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GROMOV-WITTEN THEORY OF P
1×P

1×P
1

DAGAN KARP AND DHRUV RANGANATHAN

Abstract. We prove equivalences between the Gromov-Witten theo-
ries of toric blowups of P1×P1×P1 and P3. In particular, we prove that the
all genus, virtual dimension zero Gromov-Witten theory of the blowup
of P3 at points precisely coincides with that of the blowup at points of
P1×P1×P1, for non-exceptional classes. It follows that the all-genus
stationary Gromov-Witten theory of P1×P1×P1 coincides with that of
P3 in low degree. We also prove there exists a toric symmetry of the
Gromov-Witten theory of P1×P1×P1 analogous to and intimately related
to Cremona symmetry of P3. Enumerative applications are given.

1. Introduction

While P3 and (P1)×3 are birational, it is too much to expect their Gromov-
Witten (GW) theories coincide. Indeed, GW invariants are not preserved
by birational transformation in general. Instead, one may hope to study
special birational maps, such as crepant transformations or blowups.

We prove the equivalence of the all-genus virtual dimension zero non-
exceptional GW theories of four spaces, illustrated in the following diagram.

GW(X̂) GW(
ˆ̃
X)

GW(X) GW(X̃)

Isomorphism

Blowup

Crepant

Transformation

Blowup

Here, X is the blowup of P3 at k points p1, . . . , pk, and X̂ is the blowup of
X at six lines. Also, X̃ is the blowup of (P1)×3 at k− 2 points p̃1, . . . , p̃k−2,

and ˆ̃
X is the blowup of X̃ at six lines. The equivalence of the all genus

virtual dimension zero GW theories of X and X̂ for nonexceptional classes
was proved by Bryan-Karp in [4, Lemma 7]; in this work we complete the
square.

In more detail, let h ∈ H2(X;Z) denote the class of the proper transform
of a general line in P

3, let Ei denote the exceptional divisor above pi, and
let ei be the class of a general line in Ei.

Date: June 19, 2012.
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We decorate classes on X̃ with ∼. Accordingly, let h̃j for 1 6 j 6 3 be the

classes of the proper transforms of the three lines in (P1)×3, and ẽi be the
class of a general line in the exceptional divisor above the point p̃i.

Theorem 1. As above, let X be the blowup of P3 at k points and let X̃ be

the blowup of (P1)×3 at k − 2 points. If β = dh−
∑k

i=1 aiei ∈ A1(X) with

ai 6= 0 for i > 4, then for any genus g, we have

〈 〉Xg,β = 〈 〉X̃
g,β̃

,

where β̃ =
∑3

1 d̃ih̃i−
∑k−2

i=1 ãiẽi and the coefficients of β and β̃ are related

by

d̃1 = d− a2 − a3

d̃2 = d− a1 − a3

d̃3 = d− a1 − a2

ã1 = a4

ã2 = d− a1 − a2 − a3

ãi = ai+2 for i > 3 .

Remark 1. Note that the birational map X 99K X̃ is crepant. In general,
GW invariants are not preserved under crepant transformations. This is the
subject of the Crepant Transformation Conjecture; see [3, 7, 17]. However,
Theorem 1 shows equality does indeed hold in the case considered here.

Remark 2. Also note that we use the term nonexceptional rather strongly.
Let π : Ŷ → Y be the blowup of the variety Y centered at Z ⊂ Y. We say
β ∈ H2(Y;Z) is nonexceptional if any stable map to Y representing β has
an image with empty set theoretic intersection with Z, and, moreover, any
stable map to Ŷ representing β̂ = π!β has image disjoint from the exceptional
divisor E → Z. We prove that the classes considered in Theorems 1 and 3
are nonexceptional in this strong sense.

Now, let lij denote the line through pi and pj, and let X̂ denote the
blowup of X at the proper transform of the six lines lij, where 1 6 i < j 6 4.

Let ĥ and êi denote the the proper transform of h and ei respectively.

Theorem 2 ([4], Lemma 7). Let d, a1, . . . , ak ∈ Z be such that 2d =
∑

ai

and ai 6= 0 for some i > 4. Then

〈 〉Xg,β = 〈 〉X̂
g,β̂

,

where β = dh−
∑

aiei and β̂ = dĥ−
∑

aiêi.

Similarly, for (i, j) ∈ {1, 2}× {1, 2, 3}, let l̃ij ⊂ X̃ denote the line containing

the point p̃i and representing one of the three line classes h̃j; see Figure 1

below. Let
ˆ̃
X be the blowup of X̃ along the six lines l̃ij. Also, let

ˆ̃
hj and ˆ̃ei

denote the proper transforms of h̃j and ẽi respectively.
2



Figure 1. The six lines in X̃ blown up to obtain
ˆ̃
X

We prove that the all-genus virtual dimension zero GW theory of ˆ̃
X is

equivalent to that of X̃, in the nonexceptional case.

Theorem 3. Let X̃ and
ˆ̃
X be as above, and let d̃1, d̃2, d̃3, ã1, . . . , ãk ∈ Z

be such that
∑

d̃j =
∑

ãi and ãi 6= 0 for some i > 2. Then for β̃ =∑
d̃ih̃i −

∑
ãjẽj, we have

〈 〉X̃
g,β̃

= 〈 〉
ˆ̃
X

g,
ˆ̃
β
,

where
ˆ̃
β =

∑
d̃i

ˆ̃
hi −

∑
ãj

ˆ̃ej.

In Section 3 we show that X̂ and
ˆ̃
X are isomorphic. Indeed, they are each

isomorphic to a blowup of the permutohedral variety. Since GW invariants
are functorial under isomorphism, this result, combined with those above,
completes the square.

We immediately point out two additional implications of this square of
equivalences: enumerative calculations and toric symmetry.

Remark 3. One may extract enumerative information directly from invari-
ants of X and X̃, or one may relate invariants of X and X̃ to invariants of
(the convex spaces) P

3 and (P1)3. To accomplish the later, one may use
the following result of Bryan-Leung [5], which generalizes a result of Gath-

mann [12]. Let Y be a smooth algebraic variety and π : Ŷ → Y the blowup

of Y at a point. Let β ∈ A1(Y) and β̂ = p!(β). Then we have,

〈p〉Yg,β = 〈 〉Ŷ
g,β̂−ê

,

where ê is the class of a line in the exceptional locus, and p!(β) = [p⋆[β]PD]PD.

Example 4. How many rational curves in (P1)×3 of class h1+h2+h3 pass

through three general points? We compute

〈p3〉
(P1)×3

0,h1+h2+h3
= 〈 〉X̃0,h1+h2+h3−e1−e3−e4

= 〈 〉X0,3h−e1−···−e6

= 〈p6〉P
3

0,3h

= 1.

To illuminate, the first equality holds via Remark 3; we have blown up (P1)×3

along four points, and simply not used p̃2. The second equality follows from
3



Theorem 1. The third equality again follows from Remark 3. The final equal-

ity holds as the invariant 〈p6〉P
3

0,3h counts the number of degree-3 rational

curves in P
3 through six general points. There is only one such curve, the

rational normal curve.

Additionally, the invariants on X̃ above satisfy a symmetry given by the
following theorem.

Theorem 5. Let X̃ be as in theorem 1. Then if β̃ =
∑

16j63 d̃jh̃j −∑4
i=1 ãiẽi, and {a3, a4} 6= {0}, we have

〈 〉X̃
g,β̃

= 〈 〉X̃
g,β̃ ′

,

where β̃ ′ =
∑

16i<j63 d̃
′

jh̃j −
∑4

i=1 ã
′

iẽi has coefficients given by

d̃ ′

1 = d̃1 + d̃3 − ã1 − ã2

d̃ ′

2 = d̃2 + d̃3 − ã1 − ã2

d̃ ′

3 = d̃3

ã ′

1 = d̃3 − ã2

ã ′

2 = d̃3 − ã1

ã ′

3 = ã4

ã ′

4 = ã3.

Acknowledgements. D.K. was partially supported by the Beckman Foun-
dation and D.R. was partially supported by a Borrelli Fellowship during the
preparation of this work.

2. Gromov-Witten theory

We now briefly recall GW theory and fix notation. Let X be a smooth
complex projective variety, and let β ∈ A1(X) be a curve class. We denote
by Mg,n(X,β) the moduli stack of isomorphism classes of stable maps

f : (C, p1, . . . , pn) → X,

where C is an n-marked, possibly nodal genus g curve. This stack admits a
virtual fundamental class [Mg(X,β)]

vir of algebraic degree

vdim(Mg,n(X,β)) = (dim X− 3)(1 − g) − KX · β+ n.

We denote by evi evaluation morphisms evi : Mg,n(X,β) → X defined by

(f, C, p1, . . . , pn) 7→ f(pi).

Let γ1, . . . , γn ∈ H∗(X) be a collection of cohomology classes. The genus-
g class β Gromov-Witten invariant of X with insertions γi is defined by

〈γ1, . . . , γn〉
X
g,β =

∫
[Mg(X,β)]vir

n∏
i=1

ev∗iγi.

4



For further details regarding the fundamentals of Gromov-Witten theory
see, for example, the wonderful text [14].

3. Toric Blowups and the Permutohedron

In this section we construct X̂ and ˆ̃
X. To do so, we first consider the case

k = 4, i.e. we blowup P
3 at four points and (P1)×3 at two points. In this

case, we are in the toric setting. We prove that X̂ and ˆ̃
X are isomorphic,

and in fact are both isomorphic to the permutohedral variety. It follows

that X̂ ∼=
ˆ̃
X for general k > 4 by simply blowing up along additional points,

which need not be fixed.
From the viewpoint of the dual polytopes of these varieties, to construct

X̂ we realize the permutohedron as a truncation of the simplex, which is
classical. However the permutohedron is also constructible by truncation of

the cube, yielding
ˆ̃
X. This construction is not original; for example Devadoss

and Forcey [9] use this truncation of the cube to construct the permutohe-
dron.

Notation. Let Y be a toric variety with fan ΣY . We will denote torus fixed
subvarieties in multi-index notation corresponding to generators of their
cones. For instance, pi1...ik will denote the torus fixed point which is the

orbit closure of the cone σ = 〈vi1 , . . . , vik〉, for vi ∈ Σ
(1)
Y . Similarly ℓi1...ir

will denote the line which is the orbit closure of σ = 〈vi1 , . . . , vir〉, and
so on. Further, Y(Z1, . . . , Zs) will denote the iterated blowup of Y at the
subvarieties Z1, . . . , Zs. By abuse of notation, we will denote by Y(k) the
blowup of Y at k points.

3.1. The fans of X̂ and
ˆ̃
X. The fan Σ

P3 ⊂ Z
3 of P3 has 1-skeleton with

primitive generators

v1 = (−1,−1,−1) v2 = (1, 0, 0)

v3 = (0, 1, 0) v4 = (0, 0, 1),

and maximal cones given by

〈v1, v2, v3〉 〈v1, v2, v4〉
〈v1, v3, v4〉 〈v2, v3, v4〉.

Also note that the fan Σ(P1)×3 ⊂ Z
3 of (P1)×3, has primitive generators

u1 = (1, 0, 0) u3 = (0, 1, 0) u5 = (0, 0, 1)

u2 = (−1, 0, 0) u4 = (0,−1, 0) u6 = (0, 0,−1),

and maximal cones given by

〈u1, u3, u5〉 〈u1, u2, u4〉 〈u1, u2, u3〉 〈u1, u2, u4〉
〈u2, u4, u6〉 〈u2, u3, u4〉 〈u1, u2, u3〉 〈u1, u2, u4〉.
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The three dimensional permutohedron Π3 is precisely realized as the dual
polytope of the blowup of P3 at its 4 torus fixed points and the 6 torus
invariant lines between them,

XΠ3
∼= P

3(p123, p124, p134, p234, ℓ12, ℓ13, ℓ14, ℓ23, ℓ24, ℓ34).

It is also realized as the dual polytope of a blowup of (P1)×3. In particular,

XΠ3
∼= (P1)×3(p135, p246, ℓ13, ℓ15, ℓ35, ℓ24, ℓ26, ℓ46).

This blowup of (P1)×3 can be viewed as the blowup of two antipodal vertices
on the 3-cube and the 6 invariant lines intersecting these points, as shown

in Figure 1. This common blowup yields an isomorphism τ̂ : X̂ → ˆ̃
X and a

birational map τ : P3(4) → (P1)×3(2). The situation is depicted in Figure 2.

X̂
ˆ̃
X

P
3(4) (P1)×3(2)

τ̂

π̃π

τ

Figure 2. The variety XΠ3
as a blowup.

Remark 4. These constructions can be generalized to higher dimensions.
The permutohedron Πn is the dual polytope corresponding to the blowup
of Pn at all its torus invariant subvarieties up to dimension n−2. Note that
∆(P1)×n , the dual polytope of (P1)×n is the n-cube. Then Πn is the dual

polytope of the variety corresponding to the blowup of (P1)×n at the points
corresponding to antipodal vertices on ∆(P1)×n , and all the torus invariant
subvarieties intersecting these points, up to dimension n − 2.

3.2. Chow Rings.

Notation. We will use Dα for the divisor class corresponding to vα or uα.
For blowups, we will label a new element of the 1-skeleton, introduced to
subdivide the cone σ = 〈vi, . . . , vj〉, by vi···j. Foundations of this material
may be found, for instance, in Fulton’s canonical text [11].

As above, classes on P
3(k) remain undecorated, tilde classes, such as H̃i

or ẽijk signify classes on (P1)×3(k), and classes pulled back via the blowup
to the variety XΠ3

will be decorated with a hat.
Finally, we report abuse of notation already in progress. We often denote

subvarieties and their classes using the same notation. When we need care,
we will use brackets. For instance the divisor H is of class [H].
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3.2.1. XΠ3
as a Toric Blowup of P3. The Chow ring of P3 is generated by

the first Chern class of hyperplane bundle on P
3. Let Ĥ be the pullback

of this class to XΠ3
and let ĥ = Ĥ · Ĥ denote the class of a general line in

A1(X). Let Êα be the class of the exceptional divisor above the blowup of

pα, and êα be the line class in the exceptional divisor. Let F̂α ′ denote the
class of the exceptional divisor above the blowup of the line ℓα ′ . Note that
that this divisor is abstractly isomorphic to P

1×P
1, so we let f̂α and ŝα be

the section and fiber class respectively. Observe that

A2(XΠ3
) = 〈Ĥ, Êα, F̂α ′〉, A1(XΠ3

) = 〈ĥ, êα, f̂α ′〉.

The divisor classes corresponding to Σ
(1)
XΠ3

, are written in terms of this basis
as

Di = Ĥ−
∑
i∈α

Êα −
∑
j∈α ′

F̂α ′

Dij = F̂ij

Dijk = Êijk.

3.2.2. As a Toric Blowup of (P1)×3. Let ˆ̃
H1,

ˆ̃
H2 and ˆ̃

H3 be the 3 hyperplane
classes pulled back from the Künneth decomposition of the homology of

(P1)×3. We let ĥij be the line class
ˆ̃
Hi ·

ˆ̃
Hj and

ˆ̃
Eα, ˆ̃eα,

ˆ̃
Fα ′ ,

ˆ̃
fα ′ and ˆ̃sα ′

be as above. These classes generate the Chow groups in the appropriate

degree. The divisor classes corresponding to Σ
(1)
XΠ3

are given by

D1 =
ˆ̃
H1 −

ˆ̃
E135 −

ˆ̃
F13 −

ˆ̃
F15, D2 =

ˆ̃
H3 −

ˆ̃
E246 −

ˆ̃
F24 −

ˆ̃
F26

D3 =
ˆ̃
H2 −

ˆ̃
E135 −

ˆ̃
F13 −

ˆ̃
F35, D4 =

ˆ̃
H2 −

ˆ̃
E246 −

ˆ̃
F24 −

ˆ̃
F46

D5 =
ˆ̃
H3 −

ˆ̃
E135 −

ˆ̃
F13 −

ˆ̃
F25, D6 =

ˆ̃
H3 −

ˆ̃
E246 −

ˆ̃
F26 −

ˆ̃
F46

Dijk =
ˆ̃
Eijk, Dij =

ˆ̃
Fij.

The map τ̂ : X̂ → ˆ̃
X, introduced in Figure 2, is an isomorphism induced

by a relabeling of the fan ΣXΠ3
. In particular, the action of τ̂⋆ on A1(XΠ3

),
7



is given by

τ̂⋆ĥ =
ˆ̃
h12 +

ˆ̃
h13 +

ˆ̃
h23 − ˆ̃e246

τ̂⋆ê123 =
ˆ̃
h13 +

ˆ̃
h23 − ˆ̃e246

τ̂⋆ê124 =
ˆ̃
h12 +

ˆ̃
h23 − ˆ̃e246

τ̂⋆ê134 =
ˆ̃
h12 +

ˆ̃
h13 − ˆ̃e246

τ̂⋆ê234 = ˆ̃e135

τ̂⋆f̂12 = ˆ̃s46 =
ˆ̃
h23 − ˆ̃e246 +

ˆ̃
f46

τ̂⋆f̂13 = ˆ̃s26 =
ˆ̃
h13 − ˆ̃e246 +

ˆ̃
f26

τ̂⋆f̂14 = ˆ̃s24 =
ˆ̃
h12 − ˆ̃e246 +

ˆ̃
f24

τ̂⋆f̂34 =
ˆ̃
f35

τ̂⋆f̂24 =
ˆ̃
f15

τ̂⋆f̂23 =
ˆ̃
f13.

4. Toric Symmetries of P
3 and (P1)×3

The classical Cremona transformation is the rational map

ξ : P3
99K P

3

defined by

(x0 : x1 : x2 : x3) 7→ (x1x2x3 : x0x2x3 : x0x1x3 : x0x1x2).

Note that ξ is undefined on the union of the torus invariant points and lines,
and is resolved on the maximal blowup of P3, π : XΠ3

→ P
3. The resolved

Cremona involution on XΠ3
is a toric symmetry induced by the reflecting

Π3 through the origin. Note that the resolved Cremona map, ξ̂ : X̂ → X̂ acts
nontrivially on A⋆(X̂). For a more detailed treatment of toric symmetries
in general and Cremona symmetry in particular, see [4, 12, 15]. Cremona
symmetry is given as follows.

Lemma 6 (Bryan-Karp [4], Gathmann [12]). Let X̂ be the permutohedral

blowup of P3. Let β be given by

β = dĥ−

4∑
i=1

aiêi −
∑

16i<j66

bijf̂ij ∈ H2(X;Z).
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There exists a toric symmetry ξ̂, resolving ξ, such that ξ̂⋆β = β ′, where

β ′ = d ′ĥ−
∑

i a
′

iêi −
∑

ij b
′

ijf̂ij has coefficients given by

d ′ = 3d− 2

4∑
i=1

ai

a ′

i = d− aj − ak − al − bij − bik − bil

b ′

ij = bkl,

where {i, j, k, l} = {1, 2, 3, 4}.

In similar vein, the blowup
ˆ̃
X → (P1)×3, also has a nontrivial toric sym-

metry analogous to Cremona involution. Consider the rational map

ζ : (P1)×3 99K (P1)×3

defined by

((x0 : x1), (y0 : y1), (z0, z1)) 7→ ((x1y0z0 : x0y1z1), (y0 : y1), (z0, z1)).

Lemma 7. Let β =
∑3

1 dj
ˆ̃
hj − a1

ˆ̃e1 − a2
ˆ̃e2 −

∑6
i=1 bi

ˆ̃
fi ∈ A⋆(XΠ3

).
ˆ̃
X

admits a nontrivial toric symmetry ζ̂, which is a resolution of ζ, whose

action on homology is given by

ζ̂⋆β = β ′

where β ′ =
∑3

1 d
′

j
ˆ̃
hj − a ′

1
ˆ̃e1 − a ′

2
ˆ̃e2 −

∑6
i=1 b

′

i
ˆ̃
fi has coefficients given by

d ′

1 = d1 + d3 − a1 − a2 − b2 − b5

d ′

2 = d2 + d3 − a1 − a2 − b1 − b4

d ′

3 = d3

a ′

1 = d3 − a2 − b4 − b5

a ′

2 = d3 − a1 − b1 − b2

b ′

1 = b5, b ′

2 = b4

b ′

3 = b3, b ′

4 = b2

b ′

5 = b1, b ′

6 = b6.

Remark 5. In [15], it is shown that XΠ3
, as a blowup of P

3, admits a
unique nontrivial toric symmetry. Indeed, although the permutohedron ad-
mits many symmetries, in the cohomology basis induced by the isomorphism
XΠ3

∼= X̂, each symmetry is either acts trivially, or is equal to the Cremona
symmetry above. Here we have a new toric symmetry of the permutohedron,

nontrivial in the cohomology basis induced by XΠ3
∼=

ˆ̃
X.

Proof. Observe that choosing ζ̂ to be the toric symmetry

ζ̂ =





−1 0 0

−1 1 0

−1 0 1



 ,

9



ζ⋆ on A⋆(XΠ3
) has the desired action on homology, and the natural blowup-

blowdown composition with ζ̂ gives the birational map ζ. �

XΠ3
XΠ3

(P1)×3 (P1)×3

ζ̂

ζ

Figure 3. The rational map ζ and a resolution.

Remark 6. Note that to resolve the map ζ it is sufficient to blowup a subset
of the six lines described in Section 3.1. However by blowing up these extra
lines, we prove both Theorems 1 and 5 simultaneously.

5. Proof of Main Results.

We established the isomorphism between X̂ and ˆ̃
X in Section 3. Thus,

Theorem 1 will follow from Theorem 2 and Theorem 3. Note also that the
classes f̂α in Lemma 7 form an orbit under ζ⋆. Thus Theorem 5 follows
from Lemma 7 and Theorem 3. Therefore, in order to establish Theorems 1
and 5, it suffices to now prove Theorem 3.

Proof of Theorem 3. Let π̃ :
ˆ̃
X = XΠ3

(k − 2) → X̃ = (P1)×3(k) as
before. That is, we follow the constructions of Section 3, and blowup at

k−2 additional points. Let β̂ =
∑3

1 dj
ˆ̃
hj−

∑k
i=1 ai

ˆ̃ei with ai 6= 0 for i > 2.

We argue that any stable map in the isomorphism class [f̂] ∈ Mg(X̂, β̂)

has an image disjoint from F = ∪ˆ̃Fjk where the union is taken over all the
exceptional divisors above line blowups. We similarly show that any stable
map [f] ∈ Mg(X̃, β) has an image disjoint from ℓ = ∪ℓjk. It then follows
that the map on moduli stacks induced by π̃ is an isomorphism of stacks,
obstruction theories, and virtual fundamental classes.

Let [f : C → X̃] ∈ Mg(X̃, β). Suppose that Im(f) ∩ ℓrs 6= ∅ where ℓrs is
one of the six lines in the exceptional locus. Without loss of generality, since
ãi 6= 0 for some i > 2, Im(f) 6⊆ ℓrs. As a result we may write the class of
the image as

f⋆[C] = C ′ + bℓrs, (b > 0).

Here C ′ meets ℓrs at finitely many points for topological reasons. Let Ĉ ′

be the proper transform via π̃ of C ′. Since C ′ ∩ ℓrs 6= ∅, Ĉ ′ · F̂rs = m > 0.
Thus, we may write

Ĉ ′ = β̂− b(
ˆ̃
hj − ˆ̃eα) −m

ˆ̃
frs.

Here α ∈ {1, 2}, or in other words, eα is the exceptional line above one of

the torus fixed points, and [ℓrs] = h̃j. Now push forward this class Ĉ ′ via
10



the inverse of the map τ̂⋆ described in Section 3.2.2. Observe then that we
obtain a curve in XΠ3

, whose class is given by

τ̂−1
⋆

Ĉ ′ = dĥ−

6∑
i=1

aiêi − b(ĥ− êγ − êδ) −mf̂pq,

where {γ, δ} ⊂ {1, 2, 3, 4}. In particular, via τ̂⋆, we see that dh−
∑6

i=1 aiei
must have virtual dimension zero since β̃ and β̂ have virtual dimension zero.

Further, τ̂⋆f̂pq =
ˆ̃
frs. Now consider the divisor

D̂pq − 2Ĥ − (Ê1 + · · · + Ê6) − F̂pq − F̂p ′q ′ ,

where {p, q, p ′, q ′} = {1, 2, 3, 4}. Bryan-Karp prove in [4] that D̂p,q is nef.

However, clearly D̂pq · τ̂−1
⋆

Ĉ = mFpq · fpq = −m < 0, which is a contradic-
tion. Thus, f⋆C ∩ ℓrs = ∅.

We argue in similar fashion for Mg(X̂, β̂). Let [f̂ : C → X̂]. Suppose

Im(f̂)∩ˆ̃Frs 6= ∅. Since β̂·ˆ̃Frs = 0, f⋆Cmust have a component C ′′ completely

contained in
ˆ̃
Frs, where we have

f⋆C = C ′ + C ′′,

where C ′ is nonempty since β̂ · ˆ̃E4 6= 0. Since C ′′ ⊂ ˆ̃
Frs is an effective class

in ˆ̃
Frs ∼= P

1×P
1, it must be of the form C ′′ = af̂rs + bŝrs for a, b > 0 and

a+b > 0. We compute τ̂−1
⋆

(D̂pq) ·C
′ = −a−b, contradicting the fact that

D̂pq is nef. Thus, Im(f̂) ∩ ˆ̃
Frs = ∅. �
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