear density of the string. For a
harp, a particular string of length L is fixed at both ends and therefore the
displacement at y = 0 and y = L is zero at all times

u(0, t) = 0, u(L, t) = 0.
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Using Fourier methods, we can solve this boundary value problem and write
the solution as an infinite series of harmonics of the form [7]

un(y, t) = An sin
(nπy

L

)
sin

(
nπct

L
+ ϕn

)
where An and ϕn are constants and n ≥ 1 is an integer that indicates the
respective term in the Fourier series. The fundamental frequency of vibration
is obtained for n = 1 and is therefore

ν =
1

2L

√
T

ρ
,

and solving for L will produce the formula for the length of a string

L =
1

2ν

√
T

ρ
. (2.1)

Equation (2.1) describes the length of a string of density ρ tuned at a tension
T that produces a note of frequency ν. This applies to all the strings of the
harp along with those from other stringed instruments (guitar, piano, etc).
In the next three sections, we will find expressions for ν, T and ρ as functions
of x.

3. Equal Temperament Scale

In this section, we find a formula for ν(x), the fundamental frequency of
vibration for a string that produces a musical note corresponding to the
variable x described above. For this we examine a few facts related to music
theory pertaining to scales.

One of the first scales discovered was the Pythagorean scale which is based
on the most consonant musical intervals (the octave and the perfect fifth)
[1, 6, 18]. These two intervals are represented using frequency ratios of the
smallest integers: the octave by frequency ration of 2:1, and the fifth by a
frequency ratio of 3:2. The scale can be constructed from a reference note,
C4 in this example, by adding intervals equal to a perfect fifth to discover
the next note in the scale (in this case G4). The frequency ratio between G4
and C4 is 3:2 (see Table 2 below).
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Note C4 D4 E4 F4 G4 A4 B4 C5
Ratio 1:1 9:8 81:64 4:3 3:2 27:16 243:128 2:1

Table 2: One octave of the Pythagorean scale of C major and the corre-
sponding frequency ratios.

Adding another perfect fifth interval to G4, we obtain a frequency ratio of
9:4 (with respect to C4) which is greater than 2:1 and therefore outside one
octave. Reducing this interval by an octave (by dividing this frequency ratio
by 2), we obtain a ratio of 9:8 which is the third note in the scale (D4).
Continuing this process, we can discover all the notes in the C major scale
(see Table 2).

A common numerical representation for a scale is the system of cents [5]. We
can convert frequency ratios to cents via the logarithmic function 12 log2(r)
which transforms any frequency ratio r into a real number description of
that particular musical interval. For example, a perfect fifth interval can be
described as having a length of 12 log2

3
2
≈ 7.02 cents, an octave, as having

a length of log2
2
1
= 12 cents and so on (see Table 3).

Note C4 D4 E4 F4 G4 A4 B4 C5
Real 0 2.04 4.08 4.98 7.02 9.06 11.10 12

Table 3: One octave of the Pythagorean scale of C major and the corre-
sponding real number representation for each note.

In the cents representation, it is clear that the location of the main notes in
the Pythagorean scale is relatively irregular, one of the consequences being
that one full tone does not equal to two semitones [8]. This issue and others
are addressed by the equal temperament scale which changes the location of
the notes for the purpose of dividing the interval [0,12], one octave, into 12
equal intervals (semitones). The resulting partition defines the notes in the
scale (see Table 4 below).

Note C4 D4 E4 F4 G4 A4 B4 C5
Real 0 2 4 5 7 9 11 12

Table 4: One octave of the 12-note equal temperament scale of C major and
their corresponding real number representations.
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The equal temperament scale makes all the tones and semitones equal to each
other. It is designed to correct the issues associated with the Pythagorean
scale by distributing the dissonance occurring in different intervals through-
out the entire scale [8]. It is obvious that the original intervals, like the
perfect fifth, no longer have frequency ratios represented by small integers
and therefore they are a little less consonant. However, the advantage is that
these intervals sound the same (and still relatively consonant) in any key to
the human ear. Because of its homogeneity and universality, most modern
western instruments of today are tuned in this scale and typical western,
modern music is based on musical intervals using the equal temperament
scale.

Notice that the real representation for each note in Table 4 is a shifted version
of the variable x that we had previously defined. Since we chose the reference
note for our model to be A4, we calculate all frequency ratios with respect
to A4 (440 Hz). Therefore, the relationship between the frequency ν(x) of a
note played by a string in our harp and the value x is

x = 12 log2
ν(x)

440
.

Solving for the frequency we obtain

ν(x) = 440 · 2
x
12 . (3.1)

Equation (3.1) describes the fundamental frequency of vibration ν of the
harp strings as a function of x, the distance in semitones from the reference
note A4 (440 Hz).

4. Tension and harp strings

In this section, we look to establish a formula for the tension T (x) applied
to the harp strings as a function of the variable x described above.

String tension is a measure of the ”looseness” of the strings: if the vibration
of a string produces small transverse displacements then the tension is high,
and if it produces large displacements then the tension is low. Tension affects
the build, the volume, the resonance and the playability of a harp. This is a
feature that varies among harp makers and even among harps from the same
maker. Because of this, tension is very hard to quantify mathematically.
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In this paper, we choose to use data measurements from a harp with similar
characteristics to the harp used for our model described in Section 1, a 36-
string harp tuned in the equal temperament scale, in the key of F major (see
[21]). The data is listed in Table 5 for each string of the harp.

x Note ν(x) T (x) x Note ν(x) T (x)
25 B♭6 1864.66 29.63 -5 E4 329.63 59.41
24 A6 1760 41.24 -7 D4 293.66 66.88
22 G6 1567.98 49.53 -9 C4 261.63 102.56
20 F6 1396.91 54.63 -11 B♭3 233.08 92.96
19 E6 1318.51 63.02 -12 A3 220 95.42
17 D6 1174.66 56.27 -14 G3 196.00 87.28
15 C6 1046.50 52.64 -16 F3 174.61 80.02
13 B♭5 932.33 73.50 -17 E3 164.81 82.93
12 A5 880 74.50 -19 D3 146.83 88.76
10 G5 783.99 69.40 -21 C3 130.81 94.82
8 F5 698.46 61.62 -23 B♭2 116.54 99.03
7 E5 659.25 82.51 -24 A2 110 134.38
5 D5 587.33 74.67 -26 G2 98.00 130.95
3 C5 523.25 65.05 -28 F2 87.31 128.13
1 B♭4 466.16 57.41 -29 E2 82.41 142.34
0 A4 440 57.82 -31 D2 73.42 135.13
-2 G4 392.00 64.53 -33 C2 65.41 124.34
-4 F4 349.23 58.00 -35 B♭1 58.27 105.04

Table 5: Tension data (in Newtons) for all the strings of the harp.

We also performed a linear curve fitting on this data and the result is shown
in Figure 2.

The equation of the function which models the tension in the strings is there-
fore

T (x) = −1.39x+ 75.21. (4.1)

Equation (4.1) describes the tension T for all of the strings of the modeled
harp as a function of x, the distance in semitones from the reference note
A4.
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Figure 2: Tension data points from Table 5 and linear curve fitting for the
36-string harp modeled in this paper.

5. Linear density of a harp string

We move forward with finding a formula for ρ(x), the linear density of a
harp string as a function of x described above. For simplicity, we assume
that all strings are made of nylon, which has a volume density of P = 1.14×
103kg/m3.

The linear density ρ(x) is defined as

ρ(x) = P · π
(
D

2

)2

where P is the volume density and π
(
D
2

)2
is the area of the cross section of

the string with D being the diameter of the cross section. In Table 6 we list
the values of D for all strings of the modeled harp and calculate the linear
density using the above equation. We then performed a hyperbolic curve
fitting on this data and plotted the results in Figure 3.
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x Note ν(x) D ρ(x) x Note ν(x) D ρ(x)
25 B♭6 1864.66 0.025 0.0003610 -5 E4 329.63 0.036 0.0007486
24 A6 1760 0.025 0.0003610 -7 D4 293.66 0.04 0.0009242
22 G6 1567.98 0.025 0.0003610 -9 C4 261.63 0.052 0.0015620
20 F6 1396.91 0.025 0.0003610 -11 B♭3 233.08 0.052 0.0015620
19 E6 1318.51 0.025 0.0003610 -12 A3 220 0.052 0.0015620
17 D6 1174.66 0.025 0.0003610 -14 G3 196.00 0.052 0.0015620
15 C6 1046.50 0.025 0.0003610 -16 F3 174.61 0.052 0.0015620
13 B♭5 932.33 0.028 0.0004529 -17 E3 164.81 0.052 0.0015620
12 A5 880 0.028 0.0004529 -19 D3 146.83 0.056 0.0018115
10 G5 783.99 0.028 0.0004529 -21 C3 130.81 0.06 0.0020795
8 F5 698.46 0.028 0.0004529 -23 B♭2 116.54 0.065 0.0024406
7 E5 659.25 0.032 0.0005915 -24 A2 110 0.076 0.0033365
5 D5 587.33 0.032 0.0005915 -26 G2 98.00 0.08 0.0036969
3 C5 523.25 0.032 0.0005915 -28 F2 87.31 0.085 0.0041735
1 B♭4 466.16 0.032 0.0005915 -29 E2 82.41 0.091 0.0047835
0 A4 440 0.032 0.0005915 -31 D2 73.42 0.096 0.0053236
-2 G4 392.00 0.036 0.0007486 -33 C2 65.41 0.1 0.0057765
-4 F4 349.23 0.036 0.0007486 -35 B♭1 58.27 0.1 0.0057765

Table 6: Linear density data (in kg/m) for all the strings of the harp.

The particular equation of the function that models the linear density of the
strings for our harp is

ρ(x) =
1

21.77x+ 906.04
. (5.1)

Equation (5.1) describes the linear density of all the strings of the harp as a
function of x, the distance in semitones from the reference note A4.

6. Model for the harmonic curve

Substituting the formulas for frequency, tension and linear density from
Equations (3.1), (4.1) and (5.1) respectively into Equation (2.1) we find

L(x) =
1

2 · 440 · 2x/12

√
−1.39x+ 75.21

1/(21.77x+ 906.04)
. (6.1)

Equation (6.1) describes the length of all of the strings of the harp as a
function x, the distance in semitones from the reference note A4.
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Figure 3: Linear density data points from Table 6 and hyperbolic curve fitting
for the 36-string harp modeled in this paper.

We plot this function L in Figure 4(a) to represent the top curve of our mod-
eled harp. This curve shows up as a piece-wise function due to adjustments
necessary to account for the location of semitones in a major diatonic scale
(and therefore the different semitone distances between the strings). In fact,
the pattern of the pieces of the curve at the top of the modeled harp is sim-
ilar to the pattern of the black and white keys on a piano. In Figure 4, we
also plot vertical lines (strings) at every value of x from Table 1, each string
having the length L(x). To make the plot similar to a real harp, we start
each vertical line from the line

S(x) = 0.01x (6.2)

(representing the soundboard of the harp) instead of starting it from the
x-axis.

The resulting model is very similar to the real classical harp pictured in
Figure 4(b). The small differences can be explained by the different x-axis
scale and a slight forward rotation in the column and strings of the real harp.
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(a) Modeled harp (b) Classical harp

Figure 4: The harp produced by our model versus a picture of a classical
harp.

7. Futuristic harp designs

The harp model described by Equation 6.1 and plotted in Figure 4(a) relies on
several parameters discussed in the previous sections: musical scales, specific
regression models for tension, linear density of the strings and the shape
of the soundboard (or the harp’s body). Adjusting these parameters can
lead to a dramatic change in the shape of the harp, which in turn could
have a significant impact on the playability and structural integrity of the
instrument.
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As an exercise in mathematical creativity, we design new shapes for the harp
(and name them based on their appearance) by adjusting only one of these
parameters, the shape of the soundboard. The results are plotted in Figure 5
and were obtained by plotting the vertical strings of length L(x) in Equation
(6.1) starting from the following curves:

(i) for the harp model in Figure 5(a) (Elephant)]

S1(x) = 0.01 sin(0.13x) + 0.01x

(ii) for the harp model in Figure 5(b) (Horn)

S2(x) =
1

2 · 440 · 2x/12

√
−1.39x+ 75.21

1/(21.77x+ 906.04)

(iii) for the harp model in Figure 5(c) (Upside-down V)

S3(x) = −0.01|x+ 5|x

(iv) for the harp model in Figure 5(d) (Snail)

S4(x) = 0.35
sin(0.35(x+ 42))

0.35(x+ 42)

8. Conclusion

In this paper, we studied the mathematics used to model the classical harp
and developed a formula for the shape of its neck. Our model was based
on a harp that is widely produced and played today, a 36-string harp tuned
in the key of F major. Interestingly, the same shape also appears in other
instruments that use a multitude of strings to produce their sound, such as
a grand piano, where the shape of the soundboard and ultimately the shape
of the body follows a similar pattern. We then used the model of a classical
harp to explore the potential to design new harp shapes by modifying the
body or soundboard but keeping with the other restrictions brought by the
types of strings, their tension and their specific densities.

The possibilities of designing new shapes for the harp goes beyond aesthetics
and mathematical creativity. Studies suggest that the soundboard and the
soundbox of the harp are key factors in the creation and propagation of the
sound and that even a slight modification of any component could have major
impact on the acoustic radiation of the musical instrument [20], [15].
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(a) The Elephant Harp (b) The Horn Harp

(c) The Upside-down V Harp (d) The Snail Harp

Figure 5: New harp designs using different shapes for the soundboard or the
body of the harp.
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Allowing for more shapes and, in general, for more freedom in the construc-
tion of a harp, could help find the optimal shape for improved sound quality
and could inspire new possibilities for musicians and composers by giving
them a chance to pioneer new sounds from an old instrument. However,
more research is needed to understand how the new shapes presented here
affect the sound of a harp.

Building a harp is an intricate process with numerous factors to consider:
structural integrity of the frame, string tension, bridge and tuning pins, res-
onance of the soundboard and so on. These factors are not considered in this
paper. The simple analysis and models uncovered by this work are a way
of stimulating creativity through emphasizing existing connections between
mathematics and music.
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