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TORIC SYMMETRY OF CP3

DAGAN KARP, DHRUV RANGANATHAN, PAUL RIGGINS,
AND URSULA WHITCHER

Abstract. We exhaustively analyze the toric symmetries of CP3 and
its toric blowups. Our motivation is to study toric symmetry as a com-
putational technique in Gromov-Witten theory and Donaldson-Thomas
theory. We identify all nontrivial toric symmetries. The induced non-
trivial isomorphisms lift and provide new symmetries at the level of
Gromov-Witten Theory and Donaldson-Thomas Theory. The polytopes
of the toric varieties in question include the permutohedron, the cyclo-
hedron, the associahedron, and in fact all graph associahedra, among
others.

1. Introduction

The group Aut(X) of automorphisms of a toric variety X is generated by
three classes of automorphism: the automorphisms extending from auto-
morphisms of the torus itself, automorphisms corresponding to the roots of
X, and toric symmetries of X. A toric symmetry of X is simply an automor-
phism of X induced by an automorphism of the fan ΣX (or polytope △X) of
X. There are many sources for this beautiful material; see, for example [8,
Theorem 3.6.1].

How can we analyze the toric symmetries of X? If τ : X → X is a toric
symmetry of X, then τmay be the identity on homology, or τmay correspond
to a simple relabeling of the cones in ΣX. Which toric symmetries act on
Chow in a manner meaningfully different from the identity? We ask this
more delicate question, and search for toric symmetries with interesting
action on homology. We describe this condition in greater detail below, and
a complete discussion is found in Section 4.

In this work we exhaustively analyze the toric symmetries of all varieties
which arise as toric blowups of CP3. We determine which symmetries act
trivially. Furthermore, we explicitly determine the action on homology of
each nontrivial toric symmetry.

While toric symmetries and CP3 are of basic interest, our motivation is
to study toric symmetry as a computational tool in Gromov–Witten (GW)
theory and Donaldson–Thomas (DT) theory. We now attempt to elucidate
this idea.

Toric threefolds are a shining example of success in GW Theory and DT
theory. Indeed, the all genus GW/DT theory of any toric threefold X may
be computed using multiple techniques. These techniques vary in difficulty
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Figure 1. The polytope of local P1

and practicality of application, and harness the underlying toric structure
of X in different ways.

First, any toric threefold X admits analysis via (virtual) fixed point local-
ization. This idea goes back to Kontsevich [17] and localization of virtual
classes was proved by Graber-Pandharipande [14]. Localization reduces the
defining integrals in GW theory to finite sums. The input data includes the
torus fixed points in X, which are encoded in the fan (or polytope) of X; see
Figure 1. While this approach theoretically determines the GW theory of
X, it is intractable for many choices of toric threefold in practice.

With this in mind, Aganagic-Klemm-Mariño-Vafa developed in [1] the
topological vertex , a tour de force efficiently expressing the GW generating
function of a toric Calabi-Yau threefold (CY3) X in terms of combinatorial
data encoded in the toric structure of X. The combinatorial data in question
consists of the (decorated) toric web diagram of X; see Figure 2.

Figure 2. The web diagram of local P1

The topological vertex of [1] is physical, in that it relies on Chern–
Simons/Topological String Large-N duality, which remains to be understood
mathematically. To overcome this and other difficulties, Li-Liu-Liu-Zhou de-
veloped the celebrated mathematical theory of the topological vertex [18].

The mathematical and physical topological vertices were shown to corre-
spond for most cases already in [18], and therein were conjectured to hold for
all toric CY3’s. The topological vertex conjecture was shown to hold for an
infinite family of toric local CY3’s by Karp-Liu-Mariño [16], and the general
proof was given by Maulik-Oblomkov-Okounkov-Pandharipande in [21].

Analogous to the topological vertex of [18] which computes the GW invari-
ants of any toric CY3, Maulik-Nekrasov-Okounkov-Pandharipande in [20]
formulate a DT vertex, which they use to establish GW/DT duality for
toric CY3’s. The trivalent vertex of [21] computes the GW/DT theory of
any toric threefold, proving GW/DT duality for all toric threefolds.
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The remodeling conjecture of Bouchard-Klemm-Mariño-Pasquetti [4] is
yet another technique applicable to toric CY3’s. The remodeling conjecture
produces relations among GW invariants difficult to detect via other tech-
niques and takes as input the fattened toric web diagram of X; see Figure 3.

Figure 3. The fattened web diagram of local P1

Toric symmetry adds to this list of techniques. Manifest at the level of in-
variants, as opposed to generating functions, toric symmetry is not detected
via remodeling and vertex techniques. The approach of toric symmetry is
basic; we identify nontrivial symmetries of the underlying fan or polytope
of X, and make use of the basic fact that GW/DT invariants are functorial
under isomorphism. The fan of our running example, the resolved conifold
O(−1)⊕P1 O(−1), is shown in Figure 4.

(−1, 1, 1)

(0, 1, 0)

(0, 0, 1)

(1, 0, 0)

Figure 4. The fan of local P1

To illustrate, consider the following example in CP3. Let X be the blowup
of CP3 at two points p1, p2 followed by a chain of three lines l1, l2, l3 such
that p1 ∈ l1 and p2 ∈ l3. We call such spaces Class C; for details see
Theorem 4 below. Let h be the pullback of the line class in CP3, let ei
denote the class of a line in the exceptional divisor above pi, and let fi
denote the fiber class in the exceptional divisor above li.

What is GWX
0,f1−f2

? It may be nontrivial to compute this invariant using
the topological vertex or localization. However, using toric symmetry, in the
form of Theorem 4 below, we immediately obtain

GWX
0,f1−f2

= GWX
0,h−e1−e2

= 1

where the second equality holds as the invariant in question counts the
number of lines in space through the two points p1 and p2.
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The example first discovered of toric symmetry in GW theory was Cre-
mona Symmetry, which is the symmetry of Pn induced via (the resolution
of) the classical Cremona birational map on Pn. The idea to use the sta-
bility of GW invariants (of surfaces) under birational transformations goes
back at least to Miranda-Crauder; see the final remarks of Section 11 in [9].
This philosophy was actualized on P2 by Göttsche-Pandharipande [13] and
also Bryan-Leung [6]. The Cremona symmetry of P3 was studied by Gath-
mann [12] and Bryan-Karp [5].

The present work exhaustively identifies all toric symmetries of toric
blowups of P3, of which Cremona symmetry is a single example.

Main Results. In slightly more detail: given the fan Σ ⊂ Zn of a toric va-
riety X, recall that a toric symmetry of X is an automorphism of the lattice
Zn which permutes the cones of Σ. Moreover, by nontrivial toric symme-
try we refer to those toric symmetries which act nontrivially on GW/DT
invariants/homology; see Section 4 for further discussion.

Theorem 1. There exist precisely four classes of toric blowups of P3 which
have nontrivial toric symmetry. These four classes, labelled A, B, C and D,
are described in Theorems 2, 3, 4, and 5 respectively.

Moreover, a space of Class A, B or D admits a unique toric symmetry (up
to relabeling), whereas there are precisely four distinct nontrivial symmetries
for Class C varieties.

Remark. The blowup of P3 at its four torus fixed points and subsequently
the proper transforms of its six torus invariant lines yields the toric variety
X̂ whose polytope ∆

X̂
is the permutohedron Π3. The automorphism of X̂

induced by reflection of Π3 through the origin resolves the classical Cremona
transform on P3; see [12, Section 6]. An analysis of this reflection yields
Theorem 5 below and is given in [5].

The permutohedron is one among a class of polytopes known as graph
associahedra which include the cyclohedron and associahedron; for the def-
inition and basic properties of graph associahedra, see [7]. This class of
polytope is encompassed by polytopes ∆X where X is a toric blowup (in the
sense below) of P3 [10]. It then follows immediately from Theorem 1 that the
permutohedron is the only graph associahedron which admits a nontrivial
toric symmetry.

We now construct these four families and describe their toric symmetries.
In what follows X will be an iterated blowup of P3 at a specified configuration
of points and lines. Throughout this work, we say the variety X is a toric
blowup of P3 if X is an iterated blowup of P3 only along torus invariant
subvarieties of P3 (or their proper transforms). In particular, we are not
interested in spaces obtained by blowups with centers in the exceptional
locus, as their geometry is far from P3.

Abusively, we often identify divisors and their classes; when we need
care, classes will be decorated with brackets, e.g. [D]. We denote by H
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the pullback to X of the hyperplane class in CP3. We denote by Eα the
exceptional divisor above a point pα and by Fα ′ the exceptional divisor
above a line ℓα ′ for appropriate indices α,α ′. Further, we will let h and eα
denote the classes of a line in the divisors H and Eα respectively, and fα ′

denotes the fibre class in Fα ′ . The homology groups H4(X;Z) and H2(X;Z)
are spanned by divisor and curve classes, respectively:

H4(X;Z) = 〈H,Eα, Fα ′〉 , H2(X;Z) = 〈h, eα, fα ′〉 .

For computation of the chow ring, see Section 3.2 below.

Theorem 2. Let X be the blowup of P3 along a point p and two intersecting
distinct lines ℓ1 and ℓ2, such that p 6= ℓ1 ∩ ℓ2. We call such a space a Class
A blowup; see Figure 5. Then, given β = dh−a1e−a2f1−a3f2 ∈ H2(X;Z),
there exists a unique nontrivial toric symmetry τA on X, and its action on
homology is given by

(τA)∗β = β ′

where β ′ = d ′h− a ′

1e − a ′

2f1 − a ′

3f2 has coefficients given by

d ′ = 2d − a1 − a2 − a3

a ′

1 = d − a2 − a3

a ′

2 = d − a1 − a3

a ′

3 = d − a1 − a2.

ℓ1 ℓ2

p

Figure 5. The ordered Class A blowup center

Theorem 3. Let X be the sequential blowup of P3 at distinct points p1 and
p2 and three pairwise intersecting lines ℓ1, ℓ2 and ℓ3 such that p1 ∈ ℓ1,
p2 ∈ ℓ3 and p1, p2 /∈ ℓ2. Then X is called a Class B blowup; see Figure 6.
Then, given β = dh − a1e1 − a2e2 − a3f1 − a4f2 − a5f3, there exists a
unique toric symmetry τB on X and its action on homology is given by

(τB)∗β = β ′

where β ′ = d ′h − a ′

1e1 − a ′

2e2 − a ′

3f1 − a ′

4f2 − a ′

5f3 has coefficients given
by

d ′ = 2d − a1 − a2 − a3 − a4

a ′

1 = a5

a ′

2 = d− a1 − a3 − a4

a ′

3 = d− a2 − a4 − a5

a ′

4 = d− a1 − a2 − a3

a ′

5 = a1.
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p1 p2

ℓ1

ℓ2

ℓ3

Figure 6. The ordered Class B blowup center

Theorem 4. Let X be the sequential blowup of P3 at distinct points p1

and p2 and three pairwise intersecting lines ℓ1, ℓ2 and ℓ3 such that p1 ∈ ℓ2,
p2 ∈ ℓ3 and p1, p2 /∈ ℓ1. We term such spaces Class C blowups; see Figure 7.
Then, there exist precisely four nontrivial toric symmetries τC, σC, σ

2
C, and

σCτC of X. With β = dh− a1e1 − a2e2 − a3f1 − a4f2 − a5f3, their action
on cohomology is given by

(τC)∗β = β ′ (σC)∗β = β ′′

where β ′ = d ′h − a ′

1e1 − a ′

2e2 − a ′

3f1 − a ′

4f2 − a ′

5f3 has coefficients given
by

d ′ = 2d − a1 − a2 − a3 − a4

a ′

1 = a5

a ′

2 = d− a2 − a3 − a4

a ′

3 = d− a1 − a2 − a4

a ′

4 = a2

a ′

5 = d− a1 − a3 − a5,

and β ′′ = d ′′h− a ′′

1 e1 − a ′′

2 e2 − a ′′

3 f1 − a ′′

4 f2 − a ′′

5 f3 has coefficients given
by

d ′′ = 2d − a1 − a2 − a3 − a5

a ′′

1 = a4

a ′′

2 = d− a1 − a3 − a5

a ′′

3 = d− a1 − a2 − a5

a ′′

4 = a1

a ′′

5 = d− a2 − a3 − a4.

p1 p2

ℓ2

ℓ1

ℓ3

Figure 7. The ordered Class C blowup center
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Theorem 5 (Bryan-Karp [5]). Let X be the sequential blowup of P3 at 4
distinct points p1, . . . , p4 and the six distinct lines ℓij between them. Let β
be given by

β = dh−

4∑
i=1

aiei −
∑

16i<j64

bijfij ∈ H2(X;Z).

There exists a unique toric symmetry τD of X, and its action on homology is
given by (τD)∗β = β ′, where β ′ = d ′h−

∑
i a

′

iei−
∑

ij b
′

ijfij has coefficients
given by

d ′ = 3d− 2

4∑
i=1

ai

a ′

i = d− aj − ak − al − bij − bik − bil

b ′

ij = bkl,

where {i, j, k, l} = {1, 2, 3, 4}. We refer to X as a Class D blowup of P3; see
Figure 8.

ℓ23

ℓ34 ℓ24

ℓ12ℓ13

ℓ14

p1

p2p3

p4

Figure 8. The ordered Class D blowup center

Corollary 6. Let X be a toric blowup of CP3 of Class A, B, C, or D. Then
we have the following equality of GW and DT invariants

GWX
g,β = GWX

g,β ′(1)

DTX
g,β = DTX

g,β ′,(2)

where β and β ′ (or even β ′′) are given in Theorems 2 through 5 above.

Remark. The results of Corollary 6 easily extend to invariants with inser-
tions (the case of higher virtual dimension); see Section 4.6.

A lower dimensional analog of Theorem 1 is given below, and is proved
using analogous methods.

Theorem 7. There exists precisely one family of spaces, obtained from the
maximal toric blowup of P2, which have toric symmetries that induce non-
trivial action on Chow, and lift to nontrivial relations of GW invariants. In
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particular, this is the blowup of P2 at its torus fixed points. The unique toric
symmetry is the Cremona Symmetry studied in Göttsche-Pandharipande [13].

Acknowledgments. We gratefully acknowledge Jim Bryan and Renzo Cav-
alieri for useful conversations and comments on an earlier draft. This work
was partially supported by National Science Foundation Grant DMS-083996
and the Beckman Foundation.

2. GW Theory and DT Theory

We now recall Gromov-Witten theory, Donaldson-Thomas theory, and fix
notation.

2.1. GW Theory. Let X be a smooth projective threefold. For a given
curve class β ∈ H2(X;Z), the moduli stack of genus-g, n-pointed stable
maps to X is denoted Mg,n(X,β). Elements of Mg,n(X,β) are isomorphism
classes of maps

f : (C, p1, . . . , pn) → X,

where C is a genus g curve with at worst nodal singularities and pi ∈ C
are marked points. Such a map is stable if its automorphism group is finite,
where an isomorphism of the map f : (C, p1, . . . , pn) → X is given by a
commutative triangle.

(C, p1, . . . , pn)
τ

//

f
&&MMMMMMMMMMM

(C ′, p ′

1, . . . , p
′

n)

f ′

xxqqqqqqqqqqqq

X

Here, τ : C → C ′ is an isomorphism of curves respecting marked points,
τ(pi) = p ′

i.

The moduli stack Mg,n(X,β) has a virtual fundamental class

[Mg,n(X,β)]
vir ∈ Hvd(Mg,n(X,β);Q),

where the virtual dimension vd is given by

vd = (dimX− 3)(1 − g) − KX · β + n

= n − KX · β.

In particular, the moduli stack of unmarked stable maps to a CY3 has a
virtual fundamental zero-cycle. For construction of the virtual class see [2,
3].

Given a collection of cohomology classes γ1, . . . , γn ∈ H∗(X), GW invari-
ants are constructed to virtually count cycles in X of class β intersecting
each Poincaré dual [γi]

PD. This is achieved by pulling back the classes γi

and pairing with the virtual class. We pullback via evaluation morphisms
evi given by

evi : Mg,n(X,β) −→ X

[f : (C, p1, . . . , pn) → X] 7−→ f(pi).
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The genus-g class β GW invariant of X with insertions γ1, . . . , γn is de-
fined by

GW(γ1, . . . , γn)
X
g,β =

∫
[Mg,n(X,β)]vir

n∏
i=1

ev∗i γi.

GW invariants are invariant under symplectic deformation of X. In particu-
lar, they are well defined at the level of isomorphism class. More precisely,
if τ : X −→ X is an automorphism, then

(3) GW(γ1, . . . , γn)
X
g,τ∗β

= GW(τ∗γ1, . . . , τ
∗γn)

X
g,β.

For further details concerning the definition of GW invariants, see the text
by Hori et al [15].

2.2. DT Theory. Donaldson-Thomas invariants also virtually count curves
in a smooth projective threefold X of class β ∈ H2(X;Z) intersecting Poincaré
duals of cohomology classes γ1, . . . , γr ∈ H∗(X). Instead of probing the ge-
ometry of X via stable maps as in GW theory, rather the basic idea in DT
theory is to study sheaves on X.

For an ideal sheaf1 I, there exists an injection into its double dual

0 −→ I −→ I∨∨.

But

I∨∨ ∼= OX,

so I determines a subscheme Y given by

0 −→ I −→ OX −→ OY −→ 0.

Since I has trivial determinant, Y has components of dimension zero and
one. The weighted one dimensional components of Y determine a homology
class

[Y] ∈ H2(X;Z).

The moduli space of ideal sheaves I with holomorphic Euler characteristic
χ(OY) = n and class [Y] = β ∈ H2(X;Z) is denoted In(X,β). Similar to
GW invariants, DT invariants are defined by integrating against the virtual
class [In(X,β)]

vir of dimension

dim[In(X,β)]
vir =

∫
β

c1(TX).

The construction of this virtual class and other foundational aspects of DT
theory may be found in [19, 22].

In order to integrate against the virtual class, we need to pull back the
classes γi from X to In(X,β). This is done using the universal ideal sheaf
and the associated universal subscheme.

1We follow the conventions of [20, 21]. An ideal sheaf is a rank 1 torsion free sheaf
with trivial determinant.
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By [20, Section 2.2] and [21, Section 1.2] and there exists a universal ideal
sheaf

I −→ In(X,β)× X

with well defined Chern classes2. Let πi denote the respective projection
maps. The DT invariants are defined by push-pulling Chern classes via πi.
For each γ ∈ H∗(X), define the operator c2(γ) by, for any ξ ∈ H∗(In(X,β)),

(4) c2(γ)(ξ) = π1∗ (c2(I) · π
∗

2(γ) ∩ π∗

1(ξ)) .

For details of this construction, including the pullback of the homology class
ξ in Equation 4, see [21, Section 1.2].

The class (n,β) DT invariant of X with insertions γ1, . . . γr is defined by

DTX
n,β(γ1, . . . , γr) = 〈γ1, . . . , γr〉

X
n,β =

∫
[In(X,β)]vir

r∏
i=1

c2(γi).

The DT invariants of X are indeed deformation invariants and in particular
are well defined at the level of automorphism. So, for any automorphism τ
of X, we have

(5) DTX
n,τ∗β

(γ1, . . . , γr) = DTX
n,β(τ

∗γ1, . . . , τ
∗γr).

3. Toric Blowups of CP3

In this section, we explicitly construct toric models of the varieties in
question, and as a byproduct obtain a presentation of their (co)homology.

3.1. Iterated Toric Blowups. Recall that the fan ΣP3 ⊂ Z3 of P3 has
one-skeleton with primitive generators

v1 = (−1,−1,−1), v2 = (1, 0, 0),
v3 = (0, 1, 0), v4 = (0, 0, 1).

and maximal cones given by

〈v1, v2, v3〉, 〈v1, v2, v4〉,
〈v1, v3, v4〉, 〈v2, v3, v4〉.

The lower dimensional cones of ΣP3 can be found by intersecting maximal
cones. Also note that the fan ΣP3 is the normal fan over the faces of a
polytope ∆P3 , which has the adjacency structure of a 3-simplex.

3.1.1. Notation. We will label torus invariant subvarieties by the primitive
generators of their cones. Specifically, the point pijk will refer to the orbit
closure of the cone 〈vi, vj, vk〉. Similarly, the line ℓij will refer to the orbit
closure of the cone 〈vi, vj〉. We will label a new element of the 1-skeleton,
introduced to subdivide the cone σ = 〈vi, . . . , vj〉, by vi···j.

2The second Chern class c2(I) is interpreted as the universal subscheme [21].
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Remark. We are blowing up proper transforms of subvarieties sequentially,
and thus, any toric blowup of P3 is determined by a collection of T -fixed
points and an ordered collection of T -fixed lines in P3, chosen from the set
{pijk, ℓrs} for {i, j, k, r, s} = {1, 2, 3, 4}.

3.1.2. Fans. With the above notation, we will now explicitly construct the
fan of a toric blowup of P3 of Class A. The subvarieties we will blow up are
p123, ℓ34 and ℓ24. To blow up P3 at p123, we subdivide the cone 〈v1, v2, v3〉
by inserting a ray generated by v123 = v1+v2+v3 = (0, 0,−1), and replace
the single maximal cone with three cones, according to the subdivision

〈v1, v2, v3〉 → 〈v1, v2, v123〉, 〈v1, v3, v123〉, 〈v2, v3, v123〉.

This new fan, Σ1, determines the toric variety of P3 blown up at p123. The
proper transform of ℓ34 corresponds to the cone 〈v3, v4〉. So, to blow up the
line ℓ34 we subdivide 〈v3, v4〉, we insert the ray generated by v34 = v3+v4 =

(0, 1, 1). We point out that the subdivision of any sub maximal cone, in this
case 〈v3, v4〉, necessitates the subdivision of any cones that may contain it
as a proper face. In this case,

〈v3, v4〉 → 〈v3, v34〉, 〈v4, v34〉.

〈v1, v3, v4〉 → 〈v1, v3, v34〉, 〈v1, v4, v34〉

〈v2, v3, v4〉 → 〈v2, v3, v34〉, 〈v2, v4, v34〉.

The above process yields a new fan Σ2, whose toric variety XΣ2
is the blowup

of XΣ1
at ℓ34. We now repeat the process with the proper transform of the

line ℓ24. The process yields a fan Σ̂, whose toric variety is the blowup of
XΣ2

at ℓ24, or in other words the toric blowup of P3 at p123, ℓ34 and ℓ24.
For other spaces, the procedure is above is carried out analogously. Given

an ordered collection of torus invariant subvarieties, we subdivide their cones
in the above manner to obtain a new fan Σ̂ whose toric variety X

Σ̂
is the

blowup of P3 at this collection of subvarieties.

3.2. Chow Ring. For a nonsingular projective variety X with fan ΣX, the
Chow ring A∗(X) is a quotient of the polynomial algebra over Z generated

by the variables {Dα} in bijection with vα ∈ Σ(1), see [11]. We will now
explicitly construct the Chow ring for the Class A blowup. Let X be the
Class A toric blowup constructed in Section 3.1.2. Then the Chow ring is
given by

A∗(X) = Z[D1,D2,D3,D4,D123,D34,D24]/I.

The ideal I contains the relations

(i) Dα1
· · ·Dαk

for vα1
, · · · , vαk

not in a cone of ΣX.
(ii)

∑
α〈u, vα〉Dα for u ∈ Zn, a basis element of the lattice.

The relations of the first type are

D2D4, D3D4, D3D24, D4D123, D123D34, D123D24,

D1D2D3, D1D2D34, D1D34D24
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v2, (1, 0, 0)

(0, 1, 0), v3

v4, (0, 0, 1)

v1, (−1,−1,−1)

(i) One-skeleton of P3

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(−1,−1,−1)

(0, 0,−1), v123

(ii) . . . blown up at p123

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(−1,−1,−1)

(0, 0,−1)

(0, 1, 1), v34

(iii) . . . then at ℓ34

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(−1,−1,−1)

(0, 0,−1)

(0, 1, 1)
v24, (1, 0, 1)

(iv) . . . then at ℓ24

Figure 9. Constructing the fan for the iterated blowup of Theorem 2

The relations of the second type are

−D1 +D2 +D24, −D1 +D3 +D34, −D1 +D4 −D123 +D34 +D24.

In particular, the Chow ring is generated by divisor classes of the orbit
closures of elements in the 1-skeleton. Another, more geometric presentation
for A∗(X) is given as follows. For X, a toric blowup of P3 at points pα and
lines ℓα ′ , let H be the pullback of the hyperplane class in P3 to X and Eα

and Fα ′ be the exceptional divisors above pα and ℓα ′ respectively. Then
A1(X) is generated by the classes H, Eα and Fα ′ .

We remark that the anti-canonical class is given by

−KX =
∑
α

Dα = 4H − 2
∑

Eα −
∑

Fα ′ .

The Chow rings for Classes B, C and D are easily and analogously deter-
mined by their fans.

4. Toric Symmetry

4.1. Toric Symmetries. Recall that a toric symmetry of X is an automor-
phism τ of the lattice Zn which permutes the cones of Σ. In particular, these
automorphisms permute the 1-dimensional cones, Σ(1). Since the elements
of Σ(1) are in bijection with the divisor classes, and further, these classes
generate Chow, the unique linear extension of τ defined on A1(X) which
commutes with the product structure of A∗(X) is the pullback τ∗.

We are interested in characterizing nontrivial toric symmetries at the level
of the fan. There are three distinct types of divisors classes in a toric blowup
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of P3. The first are those involving the pullback of the hyperplane class. The
second and third are the classes of exceptional divisors above the centers of
blowups of points and lines respectively. Any symmetry that is nontrivial at
the level of GW/DT theory will exchange these three classes of divisors. It
can be verified easily that in a toric blowup of P3, any nontrivial symmetry
maps the class H to a divisor class with coefficient in H greater than 1.

4.2. Proof of Theorem 1. Let X be a toric blowup of P3. Let ΣX be the
fan of X. Notice that the primitive generators of ΣX include the standard
basis of Z3. Also observe that the elements of the one-skeleton are sums of
v1, . . . , v4, as constructed in Section 3. Since τ acts on Σ

(1)
X , the standard

basis elements of Z3 must be mapped by τ to elements whose entries are
in the set {−1, 0, 1}. Therefore the automorphism group of the fan is finite.
Moreover, this analysis yields a computational method to determine this
group of lattice isomorphisms. From Section 3.2, we see that the action of

τ on Σ
(1)
X yields a map τ∗ on A∗(X).

The sets {D1, . . . ,D4}, {Dijk} and {Drs} correspond to H’s, Eα’s and Fα ′ ’s,
respectively. Thus, nontrivial toric symmetries are characterized by those
which exchange elements of these three sets above amongst each other.

Since the number of toric blowups is finite, this characterization for maps
which pushforward nontrivially to A∗(X) allows us to computationally find
all nontrivial toric symmetries. We have written Sage code and actualized
this strategy. The code itself is contained in the source of this document.

The result of our search identifies precisely those symmetries of classes A,
B, C and D. This computation also shows that there are no further nontrivial
maps that are the pushforwards of toric symmetries, the result of Theorem 1.
Pseudocode for the computational technique is shown in Figure 10. �

Remark. Precisely the same method that characterizes nontrivial symme-
tries in toric blowups of P3 characterizes toric blowups of P2, which are
blowups of P2 at a subset of its three T -fixed points. Again, a toric sym-
metry of X, a toric blowup of P2, is nontrivial if and only if it exchanges
exceptional and non-exceptional classes. Performing the computation yields
the results of Theorem 7.

4.3. Proof of Theorem 2. We will choose a point p1 and lines ℓ1 and ℓ2
which are fixed by the torus action, and satisfy the intersection conditions of
Theorem 2. Since GW and DT invariants are invariant under deformations,
proving the result in this case is sufficient. Choose X to be the toric blowup
of P3 at p123, ℓ34 and ℓ24, yielding a space of Class A. Consider the action
of a lattice isomorphism τ on ΣX ⊂ Z3, given by

τ =





0 1 0
1 0 0
1 1 −1



 .
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Given:

• The set of possible toric objects to blow up:
{p123, p124, p134, p234, ℓ12, ℓ13, ℓ14, ℓ23, ℓ24, ℓ34}.

• The primitive generators associated with each index:
v1 = (−1,−1,−1), v2 = (1, 0, 0), v3 = (0, 1, 0), v4 = (0, 0, 1).

Algorithm:

• Collect the loci for all possible toric blowups of P3:
◦ Collect all ordered collections of torus invariant subvarieties -
points first (if any), followed by lines (if any). Note that the
order of the points in each collection is irrelevant. This leaves
31, 312 collections of interest.

◦ If any two collections are equivalent up to relabeling of the fan of
P3, remove one; their blowups are isomorphic. Again, respect the
ordering of lines, and neglect the ordering of points. This leaves
1, 319 distinct toric blowups.

• For each toric blowup, find all nontrivial toric symmetries:
◦ Generate the blowup space sequentially by introducing new prim-
itive generators and subdividing the fan, as in Section 3.1.2, for
each object in the blowup configuration. This yields a set of max-
imal cones and primitive generators of the fan, which determine
the fan.

◦ For each element M in GL(F3), check that M maps the set of
primitives to itself. If it does, collect M as a potential symmetry,
and record the permutation gM of the primitive generators.

◦ For each potential symmetry, check that relabeling primitives by
gM maps the set of maximal cones to themselves. If it does,
record M as a toric symmetry.

◦ If M does not stabilize elements of the 1-skeleton corresponding
to each of the 3 sets divisors described in Section 4.1, flag M as
a nontrivial symmetry.

Figure 10. The computational technique by which we ex-
hausted all possible toric symmetries of sequential toric
blowups of P3

We compute the pushforward τ∗ on A∗(X) using the method described in
Section 4.1 via Poincaré duality and obtain the following map on the (basis
of) divisor classes A2(X) = H4(X;Z).

τ∗H = 2H− E123 − F34 − F24

τ∗E123 = H− F34 − F24

τ∗F34 = H− E123 − F24

τ∗F24 = H− E123 − F34.

We compute the intersection product of the Poincaré duals of the divisor
classes to get the action of τ∗ on A1(X). The nonzero intersections are given
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by

H ·H = h

E123 · E123 = −e123

F34 · F34 = −f34 − s34, s34 = h− 3f34

F24 · F24 = −f24 − s24, s24 = h− 2f24 − f34

F34 · F24 = f24

H · Fij = fij,

where as above, h is the pullback of the class of a line in P3, e123 is the class
of a line in the exceptional divisor E123, fij is the fiber class in Fij and sij
represents the section class in Fij. Note that Fij has trivial fibration and is

abstractly isomorphic to P1 × P1. The action of τ on curve classes is given
by

τ∗h = 2h− e123 − f34 − f24

τ∗e123 = h− f34 − f24

τ∗f34 = h− e123 − f24

τ∗f24 = h− e123 − f34.

This completely describes the action of τ since the classes h, e123 and fij
form a basis of H2(X). Thus for any β ∈ H2(X), we may write β = dh −

a123e123−a34f34−a24f24 for some integers d, a123, a34 and a34. Therefore
by Equations 3 and 5, we have

GWX
g,β = GWX

g,τ∗β
= GWX

g,β ′,

where β ′ = d ′h−a ′

123e123−a ′

24e24 −a ′

34e34 is given in Theorem 2, under
the relabeling a123 = a1, a24 = a2 and a34 = a3. �

4.4. Proof of Theorem 3. We will choose points p1 = p123, p2 = p124

and lines ℓ1 = ℓ23, ℓ2 = ℓ34 and ℓ3 = ℓ14. Now let X be the toric blowup of

ℓ14

ℓ34 ℓ24

ℓ12ℓ13

ℓ23

p123

p124p134

p234

Figure 11. The torus-invariant subvarieties of P3. The red sub-
varieties comprise the blowup locus for Class A, blown up in the
following order: p123, ℓ34, ℓ24.
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P3 at p1, p2, ℓ1, ℓ2 and ℓ3 yielding a space of Class B. Consider the action
of the lattice isomorphism τ on ΣX ⊂ Zn, where τ is given by





0 0 1
1 −1 1
1 0 0



 .

Pushing forward τ to A2(X) as above, we compute

τ∗H = 2H − E123 − E124 − F23 − F34

τ∗E123 = F14

τ∗E124 = H− E123 − F23 − F34

τ∗F23 = H− E124 − F34 − F14

τ∗F34 = H− E123 − E124 − F23

τ∗F14 = E123.

The nonzero intersection pairings are as follows.

H ·H = h

Eijk · Eijk = −eijk

Fij · Fij = −fij − sij, s23 = h− e123 − f23

s34 = h− f23 − 2f34

s14 = h− e124 − f34

F34 · F14 = f14

F23 · F34 = f34

Eijk · Fij = fij

H · Fij = fij.

ℓ14

ℓ34 ℓ24

ℓ12ℓ13

ℓ23

p123

p124p134

p234

Figure 12. The torus-invariant subvarieties of P3. The red sub-
varieties comprise the blowup locus for Class B, blown up in the
following order: p123, p124, ℓ23, ℓ34, ℓ14.
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ℓ14

ℓ34 ℓ24

ℓ12ℓ13

ℓ23

p123

p124p134

p234

Figure 13. The torus-invariant subvarieties of P3. The red sub-
varieties comprise the blowup locus for Class C, blown up in the
following order: p124, p123, ℓ34, ℓ23, ℓ14.

The action of τ on curve classes is given by

τ∗h = 2h− e124 − f23 − f34

τ∗e123 = h− e124 − f34 + f14

τ∗e124 = h− f23 − f34

τ∗f23 = h− e124 − f34

τ∗f34 = h− e124 − f23

τ∗f14 = e123 − f23.

Finally, applying τ∗ to an arbitrary curve class β ∈ H2(X), we obtain The-
orem 3. �

4.5. Proof of Theorem 4. We proceed as in the proofs of Theorems 2
and 3. Choose points p1 = p124, p2 = p123 and lines ℓ1 = ℓ34, ℓ2 = ℓ23
and ℓ3 = ℓ14. Let X be the toric blowup of P3 at p1, p2, ℓ1, ℓ2 and ℓ3,
yielding a space of Class C. Consider the action of the lattice isomorphism
τ on ΣX ⊂ Zn, where τ is given by

τ =





0 0 −1
1 0 −1
1 −1 0





Pushing forward τ to H4(X), we see that

τ∗H = 2H − E124 − E123 − F34 − F14

τ∗E124 = H− E124 − F34 − F14

τ∗E123 = F23

τ∗F34 = H− E124 − E123 − F14

τ∗F23 = H− E123 − F34 − F23

τ∗F14 = E124.
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Now, computing the intersection of the divisor classes, we find the nonzero
intersections to be:

H ·H = h

Eijk · Eijk = −eijk

Fij · Fij = −fij − sij, s34 = h− 3f34

s23 = h− e123 − f34

s14 = h− e124 − f34

F34 · F23 = f23

F34 · F14 = f14

Eijk · Fij = fij

H · Fij = fij.

Using the above intersections, again, we compute the map τ∗ on the basis
of A1(X):

τ∗h = 2h− e123 − f34 − f14

τ∗e124 = h− f34 − f14

τ∗e123 = h− e123 − f34 + f23

τ∗f34 = h− e123 − f14

τ∗f23 = h− e123 − f34

τ∗f14 = e124 − f14.

Now similarly, choose the matrix σ below, and push-forward σ to A∗(X).

σ =





1 −1 0
0 −1 0
0 0 −1



 .

This yields the following map on the basis of A1(X),

σ∗h = 2h− e123 − f34 − f14

σ∗e124 = h− e123 − f34 + f23

σ∗e123 = h− f34 − f14

σ∗f34 = h− e123 − f14

σ∗f23 = e124 − f14

σ∗f14 = h− e123 − f34.

Applying σ∗ and τ∗ to an arbitrary element β ∈ A1(X), we obtain Theo-
rem 4. Additionally, note that the set {τ, τ2, σ, στ} are precisely the four
nontrivial symmetries of X found in Theorem 1. �

4.6. Higher Virtual Dimension. The results stated in Section 1 appear
without insertions of cohomology classes for the sake of brevity. However,
the results hold in higher virtual dimension as well.



TORIC SYMMETRY OF CP3 19

Let X be a variety of Class A, B, C or D, and let τ : X → X be the
automorphism of X induced via toric symmetry. Now let β ∈ H2(X) and
γ ′

1, . . . , γ
′

r ∈ H∗(X). Then, by Equations 3 and 5 and the proofs of Theorems
2 through 5, we have

(6) GWX
n,τ∗β

(γ1, . . . , γr) = GWX
n,β(τ

∗γ1, . . . , τ
∗γr),

and

(7) DTX
n,τ∗β

(γ1, . . . , γr) = DTX
n,β(τ

∗γ1, . . . , τ
∗γr),

where the action of τ on curve classes and cohomology is given above in
Sections 4.3–4.5.
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