
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

1-1-2007

Estimating Winning Probabilities in Backgammon
Races
Andrew M. Ross
Eastern Michigan University

Arthur T. Benjamin
Harvey Mudd College

Michael Munson '94
Harvey Mudd College

This Article - preprint is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for
inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please
contact scholarship@cuc.claremont.edu.

Recommended Citation
A. Ross, A. Benjamin, M. Munson, Estimating Winning Probabilities in Backgammon Races, Optimal Play: Mathematical Studies for
Games and Gambling, Institute for the Study of Gambling and Commercial Gaming, University of Nevada, Reno, 269-291, 2007.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu


Estimating Winning Probabilities in
Backgammon Races

Andrew M. Ross1, Arthur Benjamin2, and Michael Munson3

1 Department of Mathematics, Eastern Michigan University
2 Department of Mathematics, Harvey Mudd College
3 Denali Advisors, LLC

Abstract. In modern backgammon, it is advantageous to know the chances each
player has of winning, and to be able to compute the chances without the aid of cal-
culators or pencil and paper. A simple model of backgammon is used to approximate
those chances, and a readily computable and sufficiently accurate approximation of
that is developed. From there, the model is compared to simulated backgammon
games, and the previous approximation is modified to fit the real data.

1 Introduction

1.1 Motivation

Backgammon differs from other common games (checkers, chess, etc.) because
there is a formal way to increase the stakes as the game progresses. It is
important to know one’s current chances of winning in order to decide whether
or not to increase the stakes. This paper focuses on ways to estimate the
current chances of winning using only mental calculations.

The doubling cube, which was invented in the 1920s, is how the stakes may
be increased during the game. The cube starts in the middle of the board with
a value of 1. When one player (call him A) decides that his chances of winning
are just right, he gives the cube to his opponent (B) before A’s turn to roll.
The opponent can either accept or reject the cube. If B rejects, the game is
over and he must pay up. If he accepts, the two players play for twice as much
money as before. Then, B possesses the cube, and A cannot use it until A is
doubled and accepts.

Incorrectly estimating the chances of winning can result in resigning too
soon, wagering too much on a weak position, or not increasing the wager on
a strong position. So, it is important to be able to accurately estimate the
chances of winning, often to within 1 percentage point. We will abbreviate
the chances of winning as WP, or the Winning Percentage or Probability.



268 Andrew M. Ross, Arthur Benjamin, and Michael Munson

However we decide to estimate the WP, it must be easy enough for a
human to do it in a minute or two. Players are not allowed to use computers,
calculators, printed tables, or pencil and paper when playing a game.

Academic research on backgammon has been largely confined to two areas:
strategies for using the doubling cube (offering or accepting), and computer-
ized backgammon players. Examples of the former include Thorp (1975; 2007,
this volume, pp. 237–265), Keeler and Spencer (1975), Orth (1976), Zadeh
and Kobliska (1977), Zadeh (1977), and Buro (1999); these generally either
assume that the WP is known before making any decision about doubling, or
they discuss ways to compute the WP that are not suitable to mental calcu-
lation. Thorp (1975, 2007) does discuss some mental calculations, but those
results were not available to the present authors until recently. Computerized
players, often based on neural networks, are now better than the best human
players (Tesauro 2002).

1.2 The game of backgammon

Backgammon is played on a board with 15 checkers per player, and 24 points
(organized into four tables of six points each) that checkers may rest on.
Players take turns rolling the two dice to move checkers toward their respective
“home boards,” and ultimately off the board. The first player to move all of
his checkers off the board wins.

When the dice are rolled, they are applied sequentially to the board by
moving one checker by the amount on one die, and then another checker by
the amount on the other die. The checker moved with the second die may be
the same one that was moved with the first die. Thus, if a player has only one
checker on the 3 point and another on the 6, and rolls a 2 and a 1, then the
checker on the 6 point may be moved to the 4 point, and the checker on the 3
point may be moved to the 2 point (written 6-4 3-2). Alternatively, the player
may play 6-5 3-1 or 6-5 5-3. If doubles are rolled, the player may move four
checkers. Thus, if double-ones were rolled in the above situation, the player
could move 6-5 5-4 3-2 2-1.

Because of the rule for doubles, the mean of the dice rolls in backgammon
is µ = 49/6 ≈ 8.1667, and the standard deviation is σ =

√
665/36 ≈ 4.3. No

moving checker may land on a point that has two or more opponent checkers.
If a point has exactly one opponent checker (a “blot”), it may be landed on
and “hit.” This complicates the game, so all movements mentioned in this
paper will strictly avoid landing on opponent’s checkers.

After the two players can no longer hit each other, they enter a “race”
to get their checkers off the board. First, they “bear in” checkers onto their
6 home board points. Once all 15 of a player’s checkers are in, that player
begins the “bearoff,” moving checkers off the board. This is done by moving
checkers off the points that correspond to the dice rolls. If no checker appears
on that point, one from a higher point must be moved down. If there are no
checkers on higher points, the highest checker may be borne off.



Estimating Winning Probabilities in Backgammon Races 269

This paper will focus on the race.

1.3 Approaches to estimating the WP

There are approximately 300 trillion possible racing games, when both players’
positions are considered. Our approach to estimating WPs is to develop a
way to “measure” a position to get an idea of how good it is. From the
measurements of the two players’ positions, we estimate the WP by computing
a function or looking something up in a (memorized) table. When we compute
WP values, we use only the behavior of the dice and checkers; we do not
include the possibility of winning or losing when a double is offered or declined.
If we name the player on roll A, and the opponent B, we will have the system
for estimating a WP shown in Figure 1 Once we decide how to measure a

Player A’s position −→ X
↘

F (X, Y )
↗

Player B’s position −→ Y

F (X, Y )→ (table)→ prob. of A winning

Fig. 1. System for estimating WP.

position, we must figure out an easily computable function F (X, Y ) which
gives a good estimate of the WP.

The most common way to measure a position is to compute the Raw Pip
Count, or RPC. This is the sum of the distance that each checker has to bear
off. Thus, if a player has two checkers on the three point, and one checker on
the four point (and no other checkers on the board), the RPC is 10. RPC is an
integer value that may be quickly computed and kept track of while playing
an actual game, so it is of use as a measurement of position. If two players
have the same RPC, they have roughly the same chance of winning the game,
with the player on roll having a small advantage. At the start of the game,
the RPCs are 167 each. At the start of the race, they are usually 80 to 100
each.

It is entirely possible for two different positions to have identical RPCs.
Therefore, if we use only the RPC to measure a position, we lose some infor-
mation that might have an effect on the WP. Later, we will estimate this loss
by testing different positions that have the same RPC.

In order to know what the function F (X, Y ) should be, we must know the
actual WPs. We estimate these by simulating many, many games and keeping
track of who wins each one. This process is known as “rolling out” a position.
Once this is done, we are left with the task of inventing an easy-to-compute
function that matches the data to within 1 percentage point.



270 Andrew M. Ross, Arthur Benjamin, and Michael Munson

To aid in finding such a function, we will investigate a simpler version
of backgammon called the “single checker model,” or SCM. It give us WPs
without the need to play many games. We will then compare this simpler
version to the rollout data to see how well the two correspond.

Our paper is organized as follows: In Section 2 we introduce the SCM,
and compute its exact WPs. We then discuss an existing approximation and
its variations. In Section 3 we discuss how we set up our rollout (simulation)
experiments, how the WP results compare to the SCM, and how to adjust an
approximation method to better correspond to our results.

2 The single checker model

The SCM assumes that a position with an RPC of X is equivalent to having
a single checker X pips away from bearing off. This is easiest to see for very
low pip counts. For example, if there are two checkers on the one-point and
one on the two-point, the SCM considers one checker on the four-point as an
equivalent position. This gets more complicated for larger X, since there are
only 24 pips on the backgammon board. For that reason, it is more convenient
to imagine the SCM as a discrete linear racetrack, with the opponents running
in different lanes, neither able to influence the other.

In the SCM, players roll the dice and move their checkers exactly the
number of pips shown on the dice (taking into account the doubles rule). The
backgammon rule about bearing in before bearing off does not apply. The rule
about using large dice rolls to bear off from lower-numbered points also does
not apply. The first player to land on or overshoot zero wins.

Since the players alternate rolls, the player on roll has an advantage. He
could bear off before the other player gets to roll. The player on roll is not nec-
essarily the player who rolled first in the game. Rather, the advantage switches
back and forth at each roll. We can put an exact value on this advantage. It
is one-half of the expected value of a roll µ, or 4 1

12 pips. So, if player A has a
raw pip count of X, and player B has a raw pip count of Y = X − 4, the two
are approximately evenly matched.

Any constant difference between the two players becomes less and less
important as the race gets longer. If player A has an RPC of 10 and player B
has an RPC of 30, then player B is not likely to win. But, if the two RPCs are
130 and 150, respectively, then the two are more evenly matched. We expect
to see each of the above-mentioned properties when we actually calculate the
WPs.

2.1 Computing the WPs for the SCM

We will compute the WPs from the perspective of player A, the player on roll.
These calculations were first published by Zadeh and Kobliska (1977), though
they had also been presented by Thorp (1975). Let WP(X, Y ) be the WP



Estimating Winning Probabilities in Backgammon Races 271

when the player on roll, A, has X pips to go, and B has Y pips to go. Denote
the probability of rolling n pips as p(n). Immediately after the roll, the two
players swap situations, but player A has moved some number of pips. So, we
sum over all possible rolls:

WP(X, Y ) = 1−
24∑

n=3

p(n) WP(Y, X − n). (1)

We must be careful near zero. We define WP(X, Y ) = 1 for X ≤ 0 and Y > 0,
and WP(X, Y ) = 0 for X > 0 and Y ≤ 0.

This is like a dynamic programming problem. The WP values can be
computed by simple recursion or iteration. A simple program takes no more
than a minute to compute WP for values of X and Y between 0 and 200. The
surface that this produces has the properties predicted for it. Its 3-dimensional
shape is not terribly interesting, but we will need to look at values from it in
a graphical manner. We will do this by taking cross-sections parallel to the
Y -axis (constant X value). Another way to think about it is that the X axis
comes “out of the page” toward the reader.

Figure 2 shows some of these cross-sections. Here we can see the properties

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

60 80 100 120 140 160

Pr
ob

ab
ilit

y 
of

 p
la

ye
r A

 w
in

ni
ng

Y, the RPC for player B

Single Checker Model

X=70 X=80 X=90 X=100 X=110 X=120 X=130

Fig. 2. Single checker model predictions for X in increments of 10.

mentioned above. The 50% point is not at the point where Y = X; instead,
it is near Y = X − 4. It is not exactly there, since the value of being ahead is
not exactly 4. Also, we see that a constant difference has less of an effect as
both RPCs grow. For example, the points where Y = X +10 tend downward.



272 Andrew M. Ross, Arthur Benjamin, and Michael Munson

2.2 Approximating the SCM

Although the SCM is substantially simpler than real backgammon, it is still
impractical to memorize the large table WP(X, Y ) computed above. We need
an easily computable function that gives us the values we need.

We might start by looking for simple functions F (X, Y ) that will lead to
a simple table lookup. The simplest reasonable function would be F (X, Y ) =
Y − X, the lead that player B has. However, there are a wide range of WP
values for any particular player B lead. Other simple functions would be
F (X, Y ) = (Y − X)/X or (Y − X)/Y , the player B lead proportional to
the current position. These also lead to a wide range of WP values at any
particular F value, so they are not too useful either.

A much better solution, based on renewal theory, has been proposed by
Kleinman (1980). It is called the D2/S system. We consider the SCM as a
renewal process, where each roll of the dice corresponds to an item lifetime.
We need to know how many rolls are needed to bear off, which corresponds to
how many items are needed in a particular length of time in a renewal process.
We will use the Central Limit Theorem for Renewal Processes (CLTRP) from
Feller (1968), which we paraphrase here:

If independent random variables with mean µ and variance σ2 are
to be summed until some large number T is reached, the number
of variables needed is approximately normally distributed with mean
T/µ and variance σ2T/µ3.

This approximation merely means that the ratio of the true mean to T/µ
goes to 1 as T grows, and the ratio of the true variance to σ2T/µ3 also goes
to 1 as T grows. Applying this to backgammon, T is the total number of pips
a player has left to move, and the random variables to be summed are dice
rolls. The “number of variables needed” is the number of rolls needed to bear
off.

One important question is whether the RPCs common in real backgammon
are large enough that the normal approximation applies. Another question is
what the actual mean and variance are. For now, we will assume that the
approximation applies, and we will use the mean and variance of the number
of rolls as given by the theorem.

Let nX be the number of rolls to bear off a single checker at X points from
the origin, and similarly for nY and Y . According to the theorem, we have

nX ∼ N

(
1
µ

X,
σ2

µ3
X

)
(2)

and
nY ∼ N

(
1
µ

Y,
σ2

µ3
Y

)
. (3)

The chance that the player on roll wins is the probability that nX ≤ nY , or
nY − nX ≥ 0, where



Estimating Winning Probabilities in Backgammon Races 273

nY − nX ∼ N

(
1
µ

(Y −X),
σ2

µ3
(Y + X)

)
. (4)

We then define Z to be a standard normal variable:

Z ≡
(

nY − nX −
Y −X

µ

) √
µ3

σ2(Y + X)
∼ N(0, 1). (5)

At this point, we must stop and recall that we are approximating a discrete
distribution with a continuous one. When we consider P(nY − nX ≥ 0), we
will approximate a finite sum with an infinite integral. So, we must perform a
continuity correction. This is usually done by integrating to a point halfway
between two of the integer points. In this case, we want to include 0 in the
integral, and we are integrating toward positive infinity. Therefore, we will
start at −0.5.

Given this standard normal distribution, we may calculate the probability
of the player on roll winning:

P(nY − nX ≥ −0.5) = P

(
Z ≥

(
−1

2
− Y −X

µ

) √
µ3

σ2(Y + X)

)

= Φ

(
Y −X + µ/2√

Y + X

√
µ

σ

)
, (6)

where Φ() is the Cumulative Distribution Function (CDF) of the standard
normal. Now we define D ≡ Y − (X − µ/2) and S ≡ Y + X. Note that
D has an extra term in it, while S does not. This extra term results from
the continuity correction, but it also can be interpreted as adjusting for the
µ/2 advantage that the player on roll has. Simplifying the above with this
expression, we get

Φ

(
D√
S

√
µ

σ

)
. (7)

By this, we see that if A is behind in the race (X − µ/2 > Y ), D will be
negative and A’s probability of winning will be low, as expected.

How does the formula in (7) become D2/S? The way most people would
compute that formula is by computing its argument, and then looking up the
result in a memorized table. But, extracting square roots is not an easy mental
calculation. So, we square the whole argument to get

D2

S

µ

σ2
(8)

and adjust the table accordingly. From there, divide the constant out and
again adjust the table. These adjustments are fairly transparent to those who
want to use the D2/S method, since it does not really matter what numbers
must be memorized.

Kleinman makes an adjustment to the constant µ/σ2 based on an obser-
vation about dice rolls. We will investigate this below.



274 Andrew M. Ross, Arthur Benjamin, and Michael Munson

2.3 Improving the approximation

Kleinman’s D2/S system provides a fairly good approximation to winning
probabilities in the SCM. However, it can be improved using more advanced
results from renewal theory. The CLTRP is true only in the asymptotic sense.
That is, it actually says that

lim
T→∞

E[# of rolls required]
T/µ

→ 1 and lim
T→∞

Var(# of rolls required)
Tσ2/µ3

→ 1.

(9)
There are actually constant offsets for the mean and the variance. The offset
for the mean is:

lim
T→∞

E[number of rolls required]− T/µ =
1
2

(
σ2

µ2
− 1

)
, (10)

and the offset for the variance is fairly complicated (it is given by Tijms 1994).
Substituting our values for µ and σ, we get an offset of −0.3615 (rounded).
This then needs two adjustments: Ordinary renewal theory does not count
a renewal at time zero, while we count it as the first roll, so we add 1 to
compensate, getting 0.6384. Also, ordinary renewal theory is in continuous
time, while our system is discrete, so we subtract 1/2 pip as a continuity
correction. This means subtracting (1/2)/µ = 0.061224 rolls, for a final offset
of 198/343 ≈ 0.5772, which we will define as δµ. This value has been verified
by formulating a discrete-time Markov chain that models the current RPC
and how it decreases with the dice rolls. The Markov chain is detailed below.
To find the variance offset, it was simpler to use the Markov chain’s results
than to apply continuity corrections to the usual renewal process variance
offset. We ultimately found a variance offset of δσ2 ≡ −0.0277945.

Now we know what the asymptotic values are for the mean and variance
of nX :

E [nX ] =
1
µ

X + δµ, (11)

Var [nX ] =
σ2

µ3
X + δσ2 . (12)

Using the same logic as before, we end up with

Φ

(
D√

σ2S/µ + 2µ2δσ2

)
. (13)

Notice that since each player has a δµ term, they cancel each other. If we
apply this adjustment, we see (Figure 3) that the error in the approximation
is reduced by a factor of 2 or so.



Estimating Winning Probabilities in Backgammon Races 275

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

60 80 100 120 140 160

Er
ro

r b
et

we
en

 e
st

im
at

e 
an

d 
SC

M

Y RPC

using Phi((Y-(X-mu/2)/sqrt(2.262 S + 0.000000))
using Phi((Y-(X-mu/2)/sqrt(2.262 S - 3.708211))

Fig. 3. Adjusting the D2/S method.

2.4 The Markov chain SCM

As mentioned above, we formulated a discrete-time Markov chain based on
the SCM to verify the mean offset δµ and compute the variance offset δσ2 .
Next, we describe that Markov model.

For each RPC in the model, we will have a state in the Markov chain.
Taking 160 as the upper bound on races for now, we will have the 161 Markov
states 0, 1, . . . , 160. The chances of moving from state i to state j in one roll
will be determined by what is allowed by the dice. Figure 4 shows how this
works when moving from state 160; the same graph applies for all the states
above 24. The thickness of each arrow in the figure shows how probable that
transition is. Near zero this graph must change, since overrunning zero is as

160159158157156155154153152151150149148

144
140
136

Fig. 4. How to form the bear-in portion of the Markov matrix.

good as landing on it directly (they both end the game). Figure 5 shows how
some of the arrows are re-routed. Once we hit zero, we move directly to a
“done” state, where we stay. This is known as an absorbing state, and it helps
keep track of exactly when we finished.



276 Andrew M. Ross, Arthur Benjamin, and Michael Munson

0 1 2 3 4 5 6 7 8 9

DONE

Fig. 5. How to form the bear-off portion of the Markov matrix.

Our matrix M has some nice properties. One is that M(i, i) = 0 (except
for the Done state), since we can’t stay in place when we roll the dice. Also,
M(i, j) = 0 for i < j, since we can’t move backwards. So, we have a lower-
triangular matrix (with the exception of the Done state). For any row i ≥ 24,
we have M(i, j) = p(i− j), as shown in Figure 4. For the rows i < 24, we have

M(i, 0) =
24∑

j=i

p(j). (14)

From the above description, we compile our matrix M . Its first row and
column correspond to the “done” state. Its second row and column correspond
to the 0 RPC state; its third row and column correspond to an RPC of 1, etc.
With the one exception of the upper left-hand corner, this matrix is strictly
lower triangular. This matrix can be expressed schematically as in Figure 6.
The trapezoid represents the RPCs that cannot bear off in one turn. The
triangle represents those RPCs near zero where special summing must be
done. The rectangular block shows entries that take care of moving to the
“done” state.

0
0

Fig. 6. A schematic view of the Markov matrix.



Estimating Winning Probabilities in Backgammon Races 277

Once the matrix is formed, we can compute the mean and variance of
the time to finish in two ways. One way is to compute the full distribution
of the time to finish by raising the matrix to higher and higher powers: the
probability of moving from state i to state j in exactly k turns is the (i, j)
component of Mk. So, to figure out the distribution of the number of turns
to bear off from X pips, we use

P(nX = k) = Mk(X, 0). (15)

The mean and variance are also available without computing the full distri-
bution, using results from the theory of first passage times. Now that we have
a more full understanding of how to adjust the D2/S method using mean and
variance offsets from the SCM, we turn to more-realistic simulations of racing
games.

3 The differences between the SCM and real
backgammon

As we have seen, the D2/S model is a very good over-the-board approximation
to the SCM. The question remains, though: how good is the SCM as an
approximation to real backgammon races? Real backgammon has rules about
bearing off that often force players to “waste” pips on the dice. That is, quite
often a roll of 5 (for example) will be used to bear off a checker from the
3-point, wasting 2 pips. The closer the game gets to the end, the more often
pips are wasted, since the checkers are on the low-numbered points. The SCM
takes into account only one way wastage can happen: on the very last move.
In reality, when the RPC is at (say) 30, the possible moves are restricted by
the bearoff rules. Since the RPC is over 24, though, the SCM neglects the
possibility of wastage.

Real races can also stretch the rule about no contact between the players.
For pip counts above 85 or so, it is common for pieces to remain on one’s 13-
point. If this is the case for both players, contact has not truly been avoided.
However, it is often the case that both players can avoid contact by avoiding
the other’s pieces and not leaving blots. This is different from the SCM, since
the players must avoid landing on the others’ pieces.

To determine how different real backgammon is from the SCM, we will
simulate backgammon games, and keep track of the WP for each RPC. To
do this, we created plausible initial positions for each RPC, and an easily
implemented strategy for the computer to follow in moving checkers during
the race.

3.1 Initial positions

There are many possible backgammon positions for each RPC that we are
interested in. We could get an RPC of 90 by stacking all 15 checkers on the



278 Andrew M. Ross, Arthur Benjamin, and Michael Munson

6-point, but such a position would not happen very often in practice. We want
positions that satisfy the following criteria:

• Realistic home board positions,
• Realistic outer board positions,
• Realistic numbers of crossovers (moving from one board to the next),
• Won’t interfere with each other, and
• Two positions with close RPCs are only different by a few checkers.

By “interfere,” we mean that if we try to match two of these positions against
each other, they won’t call for both players to occupy any one point. That
way, we can use only one position for each RPC, and then generate games for
each RPC pair by just using those two positions. The last constraint means
that, ideally, we will change from 90 to 91 raw pips by moving one checker by
one pip, instead of shuffling around multiple checkers. This will not always be
possible, since we will have to jump over opponent’s pieces on our 11 and 12
points (the noninterference constraint).

Positions matching these constraints were generated. Figure 7 shows the 70
position matched against the 90 position, and Figure 8 shows the 130 position
matched against the 160 position. To test the sensitivity of the rollouts to these
initial positions, other sets of positions were generated. One set had an extra
crossover in each position, another set had two extra crossovers, and a third
had a gap (no checkers) on the 5 point.

When we propose a strategy for the computer to use, the question of
optimality immediately arises. How do we know that this is the best strategy?
We don’t. However, the strategy proposed below is good enough that real
players use it, and we are interested in predicting results for games played by
people. Also, both computerized players will use exactly the same strategy, so
the results will not be biased. In the future, we might change the strategies
slightly and have a small set of them to play against each other.

Bearing in

Our strategy for bearing in is based on the principle of doing crossovers (mov-
ing a checker from one table to another) as soon as possible. It consists of two
components, called H and I. Component H considers the larger die first. It
looks for a checker which crosses over a table boundary and is the farthest one
from home that does so. If it finds such a checker, it moves it, then tries to
do the same with the smaller die. Of course, if doubles were rolled, the sizes
of the rolls are irrelevant, and H goes through its scanning four times.

If H left more than one die to use, the remaining dice are summed, and
H is run again. When all ways of calling H have failed (no more checkers can
cross over with the dice remaining), I is called. It looks for the farthest checker
back that lands on a point not occupied by any other pieces, whether those
pieces belong to the moving player or the opponent. This will avoid stacking



Estimating Winning Probabilities in Backgammon Races 279

123456789101112

13 14 15 16 17 18 19 20 21 22 23 24

Fig. 7. 70 (black) versus 90 (white).

123456789101112

13 14 15 16 17 18 19 20 21 22 23 24

Fig. 8. 130 (black) versus 160 (white).



280 Andrew M. Ross, Arthur Benjamin, and Michael Munson

a player’s checkers before bearoff. Failing that, I looks for the farthest checker
back that doesn’t land on an opponent.

Once all pieces are in the home board, we switch strategies entirely.

Bearing off

Our bearoff strategy will be based on a measurement of the position called
the Expected Pip Count, or EPC. We will try to minimize the EPC at each
move. This is almost always a good strategy. Buro (1999) mentions that it can
be suboptimal when the game is almost over (low RPC values), but overall it
is reasonable. Here is how this strategy works.

As play progresses in the bearoff, the player will roll more pips than are
needed to bear off completely. For example, starting bearoff with an RPC of
70, a player might roll a total of 90 pips on the dice before being completely
done. The number of pips actually rolled is a random variable. It must be at
least equal to the RPC, and there is an upper limit on how large it can be, since
racing bearoffs are guaranteed to finish in finite time. Since the range of this
random variable is limited, it has a mean, or expected, value. We will call this
the expected pip count, or EPC. Since we know the expected number of pips
per turn, µ, we can calculate the expected number of turns until completion
by simply dividing the EPC by µ. If we neglect the opponent’s position, we
will always favor a position with a low expected number of turns to a position
with a higher expected number of turns. Since expected number of turns and
EPC are linearly related, the EPC is a measure of how good a position is.
This leads to a simple strategy:

1. Roll the dice.
2. Compute all positions we could move to.
3. Compute the EPCs for all of them.
4. Move to the one with the lowest EPC.

The hardest part of this is calculating the EPC for a position. For a very
few simple positions, the EPC is easy to compute because the expected number
of turns is either zero or one. The only position with an expected number of
turns of zero is when all checkers are off the board. The positions where one
is guaranteed to bear off in one turn are: one checker on the ace point, one
checker on the two point, one checker on the three point, two checkers on the
ace point, and one checker on each of the ace and two points.

¿From these six positions, we can calculate the EPC for any bearoff posi-
tion. The method we will use is dynamic programming. For any position, we
consider each possible roll of the dice in turn. For each roll, we generate all
legal moves. For each of these new positions, we figure out the EPC. We then
pick the move with the lowest resulting EPC. Once we have these minimum
EPCs for all possible rolls, we average them. This is the average EPC once we
move from this position. To move from this position, though, takes precisely
one turn, or µ expected pips. This is expressed in Figure 9. Of course, a roll



Estimating Winning Probabilities in Backgammon Races 281

EPC for position P = (best EPC if a 1-1 is rolled +
best EPC if a 1-2 is rolled +

...

...
best EPC if a 6-6 is rolled)/36 +

µ

Fig. 9. Calculations for EPC.

of 1-2 is the same as 2-1, and likewise for any nondoubles roll, so we compute
those moves only once, and then weight them twice as much as the doubles
rolls.

How many possible single-player bearoff positions are there? There are at
most 15 checkers to distribute among 6 points; if Ki denotes the number of
checkers on the i-th point, then it must be the case that K1 +K2 + · · ·+K6 ≤
15. If we add a “dummy” point, point 0, that counts the number of checkers
off the board, we have K0 + K1 + · · · + K6 = 15. The number of ways to do
this is (from Feller 1968)

(
7 + 15− 1

15

)
=

(7 + 15− 1)!
15!(7− 1)!

= 54,264. (16)

To store the EPC for each bearoff position, we need an array of size 54,264
and a method to translate from a backgammon position into an array position
(an integer) and back. An algorithm or function that reduces a relatively
complex situation (e.g., a backgammon position) into an integer is called a
hash. If it is an injective function (so that no two positions map to the same
integer), it is called a perfect hash (Cormen, Leiserson, Rivest, and Stein
2001, Section 11.5). As an example, taking the RPC of a position is a hash
but it is not perfect, because many different positions can map to the same
RPC. A perfect hash was developed by Benjamin and Ross (1997) to map
a single player’s bearoff position (number of checkers on each point) into an
integer between 0 and 54,263, along with a reverse-hash to convert integers
into racing positions. This hash is also minimal, in that none of the integers
in the range are “wasted”—each integer maps back into a meaningful bearoff
position. This hash is also extendable to more board points than just the 6
points of the home board.

This enumeration makes calculating EPCs fairly easy. We create an array
of 54,264 real numbers, and initialize the locations corresponding to the six
positions for which we know the EPCs. Then, we march up the integers, gen-
erating rolls and moves for each position and storing the EPCs as we calculate
them. Conveniently, each legal move from the current position produces a po-
sition with a smaller integer representation, so we’ve already computed the
EPC for it. Therefore, we don’t have to call the EPC-calculating program



282 Andrew M. Ross, Arthur Benjamin, and Michael Munson

recursively, since we are being careful about the order in which we calculate
positions.

At this point, we have EPCs for each of the 54,264 bearoff positions. This
makes brute-force analysis of certain moves feasible. For example, consider
the hypothesis “The best possible move is one that bears off two or four
checkers (depending on doubles) if it possible to do so.” This could be called
a greedy algorithm, since it concentrates on getting checkers off the board
at the expense of having a smooth home board. The question is, is such
smoothing overrated? It turns out that the greedy approach is not always the
best, but it is not a bad alternative. There are 1668 pairs of position and dice
roll that result in the greedy choice being sub-optimal. However, the worst one
differs by only 1.35 expected pips, which is about one-sixth of an expected
turn. The position with this difference is position 41258, which is, in vector
form, (0, 5, 1, 8, 1, 0, 0), with a roll of 2-4. This position is obviously in need
of some smoothing. The greedy move would leave five checkers on the 1-point
and eight on the 3-point. The optimal move is 4-2, 3-off. This helps fills a gap
on the 2-point. However, the greedy and optimal strategies do not produce
results that are drastically different, so it might be easier to just go with the
“2-or-4” strategy over the board.

Another interesting hypothesis is that it is always best (in terms of EPC)
to use an ace to bear off from the 1-point if it is possible. An exhaustive search
shows this is true.

3.2 One-player rollouts

Now that we have a strategy for moving checkers, we can compare the SCM to
real backgammon. We will start by using the one-player versions of each, to see
if the number of turns is still approximately normal. This one player will move
simulated backgammon pieces (as opposed to the SCM), but the opponent’s
checkers will not be on the 12 and 11 points. So, the main difference between
the SCM and the single-player rollout is the bearoff rules.

In Figure 10, we plot the mean number of turns from the rollout data and
from the unadjusted CLTRP. On the left edge of the graph, the difference is
roughly 1.1 raw pips, and on the right edge it is 1.0 raw pips. However, our
calculations above show that the differences in the means end up canceling,
so we will not investigate it further.

Next, we look at the variance of the number of turns to finish. Above, we
mentioned that Kleinman has proposed a modification of the variation term
in some of the formulas. His suggestion is that, in real games, the standard
deviation of the dice rolls is closer to 4 than 4.3. Figure 11 shows that, indeed,
the rollout variance systematically differs from what the CLTRP predicts for
the SCM. It is closer to what Kleinman said. However, it is lower for the low
RPCs, and higher for large RPCs. A best-fit line is also plotted, showing that
the slope of the observed line is closer to the CLTRP value than to Kleinman’s
line, but the line is translated by roughly 13 pips to the right.



Estimating Winning Probabilities in Backgammon Races 283

6

8

10

12

14

16

18

20

22

60 80 100 120 140 160

M
ea

n 
nu

m
be

r o
f r

ol
ls 

to
 fi

ni
sh

RPC

186624 games per point

Rollout data
CLTRP

Fig. 10. The observed mean in a single-player rollout exceeds the CLTRP value.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

60 80 100 120 140 160

Va
ria

nc
e 

of
 n

um
be

r o
f r

ol
ls 

to
 fi

ni
sh

RPC

186624 games per point

x-intercept at RPC=13

Rollout data
CLTRP

Kleinman’s adjustment
-0.434891 + 0.0333651 * x

Fig. 11. Linear approximations to the observed variance in a single-player rollout.

3.3 Two-player rollouts

Having looked at how well the SCM matches ordinary single-player rollouts
in terms of mean and variance of number of rolls, we next turn to our overall
goal of calculating WPs in two-player games. For each position, we aim for
a standard error in our WP value of 0.001, or 0.1%. This requires at least
250,000 games per initial position pair when WP is near 1/2.

Rather than running all of our created positions against each other, we
focus on stepping X in increments of 10 from 60 to 130, and stepping Y from
X − 10 to X + 30 in increments of 1. Figure 12 shows how our rollout data
compare to the SCM predictions. We see that the SCM underpredicts the



284 Andrew M. Ross, Arthur Benjamin, and Michael Munson

WP values when they are above roughly 1/2, and overpredicts when the WP
values are lower. Below, we will adjust the D2/S model for this fact.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

60 80 100 120 140 160

Pr
ob

. o
f A

 w
in

ni
ng

RPC

Using the Initial Positions

Rollout data
SCM

Fig. 12. Comparing the rollout data to the SCM.

Another potentially important factor is gaps in the initial boards. The
initial positions were altered to produce large gaps. The resulting positions
were then played against the original positions. For each (X, Y ) pair, four
sets of trials were run: no gap vs. no gap, gap vs. no gap, no gap vs. gap, and
gap vs. gap. The results were not much different from the original positions.
Figure 13 shows the effect of both players having a gap. It appears that the
WP values are systematically higher (above 1/2) when both players have a
gap for the first 5 curves, but lower for the last two. Figure 14 shows that
larger differences occur when only one player has a gap. Still, the differences
are not all that large.

Adjusting D2/S for 2-player games

To adjust D2/S to match our WP figures above, and still keep it reasonable
to compute mentally, we start by looking at the observed mean and variance
of number of turns to bear off from our two-player rollout data. Using a least-
squares line fit, we find

E [nX ] = 0.90544 + 0.122688X, (17)

Var [nX ] = −0.408285 + 0.0330249X, (18)

with correlation coefficients of 0.999959 and 0.998989, respectively. When we
put these into the formulae used in deriving D2/S, we will use u for the slope
of the mean, and v for the slope of the variance. Using the same logic as twice
before, we again see that the δµ terms cancel each other, and we end up with



Estimating Winning Probabilities in Backgammon Races 285

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

60 80 100 120 140 160

Pr
ob

ab
ilit

y 
of

 p
la

ye
r A

 w
in

ni
ng

RPC for player B

No gaps
Both players have gaps

Fig. 13. Both players have a gap in their initial positions.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

60 80 100 120 140 160

Pr
ob

ab
ilit

y 
of

 p
la

ye
r A

 w
in

ni
ng

RPC for player B

Player on roll has a gap
Other player has a gap

Fig. 14. Only one initial position has a gap.

Φ

((
1
2

+ u(Y −X)
)

1√
v(Y + X) + 2δσ2

)
. (19)

We can transform this to

Φ

((
Y − (X − 1

2u
)
)

1√
v(Y + X)/u2 + 2δσ2/u2

)
(20)

to make it easier to compute. Again to make things easier later, we define ε
as follows:

1
2u
≈ 4.0753 ≡ 4 + ε. (21)



286 Andrew M. Ross, Arthur Benjamin, and Michael Munson

Now we square the argument of Φ above, to avoid taking the square root:
(
Y − (X − 1

2u )
)2

v(Y + X)/u2 + 2δσ2/u2
. (22)

Now multiply by u2/v to eliminate the multiplication on the bottom:
(
Y − (X − 1

2u )
)2

(Y + X) + 2δσ2/v
. (23)

Now we will use ε to make the top a little bit more accurate. Usually, we
would round 1/(2u) to just plain 4, but if we expand it beforehand, we can
get a slightly better estimate:

(
Y −

(
X − 1

2u

))2

= (Y − (X − 4) + ε)2

= (Y − (X − 4))2 + 2ε(Y − (X − 4)) + ε2. (24)

We will ignore the ε2, because it is approximately 0.005. However, 2ε ≈ 1/7,
which can amount to 5 pips in some races.

In the denominator, 2δσ2/v ≈ −24.72588. We will approximate this with
−25, since there is little else that can be done to make it easy to calculate.
Thus, our final computation is

Player A’s position RPC−→ X
↘

∆ ≡ Y − (X − 4)
S ≡ Y + X

↗
Player B’s position RPC−→ Y

(25)

∆2 + ∆/7
S − 25

→ Table 1→ Π. (26)

Now if the player on roll is behind and Π is above 50%, subtract Π from
100% to get the proper probability of winning. Our table gives much more
precision than would be used mentally, in case it is useful in future studies.

If the numerator is rounded to an integer, and −25 is used in the de-
nominator instead of −24.7, an error of up to 2.5% can occur. However, this
maximum error occurs right near the 50% point, where large errors are not
normally important. If the player needs to figure out who is ahead when the
race is close, the sign of D should be enough.

As an example, suppose X = 70 and Y = 80. We compute ∆ = 80 −
(70 − 4) = 14 and S = 70 + 80 = 150. Then, we compute the numerator,
∆2 + ∆/7 = 142 + 14/7 = 196 + 2 = 198 and the denominator, S − 25 = 125.



Estimating Winning Probabilities in Backgammon Races 287

Table 1. The table to use.

Π Value of ∆2+∆/7
S−25 Π Value of ∆2+∆/7

S−25

0.50 0.00000000 0.75 0.998131
0.51 0.00137882 0.76 1.09451
0.52 0.00551875 0.77 1.19769
0.53 0.0124302 0.78 1.30824
0.54 0.0221307 0.79 1.42679
0.55 0.0346450 0.80 1.55407
0.56 0.0500050 0.81 1.69092
0.57 0.0682506 0.82 1.83834
0.58 0.0894296 0.83 1.99749
0.59 0.113598 0.84 2.16975
0.60 0.140821 0.85 2.35678
0.61 0.171174 0.86 2.56060
0.62 0.204741 0.87 2.78365
0.63 0.241618 0.88 3.02902
0.64 0.281913 0.89 3.30059
0.65 0.325747 0.90 3.60337
0.66 0.373256 0.91 3.94399
0.67 0.424591 0.92 4.33145
0.68 0.479920 0.93 4.77844
0.69 0.539433 0.94 5.30360
0.70 0.603341 0.95 5.93596
0.71 0.671879 0.96 6.72439
0.72 0.745311 0.97 7.76102
0.73 0.823934 0.98 9.25404
0.74 0.908082 0.99 11.8737

Dividing, we get 198/125 = 1.584; looking this up in the table, we find we are
between 0.80 and 0.81, but closer to 0.80.

A less tidy example starts with X = 70 and Y = 90, so ∆ = 24 and
S = 160. The numerator is then 242 + 24/7 = 576 + 3.43 = 579.43, and the
denominator is S − 25 = 135. Dividing, we get 4.292, and looking this up in
the table gives a value between 0.91 and 0.92, but closer to 0.92. If we go back
and round the numerator to 579, our resulting division gives 4.288̄; even if
we rounded up to 580, our division gives 4.296. In either case, our ultimate
decision is not affected.

Our last example has the player on roll behind: X = 90 and Y = 70. We
get ∆ = −16 and S = 160. The numerator is 256 + (−16)/7 = 253.714, and
the denominator is 135 as before. Our ratio is 1.879, which the table says is
a WP between 0.82 and 0.83. However, we know that the player on roll is
behind, so these WP values apply to the other player instead; the player on
roll has a WP value between 1− 0.82 and 1− 0.83.



288 Andrew M. Ross, Arthur Benjamin, and Michael Munson

It is handy to have simple rules to test if the WP is above a certain
percentage. Here are some approximations for use over the board. They have
been taken from Figure 12.

• The WP is above 90% if Y ≥ 1.1X + 12.
• The WP is above 80% if Y ≥ 1.1X + 4.

These are not strictly accurate even for the data presented here, but they are
approximately correct.

4 Conclusion and acknowledgment

We have examined an existing system for estimating winning probabilities in
the single checker model, and used more advanced renewal theory to make it
more accurate. We have also compared the SCM to simulated backgammon
races and adjusted our model to produce an even more accurate method of es-
timating winning probabilities, without much increase in the mental difficulty
of the method.

We are grateful to Bob Leary at the San Diego Supercomputer Center
for his supervision of Andrew Ross during a 1995 Research Experience for
Undergraduates (REU) project that produced much of our data.

References

1. Benjamin, Arthur and Ross, Andrew M. (1997) Enumerating backgammon po-
sitions: the perfect hash. Interface: Undergraduate Research at Harvey Mudd
College 16 (1) 3–10.

2. Buro, Michael (1999) Efficient approximation of backgammon race equities. In-
ternational Computer Chess Association Journal 22 (3) 133–142.

3. Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., and Stein, Clif-
ford (2001) Introduction to Algorithms, 2nd Ed. MIT Press and McGraw-Hill.

4. Feller, William (1968) An Introduction to Probability Theory and Its Applica-
tions, Vol. 1. Wiley, New York.

5. Keeler, Emmett B. and Spencer, Joel (1975) Optimal doubling in backgammon.
Operations Research 23 (6) 1063–1071.

6. Kleinman, Danny (1980) Vision Laughs at Counting. Los Angeles.

7. Orth, P. J. (1976) A comment on “Optimal Doubling in Backgammon.” Oper-
ations Research 24 (6) 1179.

8. Tesauro, Gerald (2002) Programming backgammon using self-teaching neural
nets. Artificial Intelligence 134 (1–2) 181–199.

9. Thorp, Edward O. (1975) Backgammon: part I, the optimal strategy for the pure
running game. Presentation at the Second Annual Conference on Gambling,
South Lake Tahoe, NV.



Estimating Winning Probabilities in Backgammon Races 289

10. Thorp, Edward O. (2007) Backgammon: the optimal strategy for the pure run-
ning game. In: Ethier, Stewart N. and Eadington, William R. (eds.) Optimal
Play: Mathematical Studies of Games and Gambling. Institute for the Study of
Gambling and Commercial Gaming, University of Nevada, Reno, 237–265.

11. Tijms, Henk C. (1994) Stochastic Models: An Algorithmic Approach. Wiley, New
York.

12. Zadeh, Norman (1977) On doubling in tournament backgammon. Management
Science 23 (9) 986–993.

13. Zadeh, Norman and Kobliska, Gary (1977) On optimal doubling in backgam-
mon. Management Science 23 (8) 853–858.


	Claremont Colleges
	Scholarship @ Claremont
	1-1-2007

	Estimating Winning Probabilities in Backgammon Races
	Andrew M. Ross
	Arthur T. Benjamin
	Michael Munson '94
	Recommended Citation


	collection.pdf

