
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

1-1-1971

The Global Optimization of Incoherent-Phase
Signals
Henry A. Krieger
Harvey Mudd College

Charles Albert Schaffner
California Institute of Technology

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
H. Krieger, C. A. Schaffner, The Global Optimization of Incoherent-Phase Signals, SIAM Journal of Applied Mathematics, Vol. 14, No.
4, 639-664 (1991). doi: 10.1137/0121062

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu


SIAM J. Ar,,t.. MATH.
Vol. 21, No. 4, December 1971

THE GLOBAL OPTIMIZATION OF INCOHERENT PHASE SIGNALS*

H. A. KRIEGER" AND C. A. SCHAFFNER:I:

Abstract. The problem of global optimization of M incoherent phase signals in N complex
dimensions is formulated. Then, by using the geometric approach of Landau and Slepian, conditions
for optimality are established for N 2, and the optimal signal sets are determined for M 2, 3, 4, 6
and 12.

The method is the following: The signals are assumed to be equally probable and to have equal
energy, and thus are represented by points sj, j 1, 2, ..., M, on the unit sphere $1 in CN. If Wjk is
the half-space determined by sj and Sk and containing sj, i.e., Wjk {r CN:l(r, sj)l __> I(r, sk)l}, then
{j f3 k Wk :j 1, 2, ..., M}, the maximum likelihood decision regions, partition $1. For additive
complex Gaussian noise n and a received signal r sj e

i + n, where 0 is uniformly distributed over
[0, 2hi, the probability of correct decoding for the signal-to-noise ratio A2 is

where

r2N- e-r2+AZ)U(r) dr,-Pc --U(r) -1 fg Io(2Ar[(s, sj)[) da(s),
j=l

Rj j {"I S For N 2, it is proved that

U(r) Io(2Nrl(s, %)1) d(s) . h [M(C) (S)]

where

C {seS :l(s,s)l },
2K is the total number of half-spaces that actually determine the decision regions, and h is the strictly
increasing, strictly convex function of a(C, W) (where Wis a half-space not containing sj), given by

h Io(2arl<s, sj>[)
c

C C W. Conditions for equality are established and these give rise to the globally optimal
signal sets for M 2, 3, 4, 6 and 12.

1. Introduction. The problem ofoptimal (minimizing the probability oferror)
signal selection for transmission of messages over coherent phase and incoherent
phase channels has been a subject of many investigations. Under the assumption
of additive white Gaussian noise, equal energy, and equiprobable signal sets,
Balakrishnan [1] showed in 1961 that with no bandwidth constraint the regular
simplex is globally optimal for small and large signal-to-noise ratios for the
coherent phase channel. In 1966, Landau and Slepian 6] established a condition
for globally optimal signals for the coherent phase channel, independent of the
signal-to-noise ratio, and claimed this condition was satisfied by the simplex code.
In 1968, Farber [4] showed that in fact for more than three dimensions the simplex
did not meet this condition.
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574 H. A. KRIEGER AND C. A. SCHAFFNER

Also in 1966, using the approach of Balakrishnan [1], Scholtz and Weber
[10] proved that the orthogonal signal set is locally optimal for the incoherent
phase channel under no bandwidth constraint. For M incoherent phase signals
in M- 1 dimensions, i.e., a bandwidth constraint, the signals with ]{Sj, Sk)]

1/(M 1) were established as locally optimal by Weber [13] in 1968. Stone
and Weber [11] proved in 1969 that the orthogonal signal set is globally optimum
for high signal-to-noise ratios under no bandwidth constraint. They also showed
[12] in 1970 that this set is locally optimum with a bandwidth constraint.

Using the geometric approach of Landau and Slepian, we formulate a
condition for global optimality of M equiprobable incoherent phase signals in
N complex dimensions. In this approach, the square of the length of the signal
vectors is proportional to energy, and the dimensionality of the space is analogous
to bandwidth [5]. For a set of probability densities including the Gaussian, we
prove the validity of this condition for N 2 along with some related necessary
conditions. We then perform a transformation that maps the unit sphere in C2

onto the unit sphere in three-dimensional Euclidean space. With this transforma-
tion, we are able to use Euler’s formula to show that there are global solutions
obtainable by this method for M 2, 3, 4, 6 and 12; and these have respectively 1,
2, 3, 4 and 5 half-spaces intersecting to form the decision regions. We then obtain
the globally optimal signal sets for these values of M.

In particular, we demonstrate that the signal sets that are globally optimal
in two complex dimensions do include the abovementioned signal sets for M 2
and M 3 (i.e., the orthogonal signal set [(S,Sk)[ 0 for two signals and
[(sj, Sk)[ 21- for three signals). Furthermore, for four signals, the globally optimal
signal set has [(Sj, Sk)[ 1/X/. Finally, for six signals and for twelve signals,
the inner products between one signal vector and the others determining the
decision region have absolute values 1/x/ and v/2/(5 v/)respectively.

2. Formulation of the problem. Suppose we have a communication system
that transmits M real signals, xl(t), x2(t), .-., xt(t), according to a given a priori
probability distribution. The signals are transmitted over a phase-incoherent
channel and are corrupted with additive Gaussian noise. For every choice of the
set of transmitted signals and every decision rule, there is a probability of correct
decoding. The general problem is to find the maximum value for this probability
and to determine the corresponding decision rule and set of transmitted signals.
One method of attacking this problem is the complex geometric approach that
we shall now describe.

If xj(t) is the jth transmitted signal, with energy

[xj(t)]2

let zi(t) xj(t) + i.i(t be the analytical signal, where .i is the Hilbert transform
ofxj. If > 0 is the carrier frequency, let sj(t) z(t) e -it be the complex envelope.
Then the transmitted real signal xj(t) is equivalently described by the complex
signal sj(t), with E _oo [sj(t)[2 dt, since xj(t)= Re z(t)- Re [sj(t)eiflt]. Note
that, if xj(t) aj(t) cos fit, where aj is strictly band-limited to the interval (-
then j(t) aj(t) sin fit, so that z(t) aj(t) ein’. Hence, sj(t) aj(t) in this case.D

ow
nl

oa
de

d 
06

/2
0/

14
 to

 1
34

.1
73

.1
30

.2
44

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



GLOBAL OPTIMIZATION 575

If w(t) is the real noise, which we assume to be a stationary Gaussian process
with mean 0, let W(t) w(t) + ik(t) be the corresponding complex noise. Next,
let n(t)= W(t)e -int, so that n(t) is also a complex stationary Gaussian process.
Observe that if the spectral density of n(t) is an even function, then the real and
imaginary parts of n(t) are independent processes, and this is equivalent to
having the spectral density of W(t) symmetric with respect to the carrier
frequency .

If uj(t) is the signal that is received when xj(t) is transmitted over the phase-
incoherent channel, then uj(t) Re [z(t)ei] + w(t) Re [zj(t)ei + W(t)], where
0 is uniformly distributed on [0, 2=], 0 is independent of the transmitted signal,
and 0 is independent of w(t) and hence of W(t). Let rj(t) [zj(t) ei + W(t)] e-int

sj(t)e + n(t). Then the received real signal uj(t) is equivalently described by
the complex signal rj(t), since uj(t)= Re [zj(t)ei + W(t)] Re [r.i(t eint]. Note
that in the case xj(t) aj(t) cos t, where aj is strictly band-limited to the interval
(-, ), we have u(t) a(t) cos (t + O) + w(t) and r(t) [a(t) cos 0 + Re n(t)]
+ i[aj(t) sin 0 + Im n(t)] (see [14, pp. 511-527] for details).

Now let 4)1, 4)2,’", bN be orthonormal functions that form a basis for
L2(s), the subspace ofL2 spanned by sl, s2, "", SM. Assume that the spectral density
of n(t) is flat, with value r/o, over the significant frequencies of LZ(s). Then, if
s(t)LZ(s) and r(t)= s(t)ei+ n(t), we have r(t)= r(t) + n(t)- ns(t), where
r(t) s(t)ei -4- n(t) and n(t) Z.=I njckj(t), with the nj F n(t)ckj(t) dt inde-
pendent complex normal random variables having independent real and imaginary
parts of variance r/o/2. Also, n(t) n(t) is independent of ns(t), s(t), and 0, and
hence is independent of r(t). Consequently, since the optimal decision rule selects
the signal sj(t) as having been transmitted if sj maximizes p(s) p(rls) p(n n[r, s)

p(s) p(r[s) p(n n), this rule can be based upon p(s) p(r[s). That is, no loss
of optimality results if the decision is determined by r(t) s(t)ei + n(t). Since
these functions are complex linear combinations of 41,42,43, "’", 4u, they can
be represented by complex N-dimensional vectors. Thus, r As ei + n, where
lisll 1, A2 (1/r/o) IS(t)[ 2 dt E/rlo is the signal-to-noise ratio, and n is a
complex N-dimensional normal random vector with a density function p,(r)

(I/=N) e r lit II.
Assuming that the transmitted signals have equal energy, we find that the

probability density of receiving a vector r given that sj was transmitted is

p(rls) p(r]s, 0) dO

12n p,,(r Asj ei) dO

1 f]= 1
exp{-llr AsjeiO 2}(1)

2= - dO

1
=N e (r2 +A2) 1

2-- exp {2Al(r, s>l cos 0} dO

1 e- (r2 +A2)I0 2AtD
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576 H.A. KRIEGER AND C. A. SCHAFFNER

Thus we can write

(2) p(rlsj) -e , sj

where for each fixed r > 0, Pr is a strictly increasing function on [0, 1].
If we partition CN into decision regions containing s ei for all 0 =< 0 =< 2zc,

j 1,2,... ,M, and assume that our signals are equally probable, then the
probability of no decoding error is given by

(3)

where

(4)

1 M

fj fo 1 _(rZ+AZ)Pc
=x

p(rls) dm(r) - e U(r)rzN-1 dr,

R f"l Sffr and
(5)

W(r) P(l<s, sj>l)
j:l

Sq {r e CN" rll q}.

Clearly, Pc is maximized if U(r) is maximized for each r > 0. For given values of
sl, s2, "", SM, each U(r) is certainly maximized by letting

(6) Nj {r e C’[(r, sj)[ [(r, s)[ for all k j},

in which case N.i fq Sffr N.i fq $1 Rj for all r > 0. Note also that if W/k is the
half-space determined by sj and sk that contains sj, i.e., Wj
=> I(r, Sk)l}, then

(7) j f) Wj.

Consequently, our problem is to find a condition on the location of points
sl, s2, .’., SM, on the unit sphere of Cu, such that

is maximized, where

1 (r +A 2)Pc - e- U(r)r2N- dr

U(r) P(l<s, sj>l) d(s),
j=l

P is an increasing function on [0, 1], Rj 2j St, and the decision regions j
arc the intersections of finite numbers of half-spaces of CN determined by points
on S.

3. The method of Landau and Slepian. For 0 < < 1, we define the cap of
$1, centered at sj and of size , to be

(8) c, {seS’l<s,s>l >__ }.D
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GLOBAL OPTIMIZATION 577

We let a(C) denote the common value of a(Cs,), j-- 1,..., M, and suppose
that (1/M)a(S1) <= (C,) <= 1/2(SI). If W is a half-space that does not contain sj,
let

(9) h l" Pr([(s, Sm)[) d(s),

where C* Cj, fl W. Then the method of Landau and Slepian is based on the
following properties of h, which we shall prove later for N 2:

(a) h is a function of only a(Cj, fl W) for fixed and in fact is a strictly
increasing and strictly convex function for a(Cj,, fl W) > 0.

(b) If Vis the intersection of a finite number of half-spaces at least one of
which does not contain sj, then

(10) fc, P,(l<s, sj)l) da(s) => h(a(Cj, V)),

where C* Cj, f-] V, with equality for a(Cj, ffl V) > 0 if and only if V is a
single half-space.

Assuming h has properties (a) and (b), we proceed as follows. Forj 1, 2,
M, let kj be the smallest integer such that j is the intersection of distinct half-
spaces Wja, Wj2, ..., Wjkj. Then ? can be partitioned into regions Tj, Tj2,
Tjk.i, where each Tj is the intersection of Wj and a finite number of other half-
spaces. Hence, if we let E, R fl C., and T, C, fl Ti,. we have the
identity

(11) fj da fj da + fj da fj da
.i, J, T.i,,

We first let f 1 for each j, then let f(s)= Pr(l(s, sj)l), and use properties (a)
and (b) along with the monotonicity of P (see [6] for details).

The conclusion is that for any cap size a(C) with

1 1
(12) Ma(S,)

____
o(Ca)

__
-o(S1)

we have

,, M
[Ma(C)- a(S)]

where

M

2K= kj.
j=l

Furthermore, there is equality if and only if such a cap size exists with the
additional properties"

(i) T,,, Cj,, fl Wj, where Wj is a half-space, for all j and k.
(ii) a(Tj,,) (1/(2K))[Ma(C) a(S1)] for all j and k.

(iii) a(Ej,,) 0 for all j.D
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578 H. A. KRIEGER AND C. A. SCHAFFNER

4. The ease N 2 =< M. Consider the transformation that sends (Za, Z2)
(x + iyl, x2 + iY2) into (r, p, 0, 4), where

z rp ei x// pZZ2 r 1 e4’

0 =< p =< 1, -- < 0 __< , --n < 4 =< . The Jacobian of this transformation is
rap and so dm ra dr da, where da p dp dO dck, and thus the unit sphere in
C2 has measure a(S) 2g2.

If

So e(1,0) and p (p eO,x//1 p2 eiO),
then for 0 < < 1 the cap

(14) C- {p’l(p,so)l >=
For later convenience, we introduce the notation v 0

2 1/2 and/3 1 2/M.
Then

(15) a(C) 2z(1 -2)= 22(1/2_ v)

and the requirement (1/m)a(S) <= a(C) <= 1/2a(S) becomes

(16) 1/2=<2 < 1- 1/M
which is equivalent to 0 =< v _< 1/2ft.

Now suppose that sa and s2 are linearly independent points on S, i.e.,
s : e%2, for any real

sa e(sl e, w/1 s2) and s2 e(s2 e, w/1 s2).
Let

and

2=Szw/1-se

Then the half-space inequality I(p, sx)l >_- ](p, s2)l becomes

(17) w/(1/2)2 (p2 1/2)21 cos (0 b 6) >__ (p2 1/2)(s s).
If

t-Il/(s s)
and we assume s: __> Sl, then is well-defined, 0 __< <__ v, and we have the
following cases for inequality (17). If O, the inequality is p: __< 1/2; if oo, we
have cos (0 b 6) _>_ O;and if 0 < < or, the result is

(18) cos (0- 6) __> g,(u)=

where u p2 21_ and g, is defined for

lul-_<
2x//1 + 2D
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GLOBAL OPTIMIZATION 579

Proof of (a). Let W be a half-space, determined by Sa and s2 and not con-
taining So, which intersects C in a set of positive measure. That is, sa < s2 and

(19) W {p’l<p,sa)l I<p,sz)l} {p’cos(0 4 6) g,(u)},
where v < z < 1/2.

Define

(20) ov(t) a(W f) C)= da(p) k,(u) du,

where W* W C and

(21)

Differentiating, we find

kt(u) 2g arc cos g,(u).

(22)
cov(t) 4z / 2

(t X/17 U2 > 0,

SO that for fixed v, o is a strictly increasing function of t. For 0 =< o < 72(1/2 v),
which is the range of %, we let t, be in the inverse function of o.

Next let

(23) Hv(t) k,(u)P(x//u + 1/2)du,

and let h(og) H(t(o)), so that H(t) hv(o(t)). Then

c3H(t) c3h(og(t)) c3o9(t)
t co t

so that we can calculate

U2

(24) c3ho(og(t))_ Pr() + dPr(x//u + 1/2)
03 2 i)2

which is positive and is a strictly increasing function of and hence of o. Therefore,
we have proved that, for each fixed v, h is a strictly increasing, strictly convex
function.

Proof of (b). First observe that

(25)
Okt(u) _re 1
cu 2 [(1/2)2 u2]x//(t/2)2 (t2 + 1)u2

is a strictly increasing function of for fixed u and is always negative. Next suppose
that W,, W2, ..., W, are half-spaces such that

V- f W,

intersects C in a set of positive measure and So W for 1, 2, ..., m, m _<_ n.
For r < u __< 1/2, define g(u)= 1 and k(u)= 2 arc cos g(u)= O.D
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580 H. A. KRIEGER AND C. A. SCHAFFNER

Then if So W, we have
/2

a(W VI Ca)= k,(u) du,

whereas for So e W, we have
/2

a(W VI Ca)= [2n2 kdu)] du.

Therefore,
1/2

a(V fl Ca) k(u) du,

where k(u) can be described as follows.
Let

+1, i= 1,2,...,m,
(26) d(i)

-1, i=m+ 1,...,n.

Then there is a partition Uo < U < < uk of Iv, 1/2] such that for u [uj_ 1, uj],

k(u) 3 + 1/2 d(il)kt,(u),
where 2 is a constant, and (il) is a collection of not necessarily distinct elements
of{1,2,..., n} such that at most two of them belong to {1,2,..., m}.

In particular, this description shows that k is continuous on Iv, 1/2], differentiable
in (uj_ 1, uj), and has right- and left-hand derivatives at the left and right endpoints,
respectively. In fact, these derivatives are given by

dk(u) (?k,. (u)
du

1/2 E d(il) ’Now let Wt be a half-space such that So Wt and a(Wt Ca) a(V f-I C,). Then
oov(t) a(W f3 Ca) a(V VI Ca) <= a(W, fq C) ov(ti) for/ 1, 2, ..., m, which
implies ti >_- for 1, 2, ..., m. Consequently,

dk(u) > k,(u)
du

for v =< u __< r, with equality if and only if V Wti for some with ti and
1 < _< m. But

l/2

k(u) du kt(u) du

and

dk(u) > ckt(u)
du

for v =< u < r, which implies there is a point Uo Iv, 21-] such that kt(u) >= k(u) forD
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GLOBAL OPTIMIZATION 581

u =< Uo and kt(u) <= k(u)for u => Uo. Thus

(27)

So}l) da(p) hv(oov(t))

[k(u)- k,(u)]Pr(V/u + 1/2)du >= O,

where V* V C, with equality if and only if k(u) kt(u) for all u e Iv, 1/2],
since Pr is strictly increasing. Hence

P,.(l(p, So)l) da(p) >= h,,(a(V VI C)),

where V* V f) C, with equality if and only if V is a single half-space.

5. Some necessary conditions. We consider the case in which kj => 2 for
,j 1, 2,..., M which implies 2K >= 2M or equivalently x Mn/(2K) >= rc/2.
For a given allowable cap size a(C), i.e., 0 __< v _< 1/2fl, one necessary condition for
an optimal signal set is the existence of a half-space W such that a(W C)

(1/(2K))[Ma(C)- a(S1)].
Now

1
(28)

2K
[Ma(C) a(S1)] 2TCX(1/2fl V)= W(v)

belongs to the domain of t,. Hence, if we define

(29) Tx(v) t(W(v)),

then

(30) .(T(v)) W(v).

Thus the half-space determined by the parameter T,(v) satisfies this necessary
condition.

Since

(31)
&o(L(v)) L(v) og(T(v)) W(v)

8t cv c3v c3v

we calculate

(32)

where

c3T(v) T(v)[arc cos gTx(v)(V) X]
c3v 2rx(V)w/%2(v)_ v

(33) %(v)
L(v)

2V/1 + T2(v)"D
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582 H.A. KRIEGER AND C. A. SCHAFFNER

Also, if we let

(34)

then

Ux(v) P(I{P, So)l)da(p) --h [Ma(C) a(Sx)]

7
2r2 Pr(w/u + 1/2)du--h(Wx(V))

X

/2

22 Pr(x/u + 1/2)du--H(T(v)),
X

(35)
c3 Ux(v 2g2

V X

Furthermore,

u
[x arc cos grx(o)(v)] Vx-- 5 dP(x//u + 1/2)"

(36) Ux(v)[ ho(Wx(v)) ]8x - h(Wx(V))-
(?co

Wx(v) < 0

by the convexity of ho for each fixed v.
If we consider the requirement a(Ej,) a(Rj f’l C,) 0, we see a further

necessary condition is the existence of a v, 0 <= v < 1/2fi, such that

(37) 2 arc cos gTx(o)(V) 2K/M’
i.e., arc cos gr(o)(V) X.

We shall show, in fact, that there is exactly one such v, call it V(x), and V(x) is the
unique point at which the maximum of T and the minimum of Ux occur in the
interval [0, 1/2fl].

First of all, for x re/2, gT(v)(/3) COS X is equivalent to v 0, and so we
let V(Tr/2) 0. For x < re/2, gw(o)(V) COS X is equivalent to

1 v
(38) Tx(0

cos

On the other hand,

(39)

where

coo(t) kt(u) du 2[1/2 arc cos jr(v) v arc cos gt(v)],

1
(40) j,(v)

2x/i + t2 xf(1/2)2 _/32

Hence the defining equation for Tx(v), coo(T(v)) W(v), becomes

(41) 1/2 arc cos jT.(o)(V) V arc cos gTx(o)(V) X(1/2fl V).

Thus, we are looking for values of v that satisfy the system

(42)
T(v)x//(1/2) v

cos x,
2 /322w/1 + Tx(v)x/(j2

COS fiX.D
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GLOBAL OPTIMIZATION 583

The unique solution is found to be

1 tan fix and Tx(V(x))
sin fix(43) V(x)

2 tan x w/cos2 fix cos2 x

To show V(x) <= 1/2fl for 0 < x < r/2, we consider 2 tan x(1/2fl V(x))= fl tan x
tan fix. This function is 0 for x 0 and has a derivative fl(sec2 x sec2 fix) >= O,

since0=<fl< 1.
Finally, if Uo(x)= U,(V(x)) is the value of U that will be attained if an

optimal signal set occurs for a given value of x, we have U’o(X) c U,(V(x))/cx <= O.
Thus, for fixed M, Uo is a decreasing function ofx, and hence the maximum possible
value of Uo is obtained when K is as large as possible.

6. The allowable values for M. For every r > 0 and integer M => 2, formula
(13) gives an upper bound for U(r) in terms of , the cap size, and 2K, the total
number of half-spaces that determine the decision regions. The values of are
restricted by 1/2 <= 2 =< 1- 1/M. Since we are interested only in half-spaces
determined by the signal vectors, i.e., the maximum-likelihood decision regions
given by (6), we must have 2K <- M(M 1) and, for M >_ 3, 2K >= 2M. While
keeping 2K fixed, the minimum of these upper bounds for U(r), taken over the
possible values of , is still an upper bound, which we denote by Uo. Since Uo
increases with K, we must find the maximum value of K--say Kt. Then a globally
optimal set of M signal vectors would be one for which equality is attained in (13)
with K Kt and the associated minimizing value; i.e., U Uo(xM), where

xt 7zM/(2Kt). However, for equality in (13), each decision region must be
formed by the intersection of the same number of half-spaces. Thus, a globally
optimal signal set can be obtained by this method only if 2Kt MIt, where

It is an integer.
In order to evaluate Kt, and thus determine the allowable values for M,

we must consider the geometry more carefully. According to inequality (18), a
half-space in C2 may be expressed in terms of the two variables u and Z, where
U /9

2 1/2 and Z 0 95. Hence, we can consider a transformation of C2 onto
R3 given by

(44)
(za, zz) r(p e, x//1 p2 eiO)

(x, y, z) r(2u, x//1 4u2 cos Z, x//1 4u2 sin Z).

This type of mapping is mentioned briefly by Manning 7] on pp. 197-198 of
his book on four-dimensional geometry and is discussed in detail in the paper
by Blachman [2]. The main properties of this transformation are the following.
The unit sphere in Cz is mapped onto the unit sphere in R3. The inverse image
of each point in R3 is a great circle, and a half-space in C2 either contains every
point or no point of this circle. Finally, the boundary of a half-space in C2, which
Manning [7] calls a conical hypersurface of double revolution (see pp. 197, 206,
207, 220), is mapped onto a plane through the origin in R3. Therefore, the image of
the decision region s is the intersection of k half-spaces, each bounded by a
plane through the origin, and thus is a convex cone with k faces. Hence, the inter-D
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584 H.A. KRIEGER AND C. A. SCHAFFNER

section of the image of N with the unit sphere in R3, i.e., the image of Rj, is a
spherical polygon bounded by kj arcs of great circles.

For M 2, the only possible value for K is K Kt 1, and so It 1.
For M => 3, we note that K is the number of edges of the network, on the unit
sphere in R3, determined by the images of the decision regions. Letting V be the
number of vertices, we see from Euler’s formula that V- K + M 2. But the
convexity of the image cones means that a vertex is formed by at least three edges.
Hence, 3 V __< 2K, which gives the inequality 2K =< 6(M- 2). Since 6(M- 2)
<_ M(M 1), we have Kt 3(M 2) for M >= 3. Thus, 2Kt MIt, where It
is an integer, means

(45) It 6(M 2)/M

must be an integer. But this is true only for M 3, 4, 6 and 12, for which the
corresponding values of It are 2, 3, 4 and 5. In connection with the geometry
involved here, see Coxeter [3].

7. Solutions for N 2.
Two signals. If M 2, then/ 0, and the requirement 0 =< v =< 1/2/ implies

v 0 and 1/x/. Also 1 _< 2K/M <_ M 1 is equivalent to K 1. Thus the
decision region for s must be

{p’l(p,sl >_-I(O,Sol} {O’p <= 1/2)
or

t=sa/x//1-s=O or s =0.
That is,

So ei(1,0)

and, hence, (So, sl) 0.

and

Hence,

and Sl e’(0, 1)

Therefore,

Three signals. M 3, K 3 is the same as x n/2, fl 1/3. Then

V(x) O, a/x,

S1

sin
Tx(V(x))

 /cos fix cos x

tan(n/6)= 1/x/.

So ei(1,0)

for j 1, 2, resulting in

$2
or s1 $2

sin fix
sin x

1

and s el

forj # k.D
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GLOBAL OPTIMIZATION 585

and

Four signals. M 4, K 6 is equivalent to x n/3,/3 1/2. Then,

1 tan (n/6) 1
V(x)

tan(n/3) ’ _’

sin (n/6)
t=

v/COS2 (n/6) cos2 (n/3)

---1/x, So- 1,

sin (n/6) 1
forj 1,2,3.sj

sin (n/3) x/c5

sj= ei" (-3exp {i
Therefore, we have

So ei(1,0)

for j 1, 2, 3, resulting in

and

forj # k.

Six signals. M 6, K 12 is the same as x /4, fl 2/3. Thus,

1 tan (n/6) 1
V(x)

tan (n/a)- 2x//’
e

2xf
sin (n/6)

t= =1, so=l,
w/cos2 (n/6) cos2 (n/4)

sin (n/6) 1
for j= 1,2,3,4 and s5 =0.sj sin (n/4) x//

Therefore we have the following set of signals"

So e(1,O), s=ei(-exp{i( +2j--14n } 2)’
forj 1,2,3,4, and

resulting in
s5 e’5(0, 1),

for j 1, 2, 3, 4, k 1, 2, 3, 4, with k j mod 2, and (So, Ss) (sa, sk) 0
forj= 1,2,3,4, k= 1,2,3,4, withk=_jmod2, k #j.

Twelve signals. M 12, K 30 is equivalent to x n/5, fl 5/6. Thus,

1 tan (n/6) 1N/35+ x/ 0.39733,V(x)
tan (n/5)= x/)

0.94727

I<so, sj>l I<s, sj>l I<sk, sj>l 1/x/

D
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586 H.A. KRIEGER AND C. A. SCHAFFNER

and

Then So 1,

sin (re/6) Xf 2

x//cos2 (re/6) cos2 (re/5) 3 w
sin (re/6) / 2
sin (r/5) 5 xf

1.6180.

0.85065 for j= 1,2,3,4,5,

x//sin x sin2 fix x//sin2 (re/5) sin2 (r/6)
sin x sin (re/5)

3 v/ 0.52573
5_x/

for k 6, 7, 8,9, 10, and Sl

The optimum signal set is therefore

So e/t(1,0),

sj=eiJ /25-w/5--exp {i( 2j-1 } /3-5)6+ 5
t

5-
for j= 1,2,3,4,5,

Sk

and

3-X/ exv 6+
2

for k 6,7,8,9,10,

eie11(O 1)Sll

Consequently, for j, j’ 1, 2, 3, 4, 5 and k, k’ 6, 7, 8, 9, 10, we have

I(So,Sj)[ [(Sll,Sk)[ I(Sj, Sk)[ I(Sj,

whenever

k-j_--0,1mod5, k’- k-- lmod5, j’-j =_ lmod5;

also,

for

k -j _= 2,4mod5, k’ k _= 2mod5, j’-j 2mod5;

and finally,

[(So,Sll)[=l(%,Sk)[=0 whenk-j=3mod5.D
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GLOBAL OPTIMIZATION 587

In order to illustrate the globally optimal signal vector configurations, Fig. 1
presents the results for the case M 12. The decision regions and caps are first
projected onto a rectangular (u, Z) coordinate system and then onto the unit
sphere in R3.

half- space

boundary

cap

boundary

FIG. 1. The optimum signal setfor M 12, K 30

8. Calculation of the probability of error. All the arguments above are
independent of the signal-to-noise ratio, since they are based on only the monotone
properties of the density. The probability of a correct decision for a globallyD
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588 H.A. KRIEGER AND C. A. SCHAFFNER

optimal configuration with signal-to-noise ratio A2 is

(46)

Pc 2 r3 e- (r2 +A2) Io(2Ar w/u + 1/2)du

1
kt(u)Io(2Ar w/u + 1/2)du dr,

2nx

where x, v, and have the values associated with that particular configuration.
Using (46), we can compare the probability of error, Pc 1 Pc, for the

optimal signal sets with the probability of error for M orthogonal signals in M

0

LLI -2
u. I0
0

M Signals in two dimensions

M Orthogonal signals in M dimensions

I0 15 2:0 25
SIGNAL TO NOISE RATIO (A 2)

FIG. 2. Comparison of the probability oferrorfor orthogonal signals and globally optimal signals in CD
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GLOBAL OPTIMIZATION 589

dimensions, which is given by

1
(47) Pc - e

M
-A2 2 (-1)

k=2

eA2/k"

The results are presented in Fig. 2.
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