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To appear in the International Journal of Mechanical Engineering Education.

ON THE ANALYSIS OF SMALL DISPLACEMENTS OF
TRUSS JOINTS

Clive L. Dym and Harry E. Williams
Department of Engineering

Harvey Mudd College
Claremont,  CA  91711

ABSTRACT
By emphasizing the kinematic aspects and implications of strain in truss analysis,
it is shown that joint displacements can be computed in a straightforward manner.

INTRODUCTION
A staple of introductory mechanics courses is the analysis of trusses, assemblies of
pin-ended bars loaded in uniaxial  tension or compression. This is because trusses
provide an excellent context in which to introduce free-body diagrams (FBD’s),
in order to formulate the equations of force equilibrium for each node (pin-joint),
and present, in turn, a basis for analyzing more advanced structures. It is
important to note that, at this stage, nodal equilibrium equations are written with
respect to their undeformed configuration. Furthermore, the examples given are
usually statically determinate and lead directly to the determination of the axial
forces in each bar.

In contrast, analyses of forces in indeterminate trusses or nodal displacements
in determinate trusses are more complex problems. This is largely due to the
underlying geometric concept that the axial strain in a bar is the change in length
normalized by the original, undeformed length—an essentially nonlinear quantity
that can only be determined by analyzing a truss’s deformed configuration. Such
analyses of the nodal displacements of a truss are often accompanied by complex
graphical methods intending to illustrate how (axial) changes in bar lengths
produce nodal displacements that are not intuitively evident to a student (or
often to their faculty mentors) [1]. Consider, for example, the simple two-bar truss
shown in Figure 1. Beginning students may have trouble believing that the node
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or joint B moves downward when there is no vertical load (i.e. P = 0). Similarly, it
is not obvious to a novice that B should move horizontally if Q = 0.
Compounding this somewhat counterintuitive circumstance are pictures such as
Figure 2 that show how such motion occurs as a result, students are told, of both
elastic bar extensions and (unextended) rigid body displacements!

It is important to note that when the assumption that the deformed
configuration is close to the undeformed configuration—that is, when nodal
displacements are small—is justifiable, the problem of evaluating the axial strain
in a truss bar becomes linear and solutions for the corresponding forces and
displacements are readily obtained. Though this observation is not new, we
emphasize it here to promote its use and, consequently, at the same time remove
some of the complexities associated with the analysis of indeterminate structures.

We present an alternative approach to elementary truss analysis that is based
on a familiar observation: For small displacements of each node, the extension or
stretch of each bar is simply the axial component of the relative displacement of
the two ends of the bar. This notion clearly builds on Williams’ [2] generalized,
three-dimensional definitions of the normal engineering strain as being directly
calculable from the relative axial displacements of the two ends of a line
element. With this observation, the stretch in each bar can be expressed in terms
of the components of the displacement of the ends of the bar, and the
corresponding force can then be straightforwardly expressed in terms of
displacement components by way of a constitutive equation. This process leads
to a set of displacement–force equations that, when augmented by the nodal
force equilibrium equations, is sufficient to determine the solution for the forces in
each bar and the displacements of each node of the truss. We illustrate this
process and examine some of its implications below.

We begin by briefly presenting a “classical” advanced analysis of the problem
depicted in Figure 1, in order to provide a baseline analysis. Then we establish the
strain–relative displacement relation in this context, after which we re-analyze
the baseline truss and confirm its results with a nonlinear analysis.

A “CLASSICAL” ADVANCED ANALYSIS
For the two-bar truss shown in Figure 1, a standard equilibrium analysis [3] of the
joint B produces two equations of equilibrium that can be solved for the axial
loads in the two bars. This analysis assumes that the strains are sufficiently small
that we can write equilibrium expressions in the undeformed coordinates, which
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gives the two bar forces as:
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In order to calculate the movement of joint B we can follow a long-established
procedure [3] in which we first formulate the complementary energy for the truss,
that is,
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Then, by virtue of Castigliano’s second theorem, we can calculate the horizontal
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This analysis is straightforward and shows that joint B will move horizontally
even in the absence of Q and vertically even when P = 0. The net movement of
node B can also be written as a vector,

δδB u w= +i k (4)

so that the relative movement of B with respect to the ends of either of the two
truss members can here be written as (remembering, of course, that neither of
joints A and C moves):

δδ δδ δδ δδB A B A B/ = −= (5a)

and
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δδ δδ δδ δδB C B C B/ = −= (5b)

While elegant and confirming of our experienced intuition, the foregoing analysis
is far too advanced for an introductory course in mechanics or structures.

STRAIN–RELATIVE DISPLACEMENT RELATIONS
Consider an axially loaded bar that is initially located on the x-axis within an
orthogonal (x, y, z) frame. If, under load, the bar moves in the (x, z) plane to the
new orientation shown in Figure 3, we can define the relative displacement δδB A/

of the point B with respect to the point A much as we just did in eqs. (4) and (5),
namely, as

δδ δδ δδB A B A/ = − (6)

where δδB  and δδA  are, respectively, the displacements of the points B and A.
Furthermore, let the relative displacement have components u and w along the
axial (x) and transverse (z) directions, respectively. It readily follows that, when
loaded, a bar of initial length L becomes a bar of length L*, where:

L L u w* ( )2 2 2= + + (7)

Hence, for small displacements, for which ( / )u L 2 1<<  and ( / )w L 2 1<< , the bar’s
new length is:

L L u L* ( / )≅ +1 (8)

The axial strain ε  in the bar can be expressed in terms of the relative displacement
of the bar ends as:

ε ≡
−

≅ =
•( )*

/L L
L

u
L L

B Aδδ i
(9)

The strain in a bar can be expressed in terms of its axial force F and its material
and geometric properties (E and A) of which it is made, as ε = F/AE; using eq. (9),
it is clear that the force is:
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F AE AE
L

B A= =
•

ε
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(10)

Furthermore, if we now introduce the axial (u) and transverse (w) components of
the relative displacement of the bar ends (as in eqs. (4) and (5)), the force in the
bar (eq. (10)) can be written as:

F AE u w
L

AE u
L

=
+ •

=
[( ) ]i k i

(11)

Equation (11) is, in its final form, a familiar result. However, its intermediate form
also admits the introduction of the idea that a joint moves in both axial and
transverse directions (relative to any particular bar), even if it is only the axial
component of the relative displacement that contributes to that bar’s axial force.
Furthermore, the net motion of a joint at which several bars meet must be made up
of the axial and transverse relative displacement components of all of the bars
meeting at that joint. This general, yet comprehensible introduction of joint
displacements derives directly from Williams’ definition of strain [2].

THE SIMPLE TWO-BAR TRUSS
Consider the two-bar, pin-ended linkage loaded as shown in Figure 1. An analysis
of the forces acting on joint B in the undeformed configuration allows us to find
the axial loads in the bars AB and BC as given by eqs. (1). The corresponding
displacement of node B is determined by applying eq. (9) to each of the legs in
turn. If the displacement of node B is given by eq. (4), we can apply eq. (9) to bar
AB to find:
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For bar BC , which has a unit vector along its length equal to,

e i k2 = −sin cosθ θ (13)

we find that strain and relative displacements are related by:
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Equations (12) and (14) can be inverted to find joint displacement components in
terms of bar strains and, thus, bar forces, that is,
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Note that the displacement results of eqs. (3) are confirmed when the applied
loads from the equilibrium relations (eqs. (1)) are substituted into eqs. (15) for the
bar forces.

Consider now the case where only a horizontal load is applied at node B, that
is, P = 0. In that case it is easily demonstrated that the two joint displacement
components are:

u QL
E A

= 1

1 1
(16a)

and

w QL
E A

= 1

1 1

tanθ
(16b)

Thus, the node B moves an amount represented by the vector:

δδΒΒ = +
QL
E A

1

1 1

( tan )i kθ (17)

The component of the displacement of joint B that lies along the axis of the bar
BC can be calculated from the scalar product of eqs. (13) and (17):
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Since the scalar product of eq. (18) vanishes, the displacement of node B must be
perpendicular to the bar BC and the force in the bar must vanish (in this linear
analysis). This result lends support to the traditional drawings of node
displacements mentioned earlier, but the analysis from which it derives provides
an explanation and basis for extending the meaning attached to such drawings.

NONLINEAR ANALYSIS OF THE TWO–BAR TRUSS
A more complete analysis of this truss problem would begin with writing the
equations of equilibrium in the deformed configuration (see Figure 3) which,
with forces in the deformed state so identified, leads to the result that:

F F Q P1 1 2 2
* * * *e e i k+ = + (19)

The deformed unit vectors are given by:
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where δδ δδΒΒ≡ . Now, eqs. (20) also tell us that the deformed lengths of the bars are
given by:
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so that to first-order accuracy the deformed lengths are:
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where we have introduced the linear strains (12) and (13) into eqs. (22) and also
used the symbol O to indicate the order of magnitude of terms being neglected.
Then, to first order, the unit vectors in the deformed configuration are here:
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In view of eq. (4) for the joint displacement vector, the unit vectors are:
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Equations (24) can be used to write the equilibrium conditions in the deformed-
state (19) as:
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The vector equation (25) represents equilibrium in the x- and z-directions, whose
individual scalar components can be extracted with appropriate scalar products:
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Equations (26) can be straightforwardly solved for the bar forces in the deformed
state to first-order accuracy, and those bar forces are:
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Using eqs. (1), (12), and (14), we can also write these results as:
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Not surprisingly, eqs. (28) confirm the zeroth-order results given in eqs. (1), and
that the corrections resulting from a nonlinear analysis are comfortably negligible
as long as the strains remain small. In addition, eqs. (28) help us articulate a clear
explanation of how a horizontal load produces a non-zero bar force in the
unloaded bar BC. For that case, which brought us to this analysis in the first
place, P = 0, the sole external load is the horizontal force Q, and the linear bar
forces are:

F Q F1 2 0= =, (29)

From eqs. (28), the first-order, nonlinear bar forces are:

F Q Q
E A

Q O1

2

1 1

2
11* tan ( ( ))≅ − = +θ ε (30a)

and

F Q
E A

QO2

2

1 1
2 10* sin

cos
( )≅ +









 =

θ
θ

ε (30b)

So, referring back to the pedagogical theme of this paper, while the foregoing
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nonlinear analysis is clearly beyond what one would expect to discuss in an
introductory course, it certainly lays a foundation for presenting the results (30),
accompanied by remarks about the limitations that often attend linear analyses.

CONCLUSIONS
In this note we have endeavored to show how the kinematic aspects of axial
strain can be used as a vehicle for calculating and explaining joint movements in
trusses. The particular truss problem illustrated here is a simple one that,
nonetheless, is a source of confusion for novice students because some of its
results are, for them, not intuitively evident. Now, a more intuitive and more
consistent approach to the calculation and interpretation of truss joint movement
is enabled by Williams’ characterization of strain.

REFERENCES
1. W. A. Nash, Strength of Materials, 4th ed., McGraw-Hill, New York, 1998.
2. H. E. Williams, “On Introducing Engineering Strain,” International Journal

of Mechanical Engineering Education, 29/4 (October 2001), pp. 397–403.
3. C. L. Dym, Structural Modeling and Analysis, Cambridge University Press,

New York, 1997.

ACKNOWLEDGEMENT
The authors are grateful to an anonymous reviewer for providing a very thorough
review of an earlier draft of this paper.

LIST OF FIGURES
Figure 1. A simple two-bar truss carrying vertical and horizontal loads.

Figure 2. A (greatly exaggerated) geometric depiction of one explanation for the
movement of the free node in the two-bar truss of Figure 1. The node
displacement is found by erecting a normal to each bar extension, δδ1

and δδ2, thus approximating the “rigid body” displacements tangent to
circular arcs drawn through each bar’s pinned end.

Figure 3. The (greatly exaggerated) deformed configuration of the simple two-
bar truss of Figure 1.
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Figure 1. A simple two-bar truss carrying vertical and horizontal loads.
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Figure 2. A (greatly exaggerated) geometric depiction of one explanation for the
movement of the free node in the two-bar truss of Figure 1. The node
displacement is found by erecting a normal to each bar extension, δδ1

and δδ2, thus approximating the “rigid body” displacements tangent to
circular arcs drawn through each bar’s pinned end.
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Figure 3. The (greatly exaggerated) deformed configuration of the simple two-
bar truss of Figure 1.
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