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Euclid does integers

The Euclidean algorithm for finding greatest common divisors, one of the oldest algo-
rithms in the world, is also one of the most versatile. When applied to integers, Euclid’s
theorem can be stated as:

If a = qb + r then gcd(a, b) = gcd(b, r).

The one sentence proof is that any number that divides a and b must also divide b
and r (since r = a − qb) and vice versa; hence, the pairs (a, b) and (b, r) have the
exact same set of common divisors. What turns this theorem into an algorithm is that
if b > 0, then we can find a unique quotient q so that 0 ≤ r < b, allowing us to repeat
the process with the second coordinate decreasing to zero. That is, if gcd(a, b) = c,
then Euclid’s algorithm will look like

gcd(a, b) = gcd(b, r) = · · · = gcd(c, 0) = c.

For example,

gcd(422, 138) = gcd(138, 8) = gcd(8, 2) = gcd(2, 0) = 2.

Better yet, we can keep track of the integer quotients at each step (for example, q1 =
� 422

138� = 3) and remove the gcd label so the above calculation looks like

(422, 138)
q1=3−−→ (138, 8)

q2=17−−−→ (8, 2)
q3=4−−→ (2, 0) = 2.

Now in addition to working from left to right, we can run the algorithm from right to
left by holding on to the quotients. That is, given the quotients q1 = 3, q2 = 17, q3 = 4,
we can start with (2, 0) and (from q3 = 4) derive that it came from (8, 2), which
(from q2 = 17) came from (138, 8) which (from q1 = 3) came from (422, 138). In
other words, we can run Euclid’s algorithm backwards to obtain “dilcuE’s algorithm:”
(b, r)

q−→ (qb + r, b). For example,

2 = (2, 0)
q3=4−−→ (8, 2)

q2=17−−−→ (138, 8)
q1=3−−→ (422, 138).

As a practice problem, let’s find the unique pair of relatively prime integers (i.e.,
whose greatest common divisor is one) for which Euclid’s algorithm produces quo-
tients q1 = 2, q2 = 3, q3 = 5, q4 = 8. By dilcuE’s algorithm, we have

1 = (1, 0)
q4=8−−→ (8, 1)

q3=5−−→ (41, 8)
q2=3−−→ (131, 41)

q1=2−−→ (303, 131).
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Euclid does polynomials

What makes Euclid’s algorithm so versatile is that it can also be applied to objects
other than integers. For example, given two polynomials a(x) and b(x) with rational
coefficients, we define their greatest common divisor c(x) to be the monic polynomial
of greatest degree for which c(x) divides a(x) and b(x). Here, Euclid’s theorem says

If a(x) = q(x)b(x) + r(x), then gcd(a(x), b(x)) = gcd(b(x), r(x)).

(The proof is exactly as before, except we insert (x) after every term.) To turn this
theorem into an algorithm, we note that if the degree of b(x) is at least one, then by the
division algorithm for polynomials, we can always find unique quotient polynomial
q(x) so that the degree of r(x) is strictly less than the degree of b(x); hence Euclid’s
algorithm is guaranteed to terminate with an ordered pair (kc(x), z) for some rational
numbers k �= 0 and z, and some monic polynomial c(x) of degree at least one. If
z = 0, then gcd(a(x), b(x)) = gcd(kc(x), 0) = c(x); If z �= 0, then a(x) and b(x) are
relatively prime. For example,

(x3 + 4x2 + 5x + 2, 2x2 − 6x − 8)
1
2 x+ 7

2−−−→ (2x2 − 6x − 8, 30x + 30)

1
15 x− 4

15−−−−→ (30x + 30, 0)

where, for example, the first step indicates that

x3 + 4x2 + 5x + 2 =
(

1

2
x + 7

2

)
(2x2 − 6x − 8) + (30x + 30).

Since gcd(30x + 30, 0) = 30(x + 1), it follows that gcd(x3 + 4x2 + 5x + 2, 2x2 −
6x − 8) = x + 1. On the other hand, adding 15 to the constant term of a(x) results in

(x3 + 4x2 + 5x + 17, 2x2 − 6x − 8)
1
2 x+ 7

2−−−→ (2x2 − 6x − 8, 30x + 45)

1
15 x− 3

10−−−−→
(

30x + 45,
11

2

)
,

so the original polynomials are relatively prime, since the constant term, 11/2, is not
zero. As with the integers, we can reverse this procedure starting with the final pair
of polynomials, and backtracking through the quotients to obtain the original pair.
Notice that the Euclidean Algorithm works here, because the coefficients of all of
the polynomials, including the quotient polynomials, are allowed to be rational. If all
coefficients were restricted to be integers, we could not apply the Euclidean algorithm.

Things become more interesting when we look at the set Z2[x] where all of the
coefficients come from the set {0, 1}, and all of the coefficient arithmetic is performed
modulo 2. For example, in Z2[x], (x + 1)3 = x3 + 3x2 + 3x + 1 = x3 + x2 + x + 1,
and (x + 1)(x2 + x + 1) = x3 + 2x2 + 2x + 1 = x3 + 1. For the exact same reason as
in the polynomial case, we can perform the Euclidean algorithm on polynomials from
Z2[x] too. (In fact, it’s easier in Z2[x] because all nonzero polynomials are monic, and
subtraction is the same as addition.) For instance,

(x3 + x2 + x + 1, x3 + 1)
q1=1−−→ (x3 + 1, x2 + x)

q2=x+1−−−−→ (x2 + x, x + 1)

q3=x−−→ (x + 1, 0).
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Thus gcd(x3 + x2 + x + 1, x3 + 1) = x + 1, which agrees with our earlier calcula-
tions. Again, if we hold on to the quotients, we can reverse the process through dilcuE’s
algorithm.

Euclid does 1-to-1 correspondences

We now are ready ask the main question of this paper. If we choose two polynomials
at random from Z2[x], then what is the chance that they are relatively prime? In FIG-
URE 1, we have a 16 by 16 matrix representing every pair of polynomials of degree 3
or lower. (Notice that the number of polynomials of degree n is 2n since the coefficient
of n must be one, but every subsequent coefficient can be one or zero. Likewise the
number of polynomials of degree less than n is also 2n .) Every dark square represents
an ordered pair of polynomials that are relatively prime. Every light square represents
an ordered pair of polynomials that are not relatively prime. We have drawn thick lines
separating polynomials of different degrees. Notice that except for the four squares in
the lower-left corner representing the ordered pairs of constant polynomials, all other
thick rectangles have an equal number of dark and light squares. As the next theorem
shows, this is not a coincidence.
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Figure 1 In every solid rectangle, except for the one in the lower left corner, half of the
polynomials in Z2[x] are relatively prime (as represented by the dark squares). But how
do you pair up the dark squares with the light squares?

THEOREM 1. Let a(x) and b(x) be randomly chosen (i.e., uniformly and indepen-
dently) from the set of polynomials in Z2[x] of degree m and n, respectively, where m
and n are not both zero. Then the probability that a(x) and b(x) are relatively prime
is 1/2.
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Proof. Without loss of generality, we assume that m ≥ n. Our goal is to show that
every relatively prime pair (a(x), b(x)) can be matched up with a non-relatively prime
pair (a1(x), b1(x)), where a1 and b1 have the same degree as a and b, respectively.

If n = 0, then we match the relatively prime pair (a(x), 1) with the non-relatively
prime pair (a(x), 0). Now suppose that n ≥ 1 and let (a(x), b(x)) be a non-relatively
prime pair. Then applying Euclid’s algorithm gives us a unique sequence

(a(x), b(x))
q1−→ (b(x), r1(x))

q2−→ (r1(x), r2(x))
q3−→ · · · qt−→ (c(x), 0)

where c(x), a polynomial of degree at least one, is the greatest common divisor. Start-
ing with the relatively prime pair (c(x), 1) and using the same quotient polynomi-
als, qt , . . . , q1, we can reverse Euclid’s algorithm to produce a relatively prime pair
(a1(x), b1(x)), which have the same degrees as (a(x), b(x)).

For example, when a(x) = x3 + x2 + x + 1 and b(x) = x3 + 1, the Euclidean al-
gorithm produces the greatest common divisor c(x) = x + 1.

(x3 + x2 + x + 1, x3 + 1)
q1=1−−→ (x3 + 1, x2 + x)

q2=x+1−−−−→ (x2 + x, x + 1)

q3=x−−→ (x + 1, 0).

Now running the Euclidean algorithm backwards from the relatively prime pair (x +
1, 1), with the same quotients

(x + 1, 1)
q3=x−−→ (x2 + x + 1, x + 1)

q2=x+1−−−−→ (x3 + x, x2 + x + 1)

q1=1−−→ (x3 + x2 + 1, x3 + x)

we obtain (a1(x), b1(x)) = (x3 + x2 + 1, x3 + x), which is a relatively prime pair
since Euclid’s algorithm reduces it to (x + 1, 1).

COROLLARY 2. If a(x) and b(x) are randomly chosen from the set of polynomials
in Z2[x] of degree less than n, then the probability that they are relatively prime is
1
2 + 1

4n .

Proof. There are 2n polynomials of degree less than n and therefore 4n ordered
pairs of polynomials (a(x), b(x)). Three of the four constant pairs (0, 1), (1, 0), (1, 1)

are relatively prime. From Theorem 1, among the remaining 4n − 4 pairs, exactly half
of them are relatively prime. Thus the probability of a relatively prime pair is

3 + 1
2 (4

n − 4)

4n
= 1

2
+ 1

4n
.

In a recent paper [1], Corteel, Savage, Wilf, and Zeilberger prove a special case of
Theorem 1 (under the assumption that m = n) by an elegant generating function ar-
gument, but ask for a “nice simple bijection that proves this result.” We hope that our
Euclidean bijection is nice and simple enough. We note that Reifegerste [2] also found
a bijection using “resultant matrices” that was essentially the Euclidean algorithm in
heavy disguise. As we’ll see, the Euclidean bijection leads to interesting generaliza-
tions of Theorem 1 (some of which also appear in [1]).

Euclid does 1-to-many correspondences

What if the coefficients of our polynomial come from Z3 instead of Z2? A picture
similar to FIGURE 1 would show that, except for the lower left corner of constant
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polynomial pairs, in every thick rectangle, precisely two thirds of all polynomial pairs
are relatively prime. (The polynomials are listed (from left to right and from bottom
to top) in lexicographic order. For example, the first nine columns correspond to the
polynomials: 0, 1, 2, x , x + 1, x + 2, 2x , 2x + 1, and 2x + 2.)

Figure 2 Every solid rectangle, except for the one in the lower left corner, has twice as
many dark squares (representing relatively prime polynomials in Z3[x]) as light squares.
But how do you assign two dark squares to each light square?

In general, if our coefficients come from a finite field F of q elements (for instance,
the set F = Zq , when q is prime) then we have the following generalization.

THEOREM 3. Let F be a finite field of q elements, and let a(x) and b(x) be ran-
domly chosen from the set of polynomials in F[x] of degree m and n, respectively,
where m and n are not both zero. Then the probability that a(x) and b(x) are rela-
tively prime is 1 − 1/q.

Proof. To prove this, we show that for every non-relatively prime pair (a(x), b(x)),
there are q − 1 relatively prime pairs; hence the proportion of non-relatively prime
pairs is 1/q. If n = 0, then the non-relatively prime pair (a(x), 0) is matched up with
the q − 1 relatively prime pairs (a(x), z) where z is a nonzero element of F . (Note
that gcd(2x, 2) = 1, not 2, since 2 divides 1, and we insist that the greatest common
divisor be monic.)

When n ≥ 1, then we can apply Euclid’s algorithm to (a(x), b(x)), producing a
unique set of quotient and remainder polynomials,

(a(x), b(x))
q1−→ (b(x), r1(x))

q2−→ (r1(x), r2(x))
q3−→ · · · qs−→ (kc(x), z)

where c(x) is a monic polynomial, and k �= 0 and z are constants in F . If z = 0, then
a(x) and b(x) have greatest common divisor c(x); otherwise they are relatively prime.
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Now suppose n ≥ 1, and let (a(x), b(x)) be a non-relatively prime pair. Then Eu-
clid’s algorithm produces a unique set of quotient and remainder polynomials

(a(x), b(x))
q1−→ (b(x), r1(x))

q2−→ (r1(x), r2(x))
q3−→ · · · qs−→ (kc(x), 0)

where c(x) is a monic polynomial of degree at least one, and k is a nonzero constant
in F . Starting with (kc(x), 0) and the quotients qs, . . . , q1, we can reverse Euclid’s
algorithm to reconstruct (a(x), b(x)). Likewise, for each nonzero constant z in F , we
can start with the relatively prime pair (kc(x), z) and the same quotient polynomi-
als qs, . . . , q1 to produce a relatively prime pair (az(x), bz(x)), which have the same
degree as a(x) and b(x) respectively. Since there are q − 1 choices for z we have
established the desired 1-to-(q − 1) correspondence.

For example, suppose that q = 3, F = Z3, m = 5, n = 3, and consider the pair
(x5 + x, x3 + x + 1). By Euclid’s algorithm,

(x5 + x, x3 + x + 1)
q1=x2+2−−−−→ (x3 + x + 1, 2x2 + 2x + 1)

q2=2x+1−−−−→ (2x2 + 2x + 1, 0)

and so the pair is not relatively prime. Then starting with the relatively prime pairs
(2x2 + 2x + 1, 1) and (2x2 + 2x + 1, 2), dilcuE’s algorithm gives us two more rela-
tively prime polynomials of degree 5 and 3, namely

(2x2 + 2x + 1, 1)
q2=2x+1−−−−→ (x3 + x + 2, 2x2 + 2x + 1)

q1=x2+2−−−−→ (x5 + x2 + x + 2, x3 + x + 2)

and

(2x2 + 2x + 1, 2)
q2=2x+1−−−−→ (x3 + x, 2x2 + 2x + 1)

q1=x2+2−−−−→ (x5 + 2x2 + x + 1, x3 + x).

The number of pairs of polynomials of degree less than n is q2n . Among the q2 con-
stant pairs, all of them are relatively prime except for (0, 0). (Yes, in F[x], gcd(2, 2) =
1.) Among the others, exactly 1/qth of them are not relatively prime. Thus the number
of nonrelatively prime pairs is 1 + 1

q (q2n − q2). Dividing by q2n , the probability of not

being relatively prime is 1
q − q−1

q2n . Consequently, we have

COROLLARY 4. Let F be a finite field with q elements. If a(x) and b(x) are ran-
domly chosen from the set of polynomials in F[x] of degree less than n, then the prob-
ability that they are relatively prime is 1 − 1

q + q−1
q2n .

Euclid does m-tuples

How about the probability that a random triple of polynomials in F[x] is relatively
prime? We claim that the probability that three polynomials a1(x), a2(x), a3(x) (not
all constant) in F[x] are not relatively prime is 1/q2. Without loss of generality,
we’ll assume that a1(x), a2(x), and a3(x) are chosen randomly from among poly-
nomials of degree d1 ≥ d2 ≥ d3 ≥ 0, respectively, where d1 ≥ 1. The polynomials
will not be relatively prime if and only if a1(x) and a2(x) are not relatively prime and
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gcd(a1(x), a2(x)) and a3(x) are not relatively prime. By Theorem 3, the probability
that a1(x) and a2(x) are not relatively prime is 1/q, and their gcd is a polynomial
c(x) with some degree d ≥ 1. Given that c(x) has degree d, Euclid’s algorithm can
be used (although we shall skip this detail) to show that it is equally likely to be any
of the qd monic polynomials of degree d. Applying Theorem 3 again, we have the
probability that c(x) and a3(x) are not relatively prime is also 1/q. (Note that a3(x) is
chosen independently of c(x).) Multiplying the probabilities together, the probability
that a1(x), a2(x), a3(x) are not relatively prime is 1/q2, and hence the probability that
they are relatively prime is 1 − 1/q2.

Using induction, this argument can be extended to show

COROLLARY 5. Let (d1, d2, . . . , dm) be an ordered m-tuple of nonnegative inte-
gers (not all zero) and for 1 ≤ i ≤ m, let ai (x) be a randomly chosen polynomial of
degree di over F[x], where F is a finite field with q elements. Then the probability that
a1(x), a2(x), . . . , am(x) are relatively prime is 1 − 1

qm−1 .

Finally, by a counting argument similar to the ones before, our final corollary is
obtained.

COROLLARY 6. If a1(x), . . . , am(x) are randomly chosen polynomials of degree
less than n in F[x], where the field F has q elements, then the probability that they
are relatively prime is 1 − 1/qm−1 + (q − 1)/qmn.

Using a similar argument, one can show that the set of pairs of monic polynomials
of Z[x] can be partitioned into disjoint infinite sets, such that each set contains at most
one pair that is not relatively prime. Thus, if a pair of monic polynomials is chosen at
random (in an appropriate sense) from Z[x], then the probability that they are relatively
prime is 1.
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valuable suggestions.
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