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Abstract

A unicast-based multicasting algorithm is presented for
arbitrary interconnection networks arising in switch-
based networks of workstations. The algorithm is op-
timal with respect to the number of startups incurred
and is provably free from depth contention. Specifi-
cally, no two constituent unicasts for the same mul-
ticast contend for a common channel, even if some
unicasts are delayed due to unpredictable variations in
latencies. The algorithm uses an underlying partially
adaptive deadlock-free unicast routing algorithm. Sim-
ulation results indicate that the algorithm behaves as
predicted by its theoretical properties and provides a
promising approach to unicast-based multicasting.

1 Introduction

In this paper we consider the problem of de-
signing efficlent multicast routing algorithms for
wormhole-routed switch-based networks of worksta-
tions (NOWSs). These networks comprise a collection
of routing switches and workstations interconnected in
some arbitrary topology. Currently, switches support
only unicast (one-to-one) communication in hardware.
However, multicast (one-to-many) communication is
required in many applications as well as in a variety
of system-level functions such as barrier synchroniza-
tion, cache coherency in distributed shared-memory
architectures, and clock synchronization, among oth-
ers.

Since existing switches support only unicast com-
munication in hardware, multicasting is currently sup-
ported by sending multiple unicast messages. In sepa-
rate addressing, the source node simply sends a sepa-
rate unicast message to each of the destination nodes.

*This work was supported in part by the National Science
Foundation under grant CCR-9418311.

However, since message.startup time is generally sev-
eral orders of magnitude larger than network latency
in wormhole-routed networks, it is desirable to mini-
mize the number of startup phases or communication
steps used to deliver the message to all of its destina-
tions. An alternative approath, therefore, is to use a
maulticast tree algorithm [9] in which the source node
sends the message to some subset of the destination
nodes which then participate in distributing the mes-
sage to other destinations until, eventually, all' desti-
nations receive the message.

A unicast-based multicast algorithm should have
several properties [6]. First, the underlying unicast
routing algorithm must be deadlock-free. Second, the
number of communication steps required to deliver the
message to all of its destinations should be minimized.
Third, the constituent unicast messages of any single
multicast should not contend among themselves for
communication channels.

In this paper we describe a unicast-based multi-
cast algorithm for arbitrary topologies which employs
deadlock-free unicast routing, achieves the theoretical
lower bound on the number of communication steps,
and is provably free from contention among unicasts
belonging to the same multicast message. To the best
of our knowledge, this is the first algorithm for arbi-
trary topologies that satisfies all three of these prop-
erties.

The remainder of this paper is organized as follows.
In Section 2 we review related work on unicast-based
multicast algorithms. In Section 3 we describe our
new multicast tree algorithm and prove that it has
the properties described above. Section 4 describes
simulation results and we conclude in Section 5.



2 Related Work

Although a number of hardware-supported multicast
algorithms have been proposed recently for wormhole-
routed switch-based networks, efficient software-
supported algorithms are required to implement multi-
cast communication in hardware which supports only
unicast communication. In this section we describe
recent results on unicast-based multicast routing al-
gorithms.

It is easily verified that the theoretical lower bound
on the number of communication steps required to
complete a multicast to d destinations using unicast-
based routing is [log,(d + 1)] [6]. Thus, any unicast-
based algorithm that uses exactly [logy(d + 1)] com-
munication steps is said to be optimal. Although in
general it is not possible to avoid contention for chan-
nels among unicast messages belonging to different
multicasts, in some cases scheduling techniques have
been employed to guarantee freedom from contention
among the constituent unicasts of the same multicast.
Step contention occurs when two unicast messages in
the same communication step contend for a common
unidirectional channel [6]. However, since the nodes
are not synchronized, a node scheduled to transmit the
message in communication step ¢ may become delayed
and transmit the message at a later communication
step, possibly contending with a unicast for the same
message transmitted at communication step j, j > i.
This type of contention, called depth contention, is a
generalization of step contention. Thus, guaranteeing
depth contention-freedom is stronger than guarantee-
ing step-contention freedom.

McKinley et al. described optimal depth
contention-free unicast-based routing algorithms
for meshes and hypercubes employing dimension-
ordered routing [6]. De Coster et al. [3] described a
class of depth contention-free algorithms for meshes
using dimension-ordered routing that generalizes the
algorithm in [6]. Robinson et al. subsequently pro-
posed an optimal depth contention-free unicast-based
routing algorithm for the torus [7]. Kesavan, et al. de-
scribed several unicast-based depth contention-free
algorithms for arbitrary topologies that require a
fairly small number of communication steps, but
are not optimal [4]. Birchler et al. described a
sufficient condition for optimal step contention-free
communication in any topology [1].

In this paper we describe an optimal depth
contention-free unicast-based multicast routing algo-
rithm for arbitrary topologies. The algorithm is sim-
ple to implement and uses an underlying deadlock-free
unicast routing algorithm that has been successfully

employed in an existing switch-based network [8].

3 Depth Contention-Free Rout-
ing in Arbitrary Topologies

In this section we describe the depth contention-free
multicast routing algorithm for arbitrary topologies.
We begin in Subsection 3.1 with definitions and fun-
damental results related to depth contention. The al-
gorithm and the proof of depth contention-freedom are
given in Subsection 3.2.

3.1 Definitions and Fundamentals

A switch-based interconnection network can be rep-
resented by a directed graph G = (V, E) where V =
Vi U V3. The set V) represents the set of switches
and the set Vs represents the set of processors. In
order to correctly model existing switch-based net-
works such as the DEC Autonet [8] and Myrinet [2],
we assume that the graph is symmetric: For each di-
rected edge (u,v) € E there exists a corresponding
edge (v,u) € E. In both Autonet and Myrinet, these
symmetric channels can be used simultaneously with
no contention (2, 8].

Since the graph is symmetric, vertex u is said to be
connected to vertex v if there exists a pair of oppositely
directed edges between the two vertices. Similarly,
since the indegree of a vertex equals the outdegree of
a vertex in a symmetric graph, the degree of a vertex
refers to indegree or outdegree.

Each vertex in V5 is connected to a single vertex
in V}, representing a connection between a processor
and exactly one switch. In addition, pairs of vertices
in Vi may be connected, representing connections be-
tween pairs of switches. The degree of a vertexin V} is
bounded by the number of ports in the corresponding
switch. The degree of each vertex in V5 is exactly 1.

A directed trail in the network is an al-

ternating sequences of vertices and edges
Vo, €0,V1,€1, " *Vk—1,€k—1,Vk, Such that e =
(vi,vi+1) € E and all edges are distinct. A di-

rected path is a directed trail in which all vertices are
distinct. A directed circuit is a directed trail in which
the start and end vertices coincide. The definitions
below from McKinley et al. [6] are needed to formalize
the notion of depth contention. They are included
here for completeness.

A unicast operation is defined as an ordered
quadruple (u,v, P(u,v),t) where u and v are the
source and destination nodes, P(u,v) is a directed



path from u to v, and ¢ is the positive integer commu-
nication step at which the unicast begins. Although
vertices u and v can be in either V; or V;, to sim-
plify our discussion we assume that all sources and
destinations are in V3, representing messages between
Processors.

Two unicasts, (u,v, P(u,v),t) and (z,y, P(z,y),7),
with t = 7, are feasible if u, v, z, and y are all distinct.
A feasible unicast set is a set of unicasts whose mem-
bers are pairwise feasible. A multicast request can be
represented by a set M = {vo,v1,---,vq}, where node
vp is the source of the multicast-and the other nodes
are its destinations.

Definition 1 (McKinley, Xu, Esfahanian, and Ni)

An implementation I(M) of a
unicast-based multicast request M is a sequence
of feasible unicast sets Uy, Us,---,Ux satisfying the
following conditions.

1. For each j,1 < j < k, if (u,v, P(u,v),j) € Uj,
then both u and v belong to M.

2. The first unicast set is Uy = {{vg,u, P(vo,u),1)},
where u = v; for some 1,1 <11 < d.

3. For every unicast (u,v, P(u,v),t) € U;,1 <t <
k, there must exist a set U; with j <t which has
(w,u, P(w,u),J) as a member for some node w.

4. For every destination v;,1 < i < d, there exists
one and only one integer j such that 1 < j <
k and (w,v;, P(w,v;),7) appears in U; for some
node w.

Definition 2 (McKinley, Xu, Esfahanian, and Ni)

Given a multicast implementation
(M) = {Uy,Us...,Ux}, a node v is in the
reachable set of a node u, denoted R,, if and only
if v = u or there exists a j,1 < j < k, such that
{(w,v, P(w,v),J) € U; for some node w € R,.

A multicast implementation is said to be depth
contention-free if no two constituent unicast messages
of the multicast implementation contend for the same
channel, even if one or both of them are sent after their
scheduled communication steps due to delays. Ob-
serve that if two unicast paths are edge-disjoint then
they cannot contend for a common channel, regardless
of the communication steps in which the unicasts are
sent. However, two unicasts paths that use a common
channel may still be depth-contention free. For exam-
ple, if one unicast delivers the message from u to v
and another unicast delivers the message from v to y,
then the first unicast will exit the network before the

second one enters. More generally, if z is,the,source
of the second unicast and z is in the reachable set of
v or is in the reachable set of some node w which re-
ceives a unicast from u after the unicast from u to v
has completed, then the unicast from u to v and the
unicast originating from z cannot contend for chan-
nels. The following theorem formalizes these observa-
tions, providing a sufficient condition for a multicast
implementation to be depth contention-free.

Theorem 1 (McKinley, Xu, Esfahanian, and Ni)
Given a maulticast implementation
I(M), i at least one of the following four
conditions holds for every pair of wunicasts
(u,v,P(u,v),t) and (z,y,Plz,y),7) in I(M),
where t < 7, then I(M) is depth contention-free.

1. z € R,.
2. P(u,v) and P(z,y) are edge-disjoint.
3. z=u.

4.z € Ry and (u,w,f;(u,w),t-l-é) € I(M), for
some node w and positive integer £.

3.2 The Depth Contention-Free Algo-
rithm

In this subsection we present an optimal depth
contention-free multicasting algorithm for arbitrary
topologies. This algorithm uses the deadlock-free
up*/down* algorithm described by Schroeder et
al. and employed in the DEC Autonet [8]. The
up*/down* algorithm uses a rooted breadth-first
search (BFS) spanning tree in the network. An edge
(u,v) is in the up subnetwork if the level of u is larger
than the level of v or, if u and v are at the same level,
then the ID of u is larger than the ID of v. All other
edges are in the down subnetwork. The up*/down*
routing algorithm requires that all routing be com-
pleted in the up subnetwork before using any edges in
the down subnetwork. The algorithm is easily verified
to be deadlock-free [8]. )

While the original up*/down* algorithm only re-
quires that each node have a unique ID, our algorithm
requires a specific choice of ID’s in order to guarantee
depth contention-freedom. Specifically, we perform a
postorder traversal of the breadth-first search tree and
use the postorder label of each node as its ID. We
henceforth use the notation ID(v) to denote the pos-
torder numbering of vertex v.

Edges in the network can be partitioned into tree
edges and cross edges depending on whether they are



it the underlying breadth-first search tree or not. We
define two types of routes with respect to a fixed BFS
tree.

Definition 3 A strict up-first path from wu
to v, denoted Pi(u,v), s a directed path
(vo,€0,V1,€1," ", €k—1,Vk) Such that u = vy, v = v,
each edge is in the BFS tree, and if e; is an up edge,
then for all j <1, e; is an up edge.

Thus, a strict up-first path is the unique path between
two vertices that uses only tree edges. For exam-
ple, Figure 1 shows a symmetric network with tree
edges indicated by solid lines, cross edges indicated
by dashed lines, and vertices labeled with postorder
ID’s. The root of the tree is vertex 8. The strict up-
first path from vertex 1 to vertex 4 visits vertices in
the sequence 1,2,8,7,5,4.

Definition 4 A relaxed up-first path from
u to v, denoted Pa(u,v), is a directed path
(v0’601v17611"'1éyl—l7v(f) such that u = Vo, V = Uy,

if e; 1s in an up edge then for all § < i, e; is an up
edge, and if e; = (vi,vi41) 48 6 cross edge then v; and
vir1 are both in the strict up-first path from u to v
and v; precedes vy, in the the strict up-first path.

Thus, a relaxed up-first path from u to v is a path
from u to v that uses only cross edges whose endpoints
occur in the same relative order in the unique strict
up-first path from u to v. For example, for the network
in Figure 1 one relaxed up-first path from vertex 1 to
vertex 4 visits vertices in the sequence 1,2,5,4. The
cross edge from vertex 2 to vertex 5 is allowed because
because vertex 2 occurs before vertex 5 on the strict
up-first path from vertex 1 to vertex 4. However, the
path 1,2,8,3,7,5,4 s not a valid relaxed up-first path
because vertex 3 does not appear on the strict up-first
path from vertex 1 to vertex 4.

The optimal depth contention-free multicast algo-
rithm uses the multicast tree technique as follows. Let
M denote a multicast request with a source s and d
destination nodes. The set M — {s} is partitioned
into two sets, M; and M, such that M, contains all
destinations in M whose postorder ID’s are greater
than the postorder ID of s and M> contains the des-
tinations in M whose postorder ID’s are less than the
postorder ID of s. A list L is constructed in which
s is the first element, followed by the elements in M,
sorted by increasing postorder ID’s, followed by the
elements in M, sorted by increasing postorder ID’s.
Let L = vg,vy,...,vqy where s = vg. In the first com-
munication step, vo sends the message to the node at
the midpoint of the list, v [ using any relaxed up-
first path from vg to Urdgny- Now, vp is responsible for

Figure 1: A symmetric network with tree edges indi-
cated by solid lines, cross edges indicated by dashed
lines, and vertices labeled with postorder ID’s.

delivering the message to the first half of the nodes in
L while UIFESY is responsible for, delivering the mes-
sage to the second half of the nodes in L. Each of
these two nodes recursively applies the algorithm by
sending the message to the midpoint of each of their
respective sublists using relaxed up-first paths. This
process continues until after [log,(d + 1)] iterations
every destination has received the message. This al-
gorithm is referred to henceforth as the postorder re-
cursive doubling algorithm.

Figure 2 shows the multicast tree that results from
this algorithm when vertex 3 in Figure 1 broadcasts
a message to all of the other vertices. The list L in
this case is*3,4,5,6,7,8,1,2. Thus, in the first com-
munication step vertex 3 sends the message to vertex
7 using any relaxed up-first path (which in this exam-
ple is either the direct edge from vertex 3 to vertex 7
or the strict-up first path 3,8,7.). In the second com-
munication step, vertex 3 sends the message to the
midpoint of its remaining sublist, vertex 5, while ver-
tex 7 sends the message to the midpoint of its sublist,
vertex 1. Finally, in the third communication step all
vertices have received the message.

Theorem 2 The postorder recursive doubling algo-
rithm using relazed up-first paths is an optimal depth
contention-free unicast-based multicast algorithm.

The proof of Theorem 2 proceeds in several steps.
We begin by restricting our attention to the special

. case that all unicast messages are sent along strict up-

first paths. Several lemmas lead to Theorem 3 which
shows that for this special case, the postorder recursive
doubling algorithm is depth contention-free. We then
use this result to prove Theorem 2.

Lemma 1 Let (u,v, Py (u,v),t) be a unicast belong-
ing to a multicast I(M) using the postorder recur-
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Figure 2: The multicast tree corresponding to vertex
3 broadcasting to the remaining vertices in Figure 1.
Numbers in brackets represent scheduled communica-
tion steps.

sive doubling algorithm. Let y be any destination
in the multicast request M. Then y € R, and
(u,w, Pi(u,w),t + £) € I(M) for some node w and
positive integer £ if either of the follow;'ng conditions
hold.

1. ID(u) < ID(y) < ID(v).

2. ID(v) < ID(u) and either ID(y) < ID(v) or
ID(v) < ID(y).

Proof: By definition of ‘the postorder recursive dou-
bling algorithm, if u sends a unicast to v at commu-
nication step ¢t and y is a destination with ID(u) <
ID(y) < ID(v) then at some time t + £, £ > 1, either
u sends the message directly to y or u sends the mes-
sage to some intermediate node w and y € R,,. An
analogous argument applies for the second case. O

Definition, 5 A postorder circuit is a circuit C =
(vo,€0,v1,€1,--,6n—1,Vpn), which follows a postorder
traversal of the graph G starting from the root, vo,
where vg = vy,.

Note that each directed edge in the BFS tree appears
exactly once in the postorder circuit. However, a ver-
tex may occur several times in the postorder, circuit.
For example, the postorder circuit for the tree in Fig-
ure 1 visits the vertices in the ordér 8, 2, 1, 2, 8, 3, 8,
7,5,4,5,7,6,7, 8.

Definition 6 Let C = (vo, €0, ;€n—1,n) be a pos-
torder circuit and let v € V. The exit point of ‘vertex
v is the element v; € C such that vi = v and v; # v
for all j > 1.

Observe that the exit point of a vertex indicates the
index in the postorder traversal at which tlie vertex
received its ID.

Definition 7 A postorder trail from u to v, de-
noted t(u,v), is the subsequence of the postorder cir-
cuit C beginning at the exit point of u and end-
ing at the exit point of v. Thus, if ID(u) <
ID(v), then the postorder trail is the sdbsequence
of C (vi,€i,it1,€it1,...,€j-1,v;), where v; and v;
are the exit points of u and v, respectively. If
ID(u) > ID(v), then the postorder trail has the form
(vi,eiy ..., Un_1,€0,%0,...,5-1,V;), where vi and vj
are the exit points of v and v, respectively.

Lemma 2 Given foyr vertices u,v,x,y the postorder
trail t(u,v) is edge-disjoint from the postorder trail
t(z,y) if one of the following conditions holds:

1. ID(u) < ID(v) < ID(z) < ID(y).
2. ID(y) < ID(u) < ID(v) < ID(z).

Proof:

Case 1: ID(u) < ID(w) < ID(z) < ID(y).
The postorder trail ¢(u,v) has the form
(vj,ej,...,ex_1,Ut), where v; is the exit point
of vertex uw and wvr is the exit point of
v. The postorder trail t(z,y) has the form
(ve, €ty .- €m—1,Vm), Where vy is the exit point
of vertex z and v,, is the exit point of vertex y.
Assume that there exists an edge e, which occurs
in both t(u,v) and t(x,y). Then j < p < k and
£ < p < m. However, k < £ since ID(v) < ID(z),
implying that p < k& < £ < p, as<contradiction.
Thus, the two trails are edge disjoint.

Case 2: This case is analogous to Case 1 and is omit-
ted due to space limitations. O

‘Lemma 3 If postorder trails t(u,v) and t(z,y) are
edge-disjoint then the strict up-first paths P; (u,v) and
Py (z,y) are also edge-disjoint.

Proof: Consider the path from u to v constructed
by removing circuits from trail ¢(u, v) until no circuits
remain. Since there is a unique path between any
two vertices in a tree, this path is necessarily P (u, v).
Thus, P;(u,v) uses a subset of the edges in t(u,v).
Similarly, P (z,¥) uses a subset of the edges in t(z,y).
Since t(u, v) and t(z, y) are edge-disjoint, P; (u,v) and
Py (z,y) are necessarily edge-disjoint. a

Next we show that if we restrict all routing to use
strict up-first paths, then the postorder recursive dou-
bling algorithm is depth contention-free. Afterwards,
we use this result to show that the algorithm remains
depth contention-free even if relaxed up-first paths are
used.

Sy,



Theorem 3 The postorder recursive doubling algo-
rithm is depth contention-free if all paths are strict
up-first paths.

Broof: Consider a multicast implementation of the
postorder recursive doubling algorithm in which all
fouting is performed using strict up-first paths. Let
(u, v, P (u,v),t) and (=,y, Pi(z;y),7) denote two uni-
casts in this implementation where t < 7. If ID(u),
ID(v), and ID(z) are not distinct then since ID(u) #
ID(v), either ID(u) = ID(z) or ID(v) = ID(z) In the
first case, £ = u, satisfying condition 3 of Theorem 1.
In the second case, = v and thus z € R,, satisfying
condition 1 of Theorem 1. The remaining cases are
that ID(u) # ID(v) # ID(z).

If ID(u) < ID(v) < ID(z) then either ID(y) <
ID(u) < ID(v) < ID(z) or ID(u) < ID(v) < ID(z) <
ID(y). To see this, observe that if ID(u) < ID(y) <
ID(v) < ID(z) then by Lemma 1 u sends the message
to some node w and y € R,. Therefore, ID(z) <
ID(y), a contradiction. If ID(u) < ID{v) < ID(y) <
ID(z) then by Lemma 1 z sends the message to y
before u sends the message to v, contradicting the
assumption that t < 7. Since ID(y) < ID(u) <
ID(v) < ID(z) or ID(u) < ID(v) < ID(z) < ID(y),
by Lemma 2, the postorder trails ¢(u,v) and t(z,y)
are edge-disjoint. Thus, by Lemma 3, the strict up-
first paths P; (u,v) and P, (z,y) are edge disjoint, sat-
isfying condition 2 of Theorem 1. Analogous argu-
ments apply for cases ID(z) < ID(u) < ID{v) and
ID(v) < ID(z) < ID(u).

If ID(u) < ID(z) < ID(v) then, by Lemma 1, z €
Ry and (u,w, Pi(u,w),t + £) for some node w and
positive integer £. Thus, this case satisfies condition 4
of Theorem 1. Cases ID(z) < ID(v) < ID(u) and
ID(v) < ID(u) < ID(x) similarly satisfy condition 4 of
Theorem 1. O

We now use Theorem 3 to prove Theorem 2.

Proof of Theorem 2: Since the postorder recursive
doubling algorithm uses the theoretical lower bound
of [log,(d + 1)] steps to deliver a message to d desti-
nations, the number of steps is optimal. We now show
that the algorithm is depth contention-free.

Consider a  multicast implementation of
the postorder recursive doubling algorithm
in which all routing is performed using re-
laxed up-first paths:  Let (u,v,Pa{u,v),t) and
(z,y,Py(x,y),7) denote an  arbitrary pair
of unicasts in this implementation and let
(u,v, Pi(u,v),t) and (z,y,Pi(z,y),7) denote the
corresponding unicasts in an implementation using
strict up-first paths. Observe that by definition of

relaxed up-first paths, any tree channels used by
P2(u,v) are also in P (u,v) and similarly for Pz(z,y)
and P;(z,y). Thus, if unicasts (u,v, P;(u,v),t) and
(z,y, P2(z,y),7) contend for a common tree channel,
then unicasts (u,v, Pi(u,v),t) and (z,y, Pi(z,y),7)
contend for the same tree channel, contradicting
Theorem 3.

The remaining case is that unicasts (u, v, P2 (u,v),t)
and (z,y,Pa(z,y),7) contend for a cross channel.
Thus, Py(u,v) and Py(z,y) share some cross chan-
nel e = (v;,v;). By the definition of relaxed up-
first paths, v; occurs before v; on the strict up-first
paths Pi{u,v) and Pi(z,y). Let e; = (v;,vit1) de-
note the first tree edge on the strict up-first path
from u to v. Edge e; is common to both P (u,v)
and P (z,y), implying that unicasts (u,v, P;{u,v),t)
and (z,y, Pi(z,y),7) contend for edge e;, contradict-
ing Theorem 3. ]

4 Simulation Results

In this section we describe simulation results for single
multicast and multiple multicast traffic. The simula-
tions were conducted using the Harvey Mudd MARS
simulator, an event-driven flit-level wormhole routing
simulator. Since the postorder recursive doubling al-
gorithm allows for partial adaptivity in the routing
paths, a selection policy was employed that prefers
the outgoing channel to a node whose ID is closest
to the ID of the destination. This policy implicitly
prefers cross channels over tree channels.

The following system parameters were used in these
experiments. Each switch was assumed to have 8
ports. In order to simulate physical proximity of con-
nected switches, switches were randomly selected from
points on an integer lattice and connected only to ad-
jacent lattice points. Thus, at most 4 ports per switch
were used for connections to other switches. In or-
der to maximize the probability of contention between
unicasts from different multicasts in our multiple mul-
ticast experiments, each switch was connected to ex-
actly one processor.

The following latency parameters were used in all
experiments. The communication startup latency,
tstartup Was 10 microseconds, router setup latency for
each message header, frouter, Was 20 nanoseconds,
and the channel latency, tchannet, was 10 nanoseconds.
Each message comprised 128 flits. The measured la-
tency for a multicast message was the total elapsed
time from startup at the source until the last con-
stituent unicast was consumed by the last destination
node. Each data point in our experiments is within 2%



of the mean or better, using 95% confidence intervals.

In the first set of simulations, message latency was
measured for a simgle multicast with a varying num-
ber of destinations. The simulations were conducted
for networks comprising 64 and 256 nodes. Figure 3
summarizes the results of these simulations. In addi-
tion to the latencies incurred by the postorder dou-
bling algorithm, the theoretical lower bound on the
startup times, [log,(d + 1)] - tstartup, iS also plotted.
The small difference betweernr the two curves accounts
for actual routing time. These results confirm that the
latency incurred by the recursive doubling algorithm
is directly related to the theoretical lower bound on
the number “of required startups, but the additional
network latency is largely insensitive to the number
of destinations. Additional simulation results can be

64 nodé network 256 node network
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Figure 3: Latency versus number of destinations for a
single multicast in 64 and 256 node networks.

&

found in [5].

5 Conclusion

In this paper we have presented a new depth
contention-free unicast-based multicast algorithms for
arbitrary topologies. The algorithm is optimal with
respéct to the number of startups, permits par-
tially adaptive routing, and is provably deadlock-free.
The technique used here to prove depth contention-
freedom may have applications in developing other
depth contention-free routing algorithms in both reg-
ular and irregular topologies which are currently be-
ing investigated. Simulation studies of the postorder
doubling algorithm verify that single multicasts per-
form as predicted by the theoretical properties of the
algorithm and multiple multicast latency increases ap-

proximately linearly with average arrivalirate.
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