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ON DETERMINISM VERSUS NON-DETERMINISM
AND RELATED PROBLEMS

(Preliminary Version)

Wolfgang J. Paul
IBM Research Laboratory

San Jose, CA 95193

Nicholas Pippenger Endre Szemeredi William T. Trotter
IBM Research Laboratory University of South Carolina University of South Carolina

San Jose, CA 95193 Columbia, SC 29208 Columbia, SC 29208

ABSTRACT: We show that, for multi-tape Turing

machines, non-deterministic linear time is more

deterministic Turing machines (that receive their

input on their work tape) require time Q(n2) to

powerful than deterministic linear time. We also recognize non-palindromes of length n (it is easy to

discuss the prospects for extending this result to see that time O(n log n) is. sufficient for a

more general Turing machines. non-deterministic machine).

1. Introduction
Among subsequent attempts to extend this result

to multi-tape Turing machines, we may note two

number of additional tapes.

linear time is more powerful than deterministic

linear time. More specifically, we show that there

not recognized by any multi-tape deterministic

are more

shows that[10])(Kannan

an additional space bound (growing strictly more

difference in power.

additional handicap, and it is not clear that this

powerful than deterministic one-tape machines (both

handicap alone does not account for the observed

powerful than deterministic multi-tape machines with

results, the deterministic machines suffer an

slowly than their time bound). In both of these

machines receive their input on a read-only input

non-deterministic multi-tape machines are more

tape). The second

results of Kannan. The first (Kannan [9]) shows that

non-deterministic two-tape machines

two-tapea

non-deterministic

bylanguage recognizeda

their input on a read-only input tape). This result

only that non-determinism adds power, but that this

additional power cannot be compensated for by any

Our main result in this paper states that, for

is

Turing machine in linear time (both machines receive

non-deterministic Turing machine in linear time, but

(which will be proved in Section 4 below) shows not

multi-tape Turing machines,

The first evidence that non-deterministic

time-bounded Turing machines are more powerful than

deterministic time-bounded Turing machines was

provided by Hennie [6], who showed that one-tape

We should also note a paper of Paul and Reischuk

[15], which proved a result similar to ours on the

assumption of a certain graph-theoretic hypothesis.

This hypothesis was subseq~ent1y disproved by
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Schnitger [18,19], but the present paper owes both

its overall strategy and many 9f its tactics to the

paper of Paul and Reischuk [15].

The overall strategy may be described briefly as

Analogously, the simulation of Dymond and Tompa [3],

as well as the simualtion of the present paper,

involves a certain "two-person pebble game" .

Additionally, in the present paper we must exploit

certain constraints satisfied by the computation

non-deterministic linear time, then deterministic

follows. If deterministic linear time equals graphs of deterministic multi-tape Turing machines.

These constraiI;lts imply a "segregator theorem" for

linear time equals alternating linear time for

machines making a bounded number of alternations. By

a padding argument, this implication extends to

non-linear time bounds. This much is as in Paul and

Reischuk [15]. The key to the proof is a simulation

(which will be given in Section 3) whereby any

language recognized by a deterministic Turing

machine in non-linear time is recognized faster by

an alternating Turing machine making just four

alternations. As in Paul and Reischuk [15], a

diagonalization completes the proof.

The simulation mentioned above shows that

alternating time with four alternations is more

powerful than deterministic time. This may be

compared with previous results by Paul, Prauss and

Reischuk [14] and by Dymond and Tompa [3] showing

that alternating time (with no bound on the number

of alternations) is more powerful than deterministic

time, and by Hopcroft, Paul and Valiant [7] showing

that deterministic space is more powerful than

dete~inistic time.

The simulation of Hopcroft, Paul and Valiant [7]

involves a certain "pebble game" played on the

vertices of an acyclic directed graph that

represents (at a certain level of abstraction) the

computation of a deterministic Turing machine.
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thes'e graphs, which is proved in Section 2.

2. ~ Segregator Theorem

In this section we lay the graph-theoretic

foundation for our simulation.

Let H(N) denote the class of directed graphs with

vertices {I, ... , N} in which every edge (i, j)

satisfies i<j (so that these graphs are acyclic). We

shall say that two edges (i, j) and (i', j')~ if

i<i'<j<j'. Let H1(N) denote the subclass of H(N)

comprising those graphs in which every vertex has at

most. one immediate predecessor and at most one

immediate successor, and in which no two edges

cross. Let Hr(N) denote the subclass of H(N)

comprising those graphs that can be expressed as the

union of r graphs belonging to H1(N). The class

Hr(N) is essentially the class of multi-pushdown

graphs defined by Pippenger [17].

A set J of vertices of a graph G in H(N) will be

called an M-segregator for G if every vertex in G-J

has at most M predecessors in G-J. (The name

"segregator", coined in analogy to "separator", was

suggested by Michael Sipser.) Our main result in

this section shows that, for each fixed r, graphs in

H (N) have M-segregators J with M=o(N) and IJI=o(N).r



The proof uses depth-reduction techni~ues due to

Erdos, Graham and Szemeredi [4] and to Valiant [22].

Define Iog(O) x=x and, for t~l, 10g(1) x=10g2

108(1-1) x. Define

10g* x = min {l: 10g(1) x S I}.

Theorem ~ ..!: Let G be a graph in Hr (N) with N~16.

*There is a set J of at most 15rN/10g N vertices of G

*such that every vertex of G-J has at most 6N/log N

predecessors in G-J.

For the proof we shall need the following lemma.

Lemma ~.~: For every integer ~16, there exist

integers ~2 and dO' ... , <1t such that

(4) For OSlSk-1,

rN/d ' S rN/da'/k·,eXPk 1+1 If.

and

*(5) ~(log N)/3.

Proof: For ~2 and 1S1Sk-l, define ek ,o=l and

e =exP
k

(2+2e
k

8). Define exp(O) x=x and, for
k,t+1 ,If.

t~l, expel) x=exP2 expel-I) x. Straightforward

estimates show that

< (k+21) 1
ek,l - exp ·

*Thus if we choose k=r(log N)/3', then condition (5)

is satisfied and

Define dO=1 and, for 1S1Sk, d1=exP2 rlog2

(N/~,k-l)" Then conditions (1), (2) and (3) are

immediate. To verify (4), observe that

eXPk rN/d,,+1' S eXPk (2N/dt +1)

S eXPk (2ek ,k-t-l)
2

ek,k_t/k

S 2N/dt k 2

S rN/df,1 1k.

This completes the proof. 0

Proof of Theorem ~.1: Let k and dO' ... , <1t be as in

Lemma 2.2. We shall construct a sequence of

partitions PO' ... , Pk of the vertices of G. For

oStSk, we construct P1 by taking blocks of

consecutive vertices of G, with each block except

possibly the last containing d
t

. vertices, and with

the last block containing at most d t vertices.

Clearly, Po is the discrete partition and Pl +1

is coarser than Pt for OStSk-1.

Associate with each edge (i, j) of G the coarsest

of the partitions PO' ... , Pk-
1

such that i and j

appear in different blocks. Since there are at most

rN edges, there must be a partition Pt with oStSk-l

that has at most rN/k edges associated with it. Let A

denote the set of vertices i such that some edge (i,

j) is associated with Pl' Then IAISrN/k.

*Construct a graph G by collapsing each block X

*of Pt into a single "node" X and by putting an "arc"

* * A' dfrom node X to node Y whenever G- conta1ns an e ge

from a vertex in block X to a vertex in block Y. The

*graph G has

*N

S ek ,k-1 S N.
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Every edge (i, j) of G-A either has i and j in the

same block of P
t

(and thus gives rise to no arc of

G*) or has i and j in different blocks of Pfl,+1. Since

Let B* denote the set of bad nodes

* *IB IS2rN /k.

*in G. Then

there are just

*block of Pfl,+l' the longest directed path in G has

*length at most M -1.

Let B denote the set of vertices of G in blocks X

* *of P for which the node X belongs to B Since each
I

block of Pi. contains at most dfl, vertices, and since

*d"N S2N, we have IBIS4rN/k.

Let G be the union of G , ... , G in H1(N). For
1 r

* *1SsSr we may construct Gs in the obvious way, and G

* *is the union of G1 ' ... , Gr

* * *For each node X of G , let Ds(X )

*number of immediate predecessors of X

claim

denote

*in G
s

the

We

Since every node of G*-B* has at most k immediate

*predecessors and since every directed path in G has

* * *length at most M -1, every node in G -B has at most

eXP
k

M* S N*jk

* *predecessors in·G -B .

* *I X* Ds(X ) S 2N ·

*To see this, observe that if X is an immediate

* *is the first immediate predecessor of Y . For. if W

* *were an immediate predecessor of Y in G
s

with

** * * * * *W<X , then the arcs (W , Y ) and (X , Z ) in Gs

* *predecessor of Y and Z * * * *in G with Y <Z , then X
s

Let J be the union of A and B. Then

*IJI S 5rN/k S 15rN/log N.

If a vertex in block X of Pfl, is a predecessor of a

*vertex in block Y of P" in G-J, then X must be a

* * *predecessor of Y in G -B . Since each block of Pi

contains at most d" vertices, every vertex of G-J

has at ,most

would cross. The edges of Gs that give rise to these

arcs would also cross, contradicting the fact that

*

* *diN /k ~ 2N/k S 6N/log N

predecessors in G-J. a

Gs belongs to H1(N). Thus, distinct nodes of G
s

have disjoint sets of immediate predecessors (except

possibly for their first immediate predecessors). It

follows that

*which proves the claim, since the sum has N terms.

Let D(X*) denote the number of immediate

* *predecessors of X in G . Then

* * *I X* D(X ) S I1SsSr I X* Ds(X ) S 2rN ·

* * *Let us say that a node X in G is "bad" if D(X »k.
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A set J will be called an M-separator for G if

every component of G-J (ignoring the directions of

the edges) contains at most M vertices. Separator

theorems are known for trees (see Lewis, Stearns and

Hartmanis [11]) and for ;planar graphs (see Lipton

and Tarjan [12]). Pippenge~ [17] conjectured that,

for each fixed r, graphs in Hr(N) have M-separators

J with M=o(N) and IJI=o(N). As indicated in [17],

this would have numerous computational consequences.



The present paper is founded on the fact that, for shall say that M is- block-respecting if, during each

the purpose of separating (or segregating) se~ent of its computation, each head of M visits

determinism from non-determinism, a segregator

theorem serves as well as a separator theorem.

3. A Simulation

In this section we shall show how computations by

deterministic multi-tape Turing machines can be

one and only one block.

Le..a ~ ..!: A language ree:ognized in time f by a

machine in AO t is also recognized in time f by a,
block-respecting machine in A

0,1+1·

Proof: See Hopcroft, Paul and Valiant [7].0

machines making just four alternations.

Let M be aaccelerated by alternating multi-tape Turing block-respecting machine in A
O

' For

every input x of length n, let G(M, x) be the graph

with vertices {I, .. ', a(n)} (corresponding to the

Let AD denote the class of deterministic

multi-tape Turing machines, and let AO t denote the,
subclass having 1 work tapes. (Henceforth all

machines receive their input on a read-only input

se~nts of the computation of M) with an edge (i,

i+l) for each ISiSa(n)-l and with an edge (i, j)

whenever, in the computation of M on input x, some

block on some work tape is visited during segment i

tape.) Let I k (respectively, and revisited during segment j, without being

corresponding class of alternating machines that

start in an existential (respectively, a universal)

state and change quantification at most k-1 times,

and let I k ,1 (respectively, nk,t) denote the

subclass having t work tapes.

Let f be a time-constructable funtion. If Q

denotes a class of machines, we shall let Q(f)

denote the class of languages recognized by machines

in Q in time fen) on inputs of length n.

Let f be a time-constructable function and let

revisited during any intermediate segment.

Lemma 3.2: If M is a block-respecting machine in

~o l' then for every input x of length n, G(M, x),
belongs to H21+1(a(n»).

Proof: The edges of G(M, x) of the form (i, i+1)

clearly form a graph in HI(a(n)). For each of the!

work tapes, revisits of blocks may be partitioned

into two classes: revisits from the right and

revisits from the left. The revisits in each of

these classes also give rise to a graph in HI (a(n» ·

machine in A
O

running in time f. Let the computation

ofM on an input x of length n be partitioned into

"segments" each comprising ben) consecutive steps

(except possibly the last, which comprises at most

ben) steps). Let the tapes of M be partitioned into

"blocks" each comprising ben) contiguous cells. We
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We are now ready to prove the main result of this

section.

Theorem ~.~: For every time-constructable f with

*f(n)~n log n,



*AO(f) S I 4 (f/log f).

Proof of Theorem 1.1: Let MO be a machine in AO,t

that recognizes L in time f. Let a(n)=rf(n)1/31 and

Phase 4: M2 universally selects a vertex i in the

union of I and {j}. It deterministically checks the

consistency of all guesses relating to i with those

b(n)=rf(n)2/31. By Lemma 3.1, there is
relating to immediate predecessors of i, with the

block-respecting machine HI in AO,t+1 that also

recognizes L in time f. We shall construct a machine

*M
2

in I
4

that recognizes L in time f/log f. Let

*e(n)=r15(2t+3)a(n)/log a(n)'. On input x of length

transition function for M1 and with the input x. If

any of these checks fails, it rejects; otherwise it

accepts.

n, M2 deterministically computes fen), a(n), ben)

and e(n). It then proceeds in four phases as

follows.

It is routin~ to verify, using

Theorem 2.1, that M2 runs in time

recognizes L. 0

Lemma 3.2 and

*f/10g f . and

Phase 1: M2 eX1stentially guesses the positions P

of each of the t+2 heads of M' at the outset of each

of the a(n) segments. From P, it deterministically

computes the computation graph G. It existentially

guesses a set J of at most e(n) vertices in G. It

existentially guesses the computation of M1

~. Consequences for Determinism versus

Non-Determinism

In this section we show how the simulation of

Theorem 3.3 implies that non-deterministic linear

time is more powerful than deterministic linear

(internal states, head movements, initial time.

inscriptions of blocks visited and final

inscriptions of blocks visited) for each of the

segments corresponding to the last vertex k in Gand

to vertices in J. It deterministically checks that

We shall need the folowing "collapsing" lemma.

Lemma ~.!: If I
1

(n)=AO(n) (or, equivalently, if

the computation for the last segment includes an for every k and every

accepting state. If this check fails, it rejects;

otherwise it proceeds to Phase 2.

Phase 2: M2 universally selects a vertex j in the

union of J and {k}. It deterministically computes

the set I of predecessors of j in G-J. If there are

more that e(n) vertices in I, it rejects; otherwise

it proceeds to Phase 3.

time-constructable f, Ik(f)=AO(f) (and therefore

Hk(f)=AO(f»).

Proo~: (See Paul and Reischuk [15] for details.)

From the hypothesis, a straightforward induction on

k yields I
k

(n)=n
k

(n)=AO(n). The conclusion follows

by a padding ~argument.. 0

We shall also need the following "hierarchy"

Phase 3: M2 existentially guesses the computation

of M1 for each of the time segments corresponding to

vertices in I.
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lemma.

For every ~1, and every



time-constructable f and g with f(n)=w(g(n)), then

non-empty.

Proof: (See Paul and Reischuk [15] for details.) By

the tape: reduction theorem of Book, Greibach and

Wegbreit [1], I 1(g)=I1,2(g) (and, by taking

complements, n1(g)=ll1, 2(g)). A straightforward

induction on k shows that Ik(g)=Ik 2(g) (and,
therefore llk(g)=nk ,2(g)). A machine in nk ,3 running

in time f can diagonalize over all machines in Ik ,2

running in time g. The resulting language is in

\Ie are now ready to prove our main result.

Theorem 4. 3 :

AO(n)<I1,2(n).

Proof: By the tape reduction theorem of Book,

Greibach and Wegbreit [1], Ao(n)SI1(n)=I1,2(n), so

it will suffice to show that the inclusion is

strict. To do this, we assume A
O

(n)=I
1

(n) and

derive 8 contradiction.

*By Lemma 4.1, this assumption implies IT4(n log

* *n)=A
O

(n log n). By Theorem 3.3, AO(n 10gn)SI4(n),

*and so H
4

(n log n)SI4 (n). But this contradicts

Lemma 4.2. 0

The argument of this section can be elaborated to

show somewhat more than we have done. If Q is a class

of machines and f is time-constructable, let Q(o(f))

denote the union of Q(g) over all time-constructable

*g with g(n)=o(£(n)). Then 1:1 ,2(n)-Ao(0«n log

n)I/4)) is non-empty.
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5. Related Problems

In this section we shall reconsider the

graph-theoretic foundation of our work, exposing

some of its limitations and examining .the prospects

for transcending these limitations. To do this we

shall use the two-person pebble game, introduced by

Tompa [20] (see also Dymond and Tampa [3]). We shall

give only hints of proofs.

As its name suggests, the two-person pebble game

is played between two players, called the Challenger

and the Pebbler, on the vertices of an acyclic

directed graph. The Challenger begins by placing his

token, called the challenge, on some vertex of the

graph. The Pebbler responds by placing some of· his

tokens, called pebbles, on some set of vertices of

the graph. In each succeeding round, the Challenger

may leave the challenge where it is or may move it to

a vertex pebbled by the Pebbler in the immediately

preceding round. If all the immediate predecessors ..

of the challenged vertex are pebbled, the Pebbler

wins. Otherwise, he continues by placing pebbles on

another set of vertices of the graph. We say that the

Pebbler wins in R rounds and time T if he has a

strategy that ensures that he wins after making at

most R moves and placing a total of T pebbl~s on the

graph.

Theorem 2.1 ensures that for any graph in Hr(N),

the Pebbler can win in two rounds and time

T=O(N/log* N). Let Hr(N) denote the subclass of H(N)

comprising those graphs in which every vertex has at

most r immediate predecessors and at most r

immediate successors. Schnitger [18,19] has shown



that H2(N) ~ontains "grates" (a notion introduced by

Valiant [22]). These are graphs G for which, for

every set J of vertices of G, either IJI=Q(N) or G-J

contains Q(N2) pairs (i, j) for which i is a

predecessor of j in G-J (and thus contains some

The results of Sections 3 and 4 were restricted

to multi-tape Turing machines because the Theorem

2. 1 was restricted to graphs in H (N). In the case of
r

time versus space, the result of Hopcroft, Paul and

Valiant [7] for multi!"'tape Turing machines have been

vertex with Q(N) predecessors in G-J). For such

graphs the Pebble~ can win in two rounds only in time

T=Q(N). Let us consider to what extent the factor

"1 * N" ·og 1n Theorem 2.1 might be replaced by a larger

factor. We shall show that it can be increased at

most to "log N".

Theorem ~.!: For every N, there is a graph G in H3 (N)

such that, for every set J of vertices of G, either

IJI=Q(N/log N) or some vertex in G-J has Q(N/log N)

predecessors in G-J.

This theorem is proved by constructing a variant

of the "Fast Fourier Transform" graph in H
3

(N). For

some M=Q(N/log N), G has M inputs, M outputs and M
2

paths joining inputs to outputs. Furthermore, each

vertex lies on OeM) of these paths. Thus, unless

IJ I=Q (M) ,G-J contains an output with Q(M) inputs as

predecessors.

A more illuminating proof of Theorem 5.1 can be

obtained from the following theorem.

Theorem ~.~: For every N, there is a graph G in H3 (N)

such that, for some M=Q(N/log N), G contains a

hom~omorphic image of every graph in H2 (N) .

This theorem is proved by constructing a

universal graph (in the sense of Valiant [21]) in

H
3

(N). Applying the theorem to grates yields Theorem

5.1.
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extended to multi-dimensional and tree-structured

tapes (see Paul and Reischuk [13] and Pippenger

[16). This extension was facilitated by the fact

that general N-vertex graphs can be one·-person

pebbled in space S=O(N/log N). It seems natural,

therefore, to inquire about the time-rounds

trade-off for the two-person pebble game on general

graphs. We have three results bearing on this

matter.

Proposition ~.~: For any graph in Hr(N) and any

2SRSN., the Pebbler can win in R rounds and time

T=O(rN/log R) .

This proposition is proved by modifying the

strategy of Dymond and Tompa [3] to take account of

the allowed number of rounds.

Proposition ~.!: For every N and every 1SRSN, there

is a graph in H2 (N) for which the Pebb\er can win in

R rounds only in time T=n(NjR).

This proposition is proved by a construction

involving grates [18,19] and expanding graphs [5].

We conjecture that the upper bound of Proposition

5.3 is tight and that the lower bound of Proposition

5.4 can be sharpened to meet it. To this end we offer

the following result.



quantification hold, the possibility of results such

Proposition 5.5: For every N and every ISRSN, there

is a graph in H
2

(N) for which the Pebbler can win in

... ) . Unless results with this stronger

R rounds only in time T=Q(N/log (R log N)). as those in Section 4 cannot be excluded. This

raises the question of whether there are "uniformly

This result is prove by means of a simulation of hard" graphs for the two-person pebble game, or

the two-person pebble game by the one-person pebble

game, together with the time-space trade-off for the

whether there are only graphs that are hard for a

particular number of rounds. Even for the one-person

one-person pebble game due to Lengauer and Tarjan pebble game, the analogous question (whether there

[10]. When log R = Q(log log N), this lower bound are only graphs that are hard for a particular

matches the upper bound of Proposition 5.3. Thus amount of space) remains open (see Lengauer and

only the case of few rounds remains. Tarjan [10]).

It may seem at first glance that these results
~. References

rule out any possibility of extending the results of

Sections 2-4 to more general machine models. Careful

[1] R. V. Book, S. A. G.reibach and B. Wegbreit,
"Time and Tape Bounded Turing Acceptors and AFL's",
J. Camp. and Sys. Sci., 4 (1970) 606-621.

pessimistic conclusion is unwarranted.

consideration reveals, however, that such a
[2J A. K. Chandra, D.
Stockmeyer, "Alternation",
114-133.

C.
J.

Kazen
ACM,

and L. J.
28 (1981)

computations. We have shown that computation graphs

two-dimensions is open. Expoliting these weaker

of Turing machines with one-dimensional tapes cannot

multi-dimensional and tree-structured tapes

Tompa, "Speedups of
Synchronous Parallel

[3] P. Dymond and M.
Deterministic Machines by
Machines", STOC, 15 (1983).

[ 6 ] F . C. Hennie, "One-Tape, Off -Line Turing
Machine Computations", Info. and Contr., 8 (1965)
553-578.

[4 ] P. Erd~s, R. L. Graham and E. Szemeredi, "On
Sparse Graphs with Dense Long Paths",. Comp. and
Math. with Appl., 1 (1975) 365-369.

[5] o. Gabber and Z. Galil, "Explicit
Constructions of Linear-Sized Superconcentrators" ,
J. Camp. and 8ys. Sci., 22 (1981)407-420.

of

with

their

impose

case

machines

underlying

but the

Turingeven

linear-sized grates,

Firstly,

be

constraints on the graphs

constraints may be difficult, however: it is known
[7] J. E. Hopcroft, W. J. Paul and L. G. Valiant,
"On Time versus Space" ~ J. ACM, 24 (1977) 332-337.

that the computation graphs of Turing machines with

two-dimensional tapes can be linear-sized

[8] R. Kannan,
Non-Deterministic Time
FOCS, 22 (1981) 335-343.

"Towards Separarting
from Deterministic Time",

superconcentrators (see Gabber and Galil [5]),

though the case of one dimensional tapes is open.

Secondly, the order of the quantifiers in

[9] R. Kannan, "Alternation and the Power of
Non-Determinism", STOC, 15 (1983) 344-346.

[10] T. Lengauer and R. E. Tarjan, "Asymptotically
Tight Bounds on Time-Space Trade-Offs in a Pebble
Game", J. ACM, 29 (1982) 1087-1130.

[11] P. M. Lewis, R. E. Stearns and J. Hartmanis,
"Memory Bounds for the Recognition of Context-Free
and Context-Sensitive Languages", FOCS, 6 (1965)
191-202.

Proposot ions 5.4 and 5.5 (... for every R, there

exists 4 graph ... ) is not as strong as it might be

(. .. tbere exists a graph such that, for every R [12] R. J. Lipton and R. E. Tarjan, "A Separator

437



Theorem for Planar Graphs", SIAM J. Appl. Math., 36
(1979) 177-189.

[13] W. Paul and R. Reischuk,
Space, II", J. Compo and Sys.
312-327.

"On Time
Sci., 22

versus
(1981)

[14] W. J. Paul, E. J. Prauss and R. Reischuk, "On
Alternation", Acta Inf., 14 (1980) 243-255.

[15] W. J. Paul and R. Reischtik, "On Alternation,
II", Acta Inform., 14 (1980) 391-403.

[16] N. Pippenger, "Probabilistic Simulations",
STOC 14 (1982) 17-26.

[17] N. Pippenger, "Advances in Pebbling", ICALP 9
(1982) 407-417.

[18] G. Schnitger, "A Family of Graphs with
Expensive Depth-Reduction", Theor. Compo Sci., 18
(1982) 89-93.

[19] G. Schnitger, "On Depth-Reduction and
Grates", 'fheor. Comp. Sci., to appear ~

[20] M. Tompa, "A Pebble Game That Models
Alternation", in preparation.

[21] L. G. Valiant, "Universal Circuits", STOC, 8
(1976) 196-203.

[22] L. G. Valiant, "Graph-Theoretic Arguments in
Low-Level Complexity", MFCS 6 (1977).

438


	Claremont Colleges
	Scholarship @ Claremont
	1-1-1983

	On Determinism Versus Non-Determinism And Related Problems
	Wolfgang J. Paul
	Nicholas Pippenger
	Endre Szemeredi
	William T. Trotter
	Recommended Citation


	tmp.1403823903.pdf.VqQTw

