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Social Aggregation in Pea Aphids: Experiment and
Random Walk Modeling
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Andrew J. Bernoff2, Chad M. Topaz1*

1 Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, Minnesota, United States of America, 2 Department of Mathematics,
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Abstract

From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the
natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection
between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea
aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless
circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a
moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions,
as well as the random walk parameters, depend strongly on distance to an aphid’s nearest neighbor. For large nearest
neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and
being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are
more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we
estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor
distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of
movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to
nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we
compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control
model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of
the experimental data that are not captured by the control.
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Introduction

From bird flocks to fish schools and ungulate herds to insect

swarms, nature abounds with examples of animal aggregations [1–

3]. These groups may arise from environmental factors, social

factors, or a combination of the two. Environmental factors induce

organisms to move in relation to food sources, light sources,

gravity, predators, wind, chemical gradients, and more. On the

other hand, even in the absence of significant environmental cues,

some animals aggregate because of their intrinsic social tendencies.

Social forces such as attraction, repulsion and alignment occur

when these organisms interact, sensing each other via sight, smell,

hearing, and so forth [4–8]. Social aggregations not only are

examples of natural pattern formation, but on long time and space

scales may influence disease transmission, food supply availability,

ecological dynamics, and ultimately, evolution [9,10]. Additional-

ly, the understanding of aggregations has been used to design

algorithms in robotics, computer science, and engineering [11,12].

A central question in the study of aggregations pertains to the

relationship between individual-level and group-level behaviors,

and it is crucial to distinguish between these. Individual-level

behaviors might include an organism’s tendency to move closer to

conspecifics, or to align its movement with that of its neighbors.

Group-level properties describe characteristics of many individu-

als, such as the shape of an aggregation, its spatial density

distribution, and its velocity distribution. The connection between

individual and group-level behaviors is highly nontrivial, as is

typical for a complex system [13]. One methodology for exploring

this connection is through mathematical modeling. By construct-

ing mathematical models that describe each individual organism’s

rules for movement, one can simulate and analyze the ensemble to

investigate the aggregate behavior. Indeed, aggregation modeling

is the subject of an intensive effort in the mathematical modeling

community, explored in [5,14–23] and many dozens of other

studies. There exists a menagerie of mathematical models for

aggregation. One criteria that distinguishes models is the degree to

which randomness plays a role. Models can be completely

deterministic, deterministic but with an added noise component,

or completely stochastic. Models for random movement of

biological organisms (such as the one we will presently develop)
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often take the form of random walks [24,25] or Lévy flights

[26,27].

An ongoing challenge in aggregation modeling is to construct

individual-level rules that are quantitatively accurate and well-tied

to experimental data. Sometimes, modelers may attempt to

calibrate models and infer parameters based on published field

observations or experimental results, for example, as with recent

studies of locust swarms [28,29]. A more direct approach is to

conduct experiments that track the motion of individuals and use

the data, namely time series of organisms’ positions and velocities,

to construct models more directly. This approach has enhanced

the understanding of fish schools [30], starling flocks [31], and

duck formations [32]. Presently, we consider social aggregation of

the pea aphid, Acyrthosiphon pisum. These particular aphids are

significant both because they are severe crop pests [33] and

because they are a model organism in biology for studying disease

transmission, insect-plant interactions, phenotypic plasticity, and

more [34].

Some foundational results on pea aphid movement appear in

[35]. Aphids moving on the ground exhibit two dispersal

behaviors: searching and running. In the searching behavior,

aphids look for a nearby plant to inhabit. Running aphids, in

contrast, travel far away from their original host plant, likely in an

effort to evade predators. In[35], aphids were exposed to predators

while feeding on alfalfa plants. As a defense mechanism, aphids

dropped from their feeding site and then traveled away from the

original host plant. The average searching aphid made one turn

every 6.67 s and traveled 0.27 cm/s while the average running

aphid turned less frequently, every 27.8 s and traveled faster, at

0.67 cm/s. In a given experimental run, aphids generally did not

shift between the searching and running behaviors.

In the absence of predators, some aphids move infrequently

[35]. When aphids are attacked by predators, the aphids employ

defense mechanisms such as dropping from their location,

running, or emitting a fluid droplet from the cornicle, a tube on

the dorsal side of the last segment of the insect. The fluid droplet is

composed of a mechanical protectant which temporarily paralyzes

the jaws of the attacker [36] and alerts nearby conspecifics and

heterospecifics to the danger [37]. The experiments in [38]

investigate the emission of this fluid droplet further by prodding

aphids of various ages on the anterior portion of their thorax and

recording the aphid as an emitter or non-emitter. Pre-reproductive

aphids are the most likely age group to emit this fluid droplet,

plausibly because they often live in close proximity to highly

related kin. Once the aphids reach adulthood, it is more

advantageous to invest energy in reproduction.

Despite the aforementioned account of chemical signaling, and

while it is well-known that aphids aggregate around food sources

[39], much less is known about whether certain aphid species form

aggregations that are intrinsically social. Aphid species Uroleucon

nigrotuberculatum and Uroleucon caligatum experience lower mortality

from generalist predators when aggregated [40], suggesting an

evolutionary advantage for social aggregation. Other results on

aphid aggregation appear in [40–43,43]. In [43], pea aphids were

placed in a chamber with five identical feeding stations. If the

insects did not aggregate socially, one would expect an even

distribution of aphids in each chamber, but this distribution was

not observed. In both light and dark conditions, the aphids

aggregated mainly in one or two of the feeding stations. Aphids in

a dark environment still aggregated at statistically significant levels,

albeit less strongly than in lit conditions, suggesting that vision may

be one of the senses through which aggregation is activated. In

contrast, in a key test in [43], artificial aphids were placed behind

the feeding stations such that their shadows were clearly visible.

The aphids in the chamber were then allowed to choose one of the

five feeding stations at random. In this test, the chamber with the

aphid dummies did not show greater likelihood of being chosen,

which implies that vision is not the only mechanism enabling social

aggregation.

The experiments of [41,42] found that lime aphids, Eucallipterus

tiliae, aggregate socially. Three studies in [42] are especially

relevant. In the first study, an aphid was allowed to move and

settle on a particular, uninhabited leaf. Its final position was

marked and the aphid was removed. Trials were repeated on the

same leaf with different individuals whose final positions were

similarly marked. The distribution of settling locations was

random, suggesting that microhabitats on a leaf do not influence

aphids’ movement. However, when multiple individuals were

allowed to settle simultaneously on the leaf, they aggregated,

suggesting that social interactions influence their movement. In the

second study, between one and eleven aphids were already settled

on a leaf, and one target aphid was placed on the leaf. When the

target aphid approached a settled aphid (with approach defined as

walking within 1 cm) on 82% of the trials, the target aphid settled

within 1 cm of the other settled aphid. The third study examined

aphid distribution for different population densities. In this study,

each aphid had an associated virtual territory, defined as a circle of

fixed radius around the insect, identical for all individuals. In

experimental trials, the group was allowed to approach an

equilibrium configuration. Then, the percent leaf coverage was

computed as the area of the union of the territories divided by the

area of the leaf. As the number of aphids was increased, the

percent leaf coverage rose with decreasing slope, indicating close

packing of the insects, ostensibly due to social interactions.

Given the evidence for social aggregation in some aphid species,

our goal at present is to assess and model aggregation of the pea

aphid. More specifically, in order to deduce individual-level rules,

we conduct experiments to track the motion of aphids walking in a

featureless circular arena. We observe that each aphid transitions

stochastically between a moving and a stationary state. Moving

aphids follow a correlated random walk. The probabilities of

stopping and starting, as well as the random walk parameters,

depend strongly on distance to an aphid’s nearest neighbor. For

large nearest neighbor distances, when an aphid is essentially

isolated, its motion is ballistic. Aphids move faster, turn less, and

are less likely to stop. In contrast, for short nearest neighbor

distances, aphids move more slowly, turn more, and are more

likely to become stationary; this behavior constitutes an aggrega-

tion mechanism. From the experimental data, we estimate the

state transition probabilities and correlated random walk param-

eters as a function of nearest neighbor distance. With the

individual-level model established, we assess whether it reproduces

the macroscopic patterns of movement at the group level. To do

so, we consider three distributions, namely distance to nearest

neighbor, angle to nearest neighbor, and percentage of population

moving at any given time. For each of these three distributions we

compare our experimental data to the output of numerical

simulations of our nearest neighbor model, and of a control model

in which aphids do not interact socially. Our social nearest

neighbor model reproduces salient features of the experimental

data that are not captured by the control.

Experimental Methods

To host aphid colonies, we grew fava bean plants, Vicia faba

(Johnny’s Selected Seeds, Winslow, ME) with 6–7 seeds per pot in

an approximately 20uC laboratory setting at 60%–70% relative

humidity. We stored plants in 45 cm645 cm645 cm mesh enclosures

Social Aggregation in Pea Aphids
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(BugDorm, Taichun, Taiwan). Plants received 12 hr of continuous

light per day from a 120 W grow lamp suspended 5–7.5 cm above

the enclosure, or 25–30 cm above the plants. We considered plants

to be mature enough to host aphids approximately two weeks after

planting, when they reached a height of 15 cm above the flower pot

rim. We colonized each plant with one hundred pea aphids, A. pisum

(Nasco, Fort Atkinson, WI). We periodically cleaned enclosures

when dirt or dead aphids accumulated. By seven days after

colonization, plant health would deteriorate due to aphid feeding.

At this point, we transferred the colony to fresh plants in a fresh

enclosure. Aphids were then given several days to acclimate before

being used in experimental trials.

We performed experiments on a vibration isolation table

(IsoStation, Newport Corp., Irvine, CA) in a darkened lab in

order to minimize effects of the ambient environment. The

experimental arena consisted of a polypropylene circular ring, with

a radius of 20 cm and height of 3/16 in, enclosed between two 1/8

in thick glass plates. We underlit the arena with a 24in624in LED

light panel (AnythingDisplay, Nashua, NH) having a 6500uK pure

white color temperature. In order to remove debris that might

interfere with imaging, and to remove any biological material that

might potentially be left from previous experimental runs, we

cleaned the top and bottom glass plates with acetone, ethanol and

compressed air before every trial. We lined the arena wall and

ceiling with silicone oil to discourage aphids from occupying the

arena’s walls and ceiling.

Aphids are dimorphic insects that may develop into winged or

wingless forms, depending on a complicated interaction between

genetics and environment [44]. Since we wished to track two-

dimensional motion, and in order to minimize any behavioral

variations due to age, we restricted our experimental trials to adult

wingless aphids (as identified by sight). Adult pea aphids have a

body length of approximately 2–4 mm [45]. To initiate a trial, we

selected individuals from a colonized plant, typically selecting a

mix of aphids who appeared to be stationary and moving. Three

trials incorporated 8, 10 and 18 aphids; the remaining six trials

incorporated 27–35 aphids moving in the arena. We filmed the

experiment using a 1080 p high definition video camera (Sony

Handycam HDR-SR12) placed 1.1 m above the arena, with white

balance calibrated to adjust for the effect of the light box as a

background. After 45 minutes of filming we ceased recording and

returned aphids to the colony.

To prepare our data for motion tracking, we converted raw

video footage in.mts format to.mp4 using Handbrake video

processing software with sampling in grayscale at 5 fps. We used

QuickTime Pro to export the video into an image sequence of.tiff

files, downsampled to 256 grays and 2 fps to facilitate data

processing. Using the ImageJ image processing package [46] we

removed initial frames of each trial during which overhead lights

were reflected, and cropped the rectangular video frames to a

circular region corresponding to the experimental arena. We

further processed images using M atlab’s Image Processing

Toolbox and the u-track 2.0 motion tracking package [47].

Specifically, we converted color images to black and white ones (to

render the inside of the arena black) and denoised each frame. We

ran u-track, which forms trajectories by linking identified aphid

positions from frame to frame using a Kalman filter for motion

propagation. The tracking process resulted in more trajectories

than the number of aphids used in the trial due to the inherent

difficulty of motion tracking. That is to say, a single aphid’s track

across the course of an experimental trial may be recognized as

several, shorter trajectories by the tracking algorithm, but this does

not affect our data analysis and modeling (more details appear in

subsequent sections). Finally, we converted tracked aphid positions

from pixel coordinates to real coordinates. Fig. 1 shows examples

of tracked data.

To prepare our raw data set for modeling (see next section) we

enhanced it with several elementary, derived pieces of data,

namely motion state (stationary or moving), step length (distance

traveled in one frame), heading, turning angle, and distance to

nearest neighbor. An aphid’s step length in a current frame was

calculated as magnitude of the difference between its current and

previous positions. We considered an aphid to be moving in a

given frame if its step length was sufficiently large. For small steps,

corresponding to speeds less than 461022 cm/s (about 1/10 body

length per second), we assumed the aphid to be stationary, with

the small amount of movement attributed to noise in the video

itself and errors in the aphid identification and tracking

algorithms. An aphid’s heading (the direction it was traveling in

a given frame) was calculated by taking the angle of the difference

between the aphid’s current and previous position vectors. Finally,

we calculated turning angle in a given frame as the difference in

the current and previous heading. Our final data set consists of 1.2

million entries from the pooled data of nine experimental runs.

Each entry contains an aphid’s position, motion state, step length,

heading, and turning angle.

Figure 1. Visualizations of aphid movement in experiment. (A) Trajectories of 28 aphids during approximately 15 min of one experimental
trial, as determined by motion tracking of video data. The green circle is the experimental arena with radius 20 cm. (B) Blow-up of a subset of a single
aphid trajectory, shown in a 10 cm 6 10 cm zoom.
doi:10.1371/journal.pone.0083343.g001
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Mathematical Modeling of Individual-Level
Behaviors

Based on the observation that aphids in the experimental trials

transitioned between stationary and moving behavior, we propose

a probabilistic two-state model to describe aphid movement and

social interaction dynamics. Let PMS represent the probability that

a moving aphid in a given frame transitions to a stationary state in

the next frame. Similarly, let PSM represent the probability that a

stationary aphid in a given frame transitions to a moving state.

Perhaps the simplest model that accounts for social interactions

allows these probabilities to depend solely on the distance to an

aphid’s nearest neighbor, d. The underlying biological assumptions

leading to this model are that aphids sense isotropically (perhaps

due to a combination of visual, auditory, and olfactory inputs), that

they are affected by the minimum possible social information, and

that they do not react to the speed and orientation of their

neighbor. We will show that this minimal model reproduces

certain salient features of the experimental data.

Moving aphids appear (naively) to follow a correlated random

walk [24]; see Fig. 1B. In an (unbiased) correlated random walk,

an individual walks in a straight line of a certain (random) step

length ‘, turns from its previous heading at an angle h that is

random but drawn from a mean-zero distribution, and then

repeats. In our model, we will assume that the correlated random

walk parameters depend solely on distance to nearest neighbor,

similar to the transition probabilities discussed above. For step

length, we choose the simplest model, meaning that there is no

spread in the step length distribution. A moving aphid’s step length

‘ depends deterministically on its distance to nearest neighbor d.

For turning angle h, the mean of the distribution is zero by the

assumption of symmetry of the correlated random walk. There-

fore, we model dependence on d in the spread r of the turning

angle distribution.

We will now quantify our four model parameters: probability of

a moving aphid stopping (PMS), the probability of a stationary

aphid starting to move (PSM), a moving aphid’s step length traveled

in one frame (‘), and the spread of the turning angle distribution

that a moving aphid obeys (r). Each of these will depend on

distance to an aphid’s nearest neighbor d through simple

functional forms with three or four parameters, which we estimate

from experimental data below.

To estimate the transition probabilities PMS and PSM, we note

that our data set (see previous section) includes a motion state for

each entry. We can classify every transition that occurs in the data

set as stationary to stationary (SS), stationary to moving (SM),

moving to moving (MM) or moving to stationary (MS). We divide

the data set in two, with SS and SM in one subset and MM and MS

in the other. For each subset, we generate bins of 800 data points

where binning is performed according to d. Within each bin, we

estimate the probability of a transition as the ratio of the number

of occurrences of the transition to the total number of

observations. For instance, within a given bin, we estimate PMS as

PMS~
M Soccurrences

MS occurrenceszMM occurrences
: ð1Þ

We then form a scatterplot of the probability within each bin

versus the midpoint of the bin, resulting in Fig. 2.

The probability PMS, shown in Fig. 2A, appears to decrease

monotonically with d and level off. We model this decrease with

the functional form

PMS(d)~P?
MSz P0

MS{P?
MS

� �
e{d=dMS : ð2Þ

The probability Here, P0
MS represents the probability that an

aphid will become stationary when infinitesimally close to its

nearest neighbor, whereas P?
MS is the probability of transitioning

when isolated, that is, even in the absence of sensed neighbors.

The length scale dMS characterizes the transition between the two

limiting regimes of d. The choice of a decaying exponential

function not only agrees well with the data (as discussed presently)

but has biological motivation. If one assumes that the motion state

transition occurs due to sensing, and that the sensory input an

aphid receives has a constant probability of failure per distance

displaced from its source, then one obtains an exponential model,

a common choice for aggregation modeling [48]. Overall, the

model Eq. (2) reflects aphids being more likely to settle near other

individuals, in order to aggregate.

To fit Eq. (2) to the experimental data, we first observe that P?
MS

and P0
MS appear linearly while dMS appears nonlinearly. We

minimize the root-mean-square (RMS) error of the fit by scanning

across values of dMS and at each value, performing a least squares

fit for the two linear parameters. We find P?
MS&0:1280,

P0
MS&0:5508, and dMS&0:0134 m, resulting in a fit (shown as

the blue curve) with a high coefficient of determination, R2~0:92.

To give a further sense of the efficacy of the fit, it is helpful to

consider the standard error in each bin, which is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PMS(1{PMS)

N

r
, ð3Þ

where N is the number of aphids per bin and PMS = PMS(d) is the

probability of transition within the bin. Green squares (red dots)

represent bins for which the corresponding model prediction is

within (outside of) two standard errors of the estimated PMS.

The probability PSM is shown in Fig. 2B. Unlike PMS which

decreases monotonically, PSM has a minimum at short distances.

We choose the functional form

PSM (d)~P0
SMe{d=dSM zP?

SM

d

dzDSM

: ð4Þ

The first (exponential) term models collision avoidanceThe first

(exponential) term is repulsive, consistent with the notion that

aphids avoid settling too close to others. The second (rational) term

is a ‘‘loneliness’’ term, capturing that aphids move more when they

are in isolation.is attractive, modeling the tendency of solitary

aphids to move in order to aggregate. Together, these two terms

specify a particular distance at which an aphid is most likely to be

stationary (namely the value of d that minimizes PSM, which for

our parameters is approximately 0.014 m). We fit this functional

form to the data through a procedure similar to PMS, except that

we must now search over a grid of two nonlinear parameters, dSM

and DSM . We find P0
SM&0:1587, P?

SM&0:3552, dSM&0:0079 m,

and DSM&0:0739 m. To compare each data point to the model,

we use the same green square/red circle scheme as above. The

overall fit has R2~0:53. This coefficient of determination,

substantially lower than for PMS, is likely due to the large scatter

of the data for large d, which may reflect two sources of error.

First, imaging and tracking of aphids is more difficult when they

are in the vicinity of the boundary of the arena, and aphids at large

Social Aggregation in Pea Aphids
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d are more likely to be near a boundary. Second, it is possible that

there is an explicit effect of the boundary on aphids’ behavior

which we have not modeled here.

We tried several functional forms (including linear combinations

of exponentials) but choose Eq. (4), which minimizes the RMS

error with two pairs of parameters. We believe the exact functional

form is less important than the trends of higher mobility at both

very short and very long distances.

We now turn to the parameters governing moving aphids’

correlated random walks. Fig. 3 shows the mean step length as a

function of d, with each point in the scatterplot corresponding to a

bin of 800 data points. Because there is a coherent rise in the data

for small d, we consider the model

‘(d)~‘?z ‘0{‘?
� �

e{d=d‘ : ð5Þ

According to this model, aphids with neighbors nearby take

short steps, and the step length increases and saturates as d

increases. Using a similar fitting procedure to PMS and PSM, we

find ‘?&0:0013 m, ‘0&0:0003 m, and d‘&0:0074 m. Within

each bin, the standard error around the mean is s=
ffiffiffiffiffi
N
p

where N is

the number of observations and s is the sample standard deviation.

To compare experimental bins with the model prediction, we use

the same green squares/red dot visualization as above. For the

overall fit, we find R2~0:82. The data decrease moderately from

our model curve for dw0:1 m, which is half the radius of our

experimental arena. Once again, we believe that we may be seeing

biases due to the boundary and the increased difficulty of motion

tracking near the boundary.

Finally, we model the spread of the distribution of turning

angles h. We bin h values by d with 2400 values per bin (larger

than the previously used value of 800 in order to help reduce the

standard error within each bin). As alluded previously, within

every data bin, the distribution is strongly peaked around zero; see

the examples in Fig. 4B and Fig. 4C. Therefore, to capture the

Figure 2. State transition probabilities PMS and PMS as a function of distance to an aphid’s nearest neighbor, d (in m). (A) PMS, the
probability that an aphid moving in a given timestep becomes stationary at the next timestep. Each data point represents the probability within a bin
of 800 elements from our experimental data set, where the data are binned by d. The probability is calculated via a simple frequency count according
to Eq. (1). The overall dependence of the data on d is modeled with Eq. (2), which describes an increased probability of an aphid settling if a neighbor
is nearby. Best fit parameters appear in the text; the coefficient of determination is R2 = 0.92. To give a further sense of the efficacy of the fit, we
display each point according to the standard error of the mean within the bin it represents. If the model curve passes within two standard errors of
the estimated value, we show it as a green square; otherwise, it is a red dot. (B) Like (A), but for the probability PSM that a stationary aphid starts
moving. The model is Eq. (4), describing higher aphid mobility at very short and very long d. Here, R2 = 0.52; see text for discussion.
doi:10.1371/journal.pone.0083343.g002
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effect of neighbors, it is necessary to model the spread of the

distribution of h, which indeed appears to depend on d. Since h is

an angular distribution, it exists on the interval ½{p,p�. Wrapped

normal distributions give a poor fit to our data (not shown). We

instead select the wrapped Cauchy distribution [49] centered at

zero,

f (h)~
1

2p

1{r2

1zr2{2r cos h
, ð6Þ

where 0vrv1 is a parameter governing the spread of the

distribution. Small values of r correspond to more spread

distributions, whereas values closer to one result in strongly

peaked distributions. Fig. 4A shows r as a function of d for the

binned data. As a model, we select the functional form

r(d)~r?z r0{r?� �
e{d=dr : ð7Þ

According to this model, aphids with nearby neighbors will turn

more often at wider angles, resulting in motion that is less ballistic

and more diffusive.

Fitting the model as described previously, we find r?&0:9013,

r0&0:1387, and dr&0:0044 m. To compare the experimental

data and the model within a given bin, we calculate a 95%

confidence interval by resampling the data in each bin thousands

of times, calculating r each time, and considering the resulting

distribution of values of r. If the value of r predicted by our model

falls within the central 95% of the sampling distribution, we show

the data point in Fig. 4A as a green square; otherwise it is a red

dot. For the fit of Eq. (7), we find R2~0:99.

In summary, our model consists of just four quantities: PMS,

PSM, ‘, and r. Each of these depends on d via three or four

parameters. In total, we have fit 13 parameters, but we note that

there are over one million entries in our data set.

As alluded previously, one component ignored in the model is

the arena’s boundary. While it is quite likely that the presence of a

boundary wall influences aphids’ movement, the majority of our

data set is composed of aphids far from the boundary. Fig. 5 shows

the cumulative distribution function of distance to boundary for

the entire data set. Only 10% of our data is within 2 cm of the

boundary (4 or 5 aphid body lengths), and we leave the

quantification of boundary effects as future work.

With our model for individual-level behavior established, we

will presently assess the degree to which it reproduces group-level

behaviors. For comparison and contrast, we also consider a control

model in which aphids do not interact at all. For this non-

interaction model, we use the asymptotic (limit of large d) values of

the parameters in our individual-level model. That is, we set

PMS~P?
MS, PSM~P?

SM , ‘~‘?, and r~r?.

Simulation and Analysis of Group-Level Behaviors

We now shift our focus to group-level behaviors. We compare

the experimental data (EXP) with data simulated from the two

models developed above, namely the one in which aphids interact

with their nearest neighbor (model INT) and the one in which

aphids do not interact (model NON). For each model, we carry out

simulations parallel to each experimental run, that is, having the

same initial aphid positions and containing the same number of

frames. We augment the individual-level behaviors with a rule for

what simulated aphids do if they encounter the (simulated) arena

boundary. If an aphid travels to a new position that would be

outside of the arena, we apply a simplistic reflective boundary

condition in which the angle of incidence on the boundary equals

the angle of reflection. Also, we let the distance the aphid travels

Figure 3. Correlated random walk step length ‘ (in m) per frame as a function of distance to an aphid’s nearest neighbor d (in m).
Each data point represents the mean step length within a bin of 800 elements from our experimental data set, where the data are binned by d. The
overall dependence of the data on d is modeled with Eq. (5), which captures the tendency of aphids to aggregate simply by traveling less when in the
vicinity of others. Best fit parameters appear in the text; the coefficient of determination is R2 = 0.82. To give a further sense of the efficacy of the fit,
we display data points according to the same scheme used in Fig. 2. Green squares (red dots) represent data bins for which the model prediction falls
within (outside) two standard errors of the experimental mean.
doi:10.1371/journal.pone.0083343.g003
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once it reflects off the wall be the distance it would have travelled

beyond the boundary.

We will compare three different group-level behaviors by

studying their corresponding cumulative distribution functions as

computed across each data set. A cumulative distribution tells, for

any particular value of a data variable (horizontal axis) the

percentage of data in the data set that is less than or equal to that

value (vertical axis). It will be convenient to call our cumulative

distributions FEXP
i , FINT

i , FNON
i , where the subscript i indexes the

distribution (since it is discrete). Our strategy will be to make three

pairwise comparisons for each group-level behavior, namely FEXP
i

vs. FINT
i , FEXP

i vs. FNON
i , and FINT

i vs. FNON
i . It is also convenient

to define the underlying probability distributions, f EXP
i , f INT

i ,

f NON
i . For each pairwise comparison we will calculate several

different quantities. A simple comparison is the distance between

median values of the probability distributions, which we refer to as

D. Another choice is the Kolmogorov-Smirnov distance DKS

[50,51], a common nonparametric measure. For two cumulative

distributions Fi and Gi, DKS~ maxi jFi{Gijthe maximum

vertical distance between two cumulative distributions. Finally,

we consider the Kullback-Leibler divergence DKL [52]. This

quantity measures the information lost when a distribution f 2
i is

used to approximate another distribution, f 1
i . It is defined as

DKL f 1
i jjf 2

i

� �
~
X

i

ln
f 1
i

f 2
i

� �
f 1
i , ð8Þ

where for us, the superscript 1 and 2 will refer to one of our three

data sets. Results appear in Table 1, Table 2, Table 3. We do not

perform statistical hypothesis testing using D, DKS, and DKL

because we have no null hypothesis that our models and

experiment produce statistically indistinguishable data. Rather,

we expect that they are different, and we simply use empirical

measures to assess the closeness of the model distributions to the

experimental one.

Figure 4. Correlated random walk turning angle h. (A) Turning angle distribution parameter 0,r,1 as a function of distance to an aphid’s
nearest neighbor. Here, r is a parameter in the zero-mean wrapped Cauchy distribution Eq. (6) used to model turning angle h. Each data point
represents the experimentally measured value of r within a bin of 2400 elements from our experimental data set, where the data are binned by d.
The overall dependence of the data on d is modeled with Eq. (7), which captures the tendency of aphids to aggregate by taking wider turns when in
the vicinity of others, leading to motion that is more diffusive and less ballistic. Best fit parameters appear in the text; the coefficient of determination
is R2 = 0.99. Green circles (red dots) points represent data bins for which the model prediction falls within (outside) a 95% confidence interval around
the experimentally measured r, where the interval is constructed by resampling our original data 20,000 times. (B) Normalized histogram showing
the experimental turning angle distribution within the data bin corresponding to the magenta triangle in (A). The blue curve shows the wrapped
Cauchy distribution predicted by our model. (C) Like (B), but for the magenta diamond.
doi:10.1371/journal.pone.0083343.g004
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The first group-level behavior we consider is the distribution of

nearest neighbor distances d that emerges through an experiment

or simulation. The cumulative distributions are shown in Fig. 6(A),

with EXP as solid blue, INT as dashed green, and NON as dot-

dashed red. Statistical measures are given in Table 1. We see that

D is smaller for EXP vs. INT than for EXP vs. NON by

approximately a factor of two. Put differently, the shorter median

d for INT (as opposed to NON) indicates that the social behaviors in

the model indeed promote aggregation. The experimental curve

has an even shorter ~dd . Model INT appears to capture some (but

not all) of the aggregative tendency seen in the experiment. The

Kolmogorov-Smirnov distance, DKS , is smaller between EXP and

INT than EXP and NON, as is DKL. Thus, by all three measures,

INT captures more of the experimental behavior than NON does.

The second group-level behavior we consider is the distribution

of angle to nearest neighbor, w, measured relative to an aphid’s

heading H. The cumulative distributions and statistical informa-

tion appear in Fig. 6(B) and Table 2. The graph reveals that EXP,

INT, and NON all give rise to a uniform distribution of relative

orientation (reflected by the linear cumulative profile). Therefore,

aphids in experiment and in both models do not preferentially

align towards their nearest neighbors.

Finally, we consider the third group-level behavior, the

distribution of the fraction M% of aphids moving at a given time.

The cumulative distributions and statistical information appear in

Fig. 6(C) and Table 3. They are strikingly different. As with the

distributions for d, INT reproduces much more of the behavior of

EXP than NON does. The extreme rightward shift of the red curve

indicates that the mobility of aphids is much higher in NON; put

differently, aphids in this model do not aggregate and settle nearly

as much as in EXP and INT.

Conclusion

Through experiment and modeling, we have investigated the

movement, social behavior, and aggregation of the pea aphid.

Motion-tracked experimental data gives rise to a two-state model

in which aphids transition stochastically between stationary and

moving states. Moving aphids follow a correlated random walk.

The state transition probabilities PMS and PSM, the random walk

step length ‘, and the random walk turning angle distribution

spread r all depend on distance to an aphid’s nearest neighbor, d.

These four quantities have each been fit with a functional form

incorporating three or four parameters whose values we estimated

from the experimental data. To assess the efficacy of our model in

reproducing group-level behaviors, we compared experimental

data to outputs of our social nearest neighbor model and a control

(noninteracting) model. We found that the social model repro-

duces the distribution of nearest neighbors and the distribution of

fraction of moving aphids better than the control model. The

experiment and both models display no difference for a third

group-level property, namely angle to nearest neighbor.

Our mathematical model is strikingly different from some

previous data-driven aggregation models. The model of golden

Figure 5. Cumulative distribution of aphids as a function of distance to arena boundary (in m) for experimental data set. The circular
experimental arena has a radius of 0.2 m. Only 10% of the data set corresponds to aphids within 2 cm (about five body lengths) of the boundary.
doi:10.1371/journal.pone.0083343.g005

Table 1. Measures comparing cumulative distributions of
distance to nearest neighbor d in experiment (EXP), a social
interaction model (INT) and a noninteracting control model
(NON).

Comparison Dexx DKS DKL

EXP vs. INT 0.0046 0.1083 0.0835

EXP vs. NON 0.0159 0.3226 0.3873

INT vs. NON 0.0113 0.2181 0.1668

By measures of the difference between median values D (in m), the
Kolmogorov-Smirnov distance DKS , and the Kullback-Leibler divergence DKL ,
the cumulative distribution of INT comes closer to EXP than NON does. Since D
is a dimensioned quantity, it is meaningful to compare values to an aphid body
length, approximately 0.004 m. EXP and INT have median values that differ by a
body length, while the other two comparison have median differences an order
of magnitude larger. The three distributions are shown in Fig. 6(A).
doi:10.1371/journal.pone.0083343.t001
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Figure 6. Pea aphid group-level behaviors in experiment, a social interaction model, and a control (non-interacting) model. (A)
Cumulative distributions Fi of distance to nearest neighbor d (in m) for experimental data set (solid blue), social interaction model (dashed green),
and non-interacting model (dot-dashed red). (B) Like (A), but the cumulated quantity is angle to nearest neighbor w (relative to an aphid’s heading H).
(C) Like (A), but the cumulated quantity is M% , fraction of the aphid population moving in a given frame. As compared to the curves in (A) and (B),
the more staircase-like appearance of these curves arises simply from the fact that the variable being cumulated is discrete (percentage of aphids in a
group of several dozen) as opposed to the continuous variables in (A) and (B). For (A)–(C), measures of the difference between the distributions are
given in Tables 1–3 respectively.
doi:10.1371/journal.pone.0083343.g006

Table 2. Measures comparing cumulative distributions of
angle to nearest neighbor w in experiment (EXP), a social
interaction model (INT) and a noninteracting control model
(NON).

Comparison Dexx DKS DKL

EXP vs. INT 0.0431 0.0085 0.0152

EXP vs. NON 0.0352 0.0128 0.0135

INT vs. NON 0.0078 0.0057 0.0035

By measures of the difference between median values D, the Kolmogorov-
Smirnov distance DKS , and the Kullback-Leibler divergence DKL , the cumulative
distributions for INT, NON, and EXP are nearly identical. Since w is an angle
measured in radians, the values of D should be compared to the value 2p. The
three distributions are shown in Fig. 6(B).
doi:10.1371/journal.pone.0083343.t002

Table 3. Measures comparing cumulative distributions of
fraction of aphids moving M% in experiment (EXP), a social
interaction model (INT) and a noninteracting control model
(NON).

Comparison Dexx DKS DKL

EXP vs. INT 0.0774 0.3226 0.7789

EXP vs. NON 0.4711 0.8915 0.8373

INT vs. NON 0.3938 0.8806 1.6649

By measures of the difference between median values D, the Kolmogorov-
Smirnov distance DKS , and the Kullback-Leibler divergence DKL , the cumulative
distribution of INT comes closer to EXP than NON does. This is especially
apparent in the D and DKS values. The three distributions are shown in Fig. 6(C).
doi:10.1371/journal.pone.0083343.t003
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shiner fish in [30] and the model of surf scoter ducks in [32] are

primarily deterministic, describing organisms that simultaneously

attract, repel, and align. In these studies, noise additively

modulates an organism’s intended direction at each time step,

presumably to describe errors in sensing and movement capabil-

ities. In contrast, our model has rules that are fundamentally

random. Fig. 2 shows that aphids under similar conditions (same

distance to nearest neighbor) display different behaviors (transi-

tioning vs. not transitioning motion state). Fig. 3 and Fig. 4 suggest

that the movement process for aphids is a random walk.

The biological conclusions of our work are as follows. First, we

have provided strong quantitative evidence that pea aphids display

social behavior, in that an individual’s movement in a featureless

environment is influenced by its nearest neighbor.

Second, we have gained insight into the mechanism by which

aphids aggregate. The probability of a stationary aphid starting to

move decreases if a neighbor is nearby. The probability of a

moving aphid stopping increases if a neighbor is nearby. These

two behaviors promote aggregation. Further, aphids that are

moving take shorter steps and turn more when in the vicinity of

neighbors, promoting motion that is more diffusive and less

ballistic (that is, less likely to move it away from the neighbor). This

is reminiscent of the classic run-and-tumble model of bacteria [53].

In short, aggregation occurs through movement decreasing in the

proximity of other aphids as opposed to direct locomotion towards

individuals or clusters.

ThirdFinally, our model of individual-level behavior gives some

feeling for the sensing range of the aphid. We recall the

exponential length scales dMS&0:0134 m, dSM&0:0079 m,

d‘&0:0074 m, and dr&0:0044 m. These characteristic length

scales are on the order of 1–3 aphid body lengths.

As evidenced by the metrics in the previous section, our

individual-based social model reproduces group-level featuresbe-

haviors muchbetter than a control model. There remain many

avenues for further investigation. While we have demonstrated

that pea aphid behavior promotes aggregation, we have not

focused on quantifying the degree of aggregation (beyond

measuring the distribution of distance to nearest neighbor). One

could investigate the typical population size of an aggregation and

the typical time scales of an aggregation’s formation and existence.

Furthermore, we have not captured all of the experimental

complexity in our simple model. As mentioned throughout, we

have ignored the effects of the boundary. It would be useful to

quantify more precisely the rules an aphid obeys when it

encounters an immovable obstacle such as a boundary. Addition-

ally, our model is arguably the simplest possible social model, in

which social effects depend on a single nearest neighbor. One

could investigate the degree to which an aphid responds

simultaneously to multiple neighbors, keeping in mind the limits

of aphid cognition. Finally, it could be interesting to augment our

work, which describes aphid aggregation the absence of environ-

mental cues, with a consideration of external factors such as

nutrition sources. Such an investigation might shed further light on

the aphid’s role as a destructive crop pest.
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