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SUMS OF z-IDEALS AND SEMIPRIME IDEALS

M. Henriksen, F.A. Smith

Abstract: If B 1is a ring {or module), and K 1is an jdeal {or submodule) of
B, let B(K) = {{a,b} € B x B:a-b ¢ K}. The relationship between ideals {or
submodules) of B and those of B{K} 1is examined carefully, and this construc-
tion is used to find a lattice-ordered subring-of the ring C{R) of all conti-
nuous real-valued functions on the real 1ine R with two z-ideals whose sum

is not even semiprime.

AMS subject classification: 54C40, 06A70.

1. Imtroduction

In [M1], G. Mason calls an ideal I of a commutative ring B with identi-
ty element a z-idea? 1f whenever a,b = B are in the same set of maximal ideals
of B and ael, then b = I. Tt was shown in [GJ] and [R] that if B is a
solid (or absolutely convex) subring of the ring of all continucus functions on
a topological space, then a sum of two z-ideals of B is a z-ideal, but no
example s given in any of these papers or in the more recent [M2] of a commuta-
tive ring containing two z-ideals whose sum is not a z-ideal. We supply such
an example here with the aid of a construction of independent interest. In
particular, if B 1is a ring or a module, and K is an ideal or submodule of
B, we consider A = {(a,b) € B x B:a~b ¢ K} and examine carefully the relation-
ship between the ideals {or submodules) of B and those of A. This construc-
tion enables us also to answer a gquestion posed in [H1], and to give a simpler
version of an example given in [HP].

2. FErtensions of modules and rings

Suppose R dis a ring, B 1is either a left or a right R-module, and K
is a submodule of B. Let A = B(K) = {(a,b) €« B x B:a~b £ K} and call A the
extension of B py K. The following properties of B(X) are easily verified.
(1) A =B(K) s « submodule of Bx 8 agud D ={(b,bl:be B} 4is ¢ submodule

of A isomorphic to B. If B is o unital Romodule, so is A. '
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{2) If B=R {earing, and K ie an ideal of B, then A is a subring
of B xB. Clearly (2} foltows from (1) since the latter applies if B
is also a right R-module.
ket p:B+ A be defined by letting for-any b e 8 p{b) = {bsb), tet

p(b) = (b,0) and p,(b) = (0,b). If I idsa (left) submodule of B, let

{3) I(i) = {{i+k,i):1 e I, k ¢ K} and let
18 -G e 1, ke K.

Note that for n = 1,2,

(4) g(n) is @ submodule of A, and if 1 4s an ideal of B, then r(m ig

an tdeal of A.

1. Theorem For n= 1,2, thamagp I - I{n) ig a bijeetion of the set of sub-
modules of B onto the set I{n) of submodules of A that contain pn(K).
toreover, if T, Je 1, then 100 = 3@ se g on ie 1200k,

Proof. Suppose n =1, It is clear from (3) that i1f I ¢ 1, then (M e 1),
Suppose S* ¢ 1(1), whence 5* 5 {{k,0):k ¢ ¥} = P](K). let I = {b ¢ B:{b*k,b)
e 5% for some ke K}. It is routine to verify that I 1s a submodule of B,
and, since 5* o p1(K), we have S§* = 1(1). Clearly if I, Jde T and I(T)

= J(1), then I =J, sothemap 1+ I(]) is a bijection of I onto 1(1).

If n =2, the same argument applies with a change in notation.

Suppose I(T) = 2 . Then for any 1 e I, there is a je é and a ke K
such that (1,1} = (j,j+k}. So I c J. Similarly Jc I, and I = J. Since
forevery el and ke K, there isan i ¢ 1 and k” = K such that
(i+k,i) = (i7,i"+k"), we must have Kc I,

If 4 e 1N, then (i,1) ¢ 1NN, 1F 1-3 and & e KNI, then
{k,k) = 1(1)‘\1(2). 'This completes the proof of the theorem.

Our next result i1lustrates that for n = 1,2, the map I+ I(") of T
onto I(") preserves a number of algebraic properties of ideals. Recall that
a ring B 1is called prime if whenever a,b ¢ B and aBb = {0}, then a = 0
or b =0. If the intersection of all the prime ideal of B 1s {0}, then B
is called semiprime. Thus B 1is semiprime if aBa = 0 implies a = 0. An
ideal P of a ring B s called prime (resp, semiprime} if B/P is a prime
{resp. semiprime) ring. We call a2 ring B wediced iT B # {0} and if b e B
and b? = 0 imply b =0. A reduced ring B 1is semiprime, and the converse
holds if B is commutative. For background, see [H21, [K1], or [M3].

2. Theorem. Suppose B 18 a ring, K is an ideal of B, A = B(K), and
n=1 or 2. For any proper ideal P of K



274 M. Henriksen, F.A, Smith

(a) P is a prime ideal if and onty 17 P g prime ideal of A

(b} P is a semiprime ideal of B <f and only if P\ 45 4 semiprime
tdeal of A.
(¢} If B is rveducedsthen P s a minimal prime ideal of B if and only
iy P 45 o minimal prime ideal of A.
(d) P is a mawimal ideal of B if and only if pin) is a muwimal idedl
of A,
Bafore giving the proof of Theorefi 2, we introduce some notation. For any
ring R, et Sp(R) denote the family of proper prime ideals of R, MinSp(R)
= {P ¢ Sp(R):P} is a minimal prime, and MaxSp(R) denote the family of maximal
ideals of R.

Proof. We assume that n=1. If P e Sp{B}), then P x B ¢ Sp(B x B), so
{(PxB)nA-= P(1) e Sp(A}. Supbose conversely that P ! e Sp(A} for some
ideal P of B, and axb = P for some aeP, beB~P and all xeB. Suppose
kT’ kz, k3 ¢ K. Then o = (afk1,a){x+k2,x)(b+k3,b} = (axb + k4,axb) for some
kye ko Thus e P’ and b EP. Hence acP, so PeP(B). Thus (a)
holds.

Part (b} follows from a routine modification of the proof of {a). Recall
from [K] that: _

(8) 4 prime ideal P of a weduced ring R is a minimal if and only if a e P
implies there i a b £ P such that ab = 0. See also [WJ].

Observe that A 1is reduced if and only if B is. Suppose P e MinSp(A)
and o = {atk,a} e P(}) for some a2 « P and k ¢ K. Note that since B is
reduced, {b ¢ Bzab = 0} = A(a) = {b £ B:ba =0} 1is a (two-sided) ideal for any
a ¢ B.

We consider three cases.

(i) Assume K < P. Then since P is minimal, there are b,c £ P such
that ab = kc = 0. Since be t P, 8= (bc,bc) % P{1), while ap = 0. Hence
p{) < Minsp(a) by (5). -

(11) Suppose that for each a ¢ P there isa b in K but not in P
such that ab = 0; that is assume A(a) N K ¢ P. Then 8 = {0,b) < A\\P(1)
and  a8=0. o P ¢ Minsp(A) by (5).

{i711) Suppose there is an a € P such that Af{a) n K < P. By {5} since
P is minimal, A(a) € K. So KcP and P'1) ¢ Minsp(A) by case (i).

Suppose conversely that 9(1) € MinSp(A) and a = P. Since (a.,a) ¢ P(]},
there isa b &P anda k=K such that (a,a)(b+k,b) = (0,8) then ab =0,
so P MinSp(A} by (5). This completes the verification of (c).
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Suppose P & MaxSp(B) and a € AN\P. “Then there is a k ¢ K such that
(a+k,a) s not in P 1 . For, otherwise, since (k,0) ¢ P(1), it would follow
that (a.a) e P(1) contrary to the fact that a £ P. Since the smallest ideatl
of B containing P and a is all of B, the ideal I generated by {{m,m}:
me P} and (a,a) contains {(b,b}:b e B}. Byt P(1) 2 p](K), so I =B
and PV e MaxSp(A). The proof of the converse is an exercise. This compietes
the proof of {d) and Theorem 2.

An element of a ring that is nefther a left nor a right divisor of 0 will

be called regular.

3. Corollary. Suppose B is a ving, K is an ideal of B, and A = B(K).
(@) P* ic a (minimal) prime ideal of A if and only if P* = P“) or
P = 22 fon some (minimat) prime ideml P of B .
(b) Mn element (a,b) of A is vegular if and only if both a and b
regular in B.

Proof. Suppose P* & Sp(A). Since p](K) n pZ(K) =0, pT(K) € P* or pZ(K)
- © P*, So (a) follows from Theorems 1 and 2 (a, c).

' Clearly if a and b are regular in B, then (a,b) is regular in A.
By (5), if {a,b) 4is regular, then it is 1n no minimal prime ideal of A. So,
by Theorem 1 and part (a), neither a nor b can be in any minimal prime ideal
of B. Using (5) again, we condlude that both a and b are reguTar B. This
completes the proof of the corollary. '

4. Remarks.

(A} This argument of Theorem 2 {d) applies to maximal one-sided ideals.
and this may be used to show that the {left) primitive ideals of A are of the
form P(j) for P a primitive ideal of B. Ffor definitions see Fxi].

{B) It is well known that for any ring B with identity element, the
sets of ideals, Sp(A), MinSp(B), and MaxSp(B) are topological spaces under
the Zariski (or hull-kernel} topology. It is clear from Theorem 2 and Corollary
3 that, at least if B is reduced, that Sp(A), resp. MinSp(A), resp. MaxSp(A),
is the quotient space of Sp(B x B), resp. MinSp(B x B), MaxSp(B x B) obtain-
ed by identifying P(1}
resp. maximal ideal of B that contains K. See for example [G].

If R is a totally-ordered ring, B(+) 1is an abelian lattice-ordered
group, and rb >0 whenever v= 0 in R and b= 0 in B, then we call B
an L-module over R, Thus, every Tattice-ordered abelian group is an £-module
over the ring Z of integers with its usual order. See [BKW] for background.

and pl2 whenever P is a prime, resp. minimal prime,
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A submodule I of B such that a s 1. and |[b| = Ja| imply be I s
called sciid. A submodule I of B is solid if and only if it is the kernel
of an R-module homemorphism of B that preserves the lattice operations. If
B is a lattice-ordered ring (= £L-ring) and I a solid submodule and an ideal,
then I 1is called an £-idea? of B. An f-module over the real field is called
a Rigsz space. If a=z0 and nasb n=1,2,..., imply a =0, then B
is said to be an arehimedean £-module.. As usual, if a ¢ B, we let at=av [t
a~.={-a) v0, and Ja| =a v {-a). It follows that a = at - a” and |a} = at
+ a . For background material, see [BKW] and [LZ].

5. Proposition. If B is an L-module over o« totally ordered ring R, and K
is an L-submodule of B, then A = B(K} <s an L-module of B x B if and only
if K is solid submodule of B.~

Proof. Suppose K is solid, beB and ke K. Now [(b+k,b)| = ([bek|,|bl)
is in B * B, [lbtk] - [bl] = [(b+k)-bl = bl = |k| & K, and it follows from
the solidity of K that (lb+k|,Ibl) & A, Hence A 1is an Z-submodule of B * B.

Conversely, supposé A dis an £-submoduie of B X B and 2| < |k|, where
ke ¥ and £ B. Then

{6) (el + Tkl lely okl lely = (kb lel) & A.

Also |{k,0)} = (|kl,0} e A, so |kl & K. Hence IZ] ¢ X by (6). Since
(2.2} v (1£1,0) = (£%+£7,%) ¢ A, we know that £ & K. Replacing £ by (-£)
in the last argument yields £ e K. Thus £e K and we know that K dis solid.
Generalizing a notion introduced for rings of continuous functions in [GJ2],
G. Mason calis an ideal I of a commutative ring R with identity element a
z-tdeal if whenever a = I and b 1is in every maximal ideal of R. that con-
tains a, we also have b e I. See [MI] and [M2]. He notes that every z-idea)
is semiprime and that any intersection of maximal ideals is a z-ideal. He calls
an ideal with this latter property a strong z-ideaZ. In [M2], he uses D. Rudd's
result [R] that if S is a solid subring of the ring C{X) of all continuous
reat-valued functions on a topological space X, then a sum of two z-ideals of
.S is a z-ideal. WNeither G. Mason nor D. Rudd give any example of a commutative
ring with identity with two z-ideals whose sum is not a 2-ideal. Next, we pro-
vide a large class of such examples. Recall that a ring R with identity is
called semisimple is the intersection of all the maximal TJeft ideals of R
is {0:.
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6. Proposition. Suppose B s a commutative semisimple ring with identity,
K is an ideat of B, and A = B(X). Then: p.l(l(} and pz{K) are strong a-
tdeals. If X fails to be semiprime, them meither is p,(K) + Py (K}; in parti-

aular this sum is not a z-ideal.

Proof. By Theorem 2 (d}, if M e MaxSp(B), then M(1) = {mk,m):m & M,k = K}

e MaxSp{A) and p1(K) = {M 1):M & MaxSp{B)} 1is an intersection of maximal

ideals. Similarly, p%(K) is also a strong z-ideal. But p](K) + pz(K)

= {{k,k} "1k, k' cX} = K 1) fails to be semiprime by Theorem 2 (b) since K is

not semiprime. Hence K is not a z-ideal. ‘ _
An £-ring that is a subdirect product of totally ordered rings is called an

f-ring. In [H1], M. Henriksen gave & necessary and sufficient condition for a

sum of two semiprime ideals of an f-ring B %o be semiprime, and asked if the

latter could fail to occur is B were archimedean. The following example will

apply Proposition & to give a negative answer to this latter question.

7. Example. Let X denote a topological space such that the ring C(X} of all
continuous functions contains an &-ideal K that is not semiprime, let B = C{X),
and Tet A = B(K). {For example, we could take X = [0.11 and K= {f= C(X):
Ml = ki for some ke C{X)}, where i is the identity function). Then A
is an L-ring by Proposition 5, But A is a subring of the archimedean f-ring
Bx B and hence is an archimedean f-ring. By Proposition 6, p](K) and
pz(K} are two strong z-ideals whose sum is not semiprime.

We close with one more application of our extension technique.

In EHP], C. Huijsmans and B. de Pagter call a subspace L of a Riesz space
R a d-ideal if aseg Ll implies {{-a}d}d e L, where, for any subset T of R,
74 - {beR:|bl A |t] =0 forall te T} They give sufficient conditions for
the sum of two d-ideals to be a d-ideal, and give an example of an archimedean
Riesz space where this Tatter fails.

We observe that Example 7 also serves this Jatter purpose. For, since A
is reduced, Td is the annihilator of T whenever T ¢ 8. By Theorem 2 and
Corollary 3, p1(K) and pz(K) are ¢ach the intersections of all the minimal
prime ideals containing it, while their sum is not even semiprime.
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