
Claremont Colleges
Scholarship @ Claremont

CMC Senior Theses CMC Student Scholarship

2015

Acceptance-Rejection Sampling with Hierarchical
Models
Christian A. Ayala
Claremont McKenna College

This Open Access Senior Thesis is brought to you by Scholarship@Claremont. It has been accepted for inclusion in this collection by an authorized
administrator. For more information, please contact scholarship@cuc.claremont.edu.

Recommended Citation
Ayala, Christian A., "Acceptance-Rejection Sampling with Hierarchical Models" (2015). CMC Senior Theses. Paper 1162.
http://scholarship.claremont.edu/cmc_theses/1162

http://scholarship.claremont.edu
http://scholarship.claremont.edu/cmc_theses
http://scholarship.claremont.edu/cmc_student
mailto:scholarship@cuc.claremont.edu

Claremont McKenna College

Acceptance-Rejection Sampling with Hierarchical Models

Submitted to

Professor Mark Huber

And

Dean Nicholas Warner

By

Christian Alessandro Ayala

For

Senior Thesis

Spring 2015

The Twenty-third of April in the Year of our Lord Two Thousand and Fifteen

Abstract

Hierarchical models provide a flexible way of modeling complex behavior. However, the com-
plicated interdependencies among the parameters in the hierarchy make training such models
difficult. MCMC methods have been widely used for this purpose, but can often only approx-
imate the necessary distributions. Acceptance-rejection sampling allows for perfect simulation
from these often unnormalized distributions by drawing from another distribution over the same
support. The efficacy of acceptance-rejection sampling is explored through application to a small
dataset which has been widely used for evaluating different methods for inference on hierarchical
models. A particular algorithm is developed to draw variates from the posterior distribution.
The algorithm is both verified and validated, and then finally applied to the given data, with
comparisons to the results of different methods.

1 Introduction

In an empirical model, a sample of some population is used to estimate or ”train” the parameters of
a model for the population. The most familiar example is probably the simple OLS linear regression
model,

yi = β0 + β1xi + ui, i = 1, ..., n

ui ∼ N(0, σ2)

where (xi, yi) are the values of a dependent and an independent variable over n trials and the
parameters are β0 and β1. In OLS, the parameters are trained by taking

min
β0,β1

n∑
i=1

(yi − β0 − β1xi)
2

which, in this case, can be expressed analytically:

β0 = ȳ − β1x̄, β1 =
cov(~x, ~y)

var(~x)
.

Once the model has been trained, it can be used for a variety of predictive or inferential purposes.
For example, given a new value of the independent variable, point and interval estimates can be
made of the corresponding value of the dependent variable. Or, the parameters can be subjected to
statistical tests to make inferences about the underlying population parameters.

A hierarchical model is simply an empirical model where a hierarchical relationship among the
parameters is assumed. More precisely, for data t1, t2, ..., tm and parameters θ1, θ2, ..., θn:

θ1 ∼ D1

θi ∼ Di(θ1, θ2, ..., θn−1)

ti ∼ D(θ1, θ2, ..., θn)

As with the linear model, a hierarchical model allows a variety of predictions and inferences to be
made. Furthermore, the hierarchical structure allows for greater flexibility of assumptions and more
sophisticated inferences. In particular, a hierarchical model is a natural solution when there are a
number of related parameters to estimate, but little empirical data for each one individually; the
hierarchy allows this similarity to be exploited [6]. However, due to the complicated conditional
relationships among the parameters in the model, training them based on a known data set can be
much more difficult than it is in the case of OLS. Monte Carlo Markov Chain (MCMC) approaches,
including Gibbs samplers, are among the most popular methods for meeting these challenges [11],
but these approaches introduce challenges of their own. Generally, such methods are able only
to estimate the required distributions, and are not simple to implement for researchers without
specialized statistical modeling expertise.

1

Acceptance-rejection (or AR) sampling is an alternative approach to estimating these models.
Through application of Bayes’ Theorem, it is usually possible to find an unnormalized distribution
function for the parameters in the model based on the data and other parameters in the model. AR
provides a way to sample exactly from these unnormalized distributions.

The goal of this paper will be to explore the effectiveness of AR sampling for estimating hier-
archical models by applying it to a model of pump failures at the nuclear plant Farley 1 [4] that
has already been used widely for testing other approaches [4, 5, 6, 8, 10]. Section 2 will provide
an explanation of the model, Section 3 will explain how AR was used to estimate the model, and
Section 4 will provide analysis of the results.

2 The Model

The original data for this problem consist of failure counts for ten different pumps over different time
intervals. Let Sk denote the number of failures for pump k, and let Tk denote the time of operation
in thousands of hours for pump k (the data themselves can be found in Appendix A). The problem
is to determine the distribution of failures for each of the ten pumps. This is accomplished through
the following hierarchical model, which was formulated in [10]:

β → λk → Sk

First,
α = 1.802, γ = 0.01, δ = 1.

The values of these parameters were determined using a method of moments argument[10].Then,
the parameter β is drawn:

β ∼ Gamma(γ, δ).

λk for k = 1, ..., 10 are then drawn:

λk ∼ Gamma(α, β).

Finally, Sk is drawn, according to λk and Tk:

Sk ∼ Po(λkTk).

It is useful to have the distribution for each parameter of the model conditioned on the data and
the other parameters. For this model, we have the following:

Fact 1.
[λk|β, Sk, Tk] ∼ Gamma(α+ Sk, β + Tk)

[β|~λ] ∼ Gamma(γ + 10α,
∑

λk + δ)

Proof. Explicitly stated, the conditional distribution of λ given β, S and T is

fλ|β,S,T (x) =
(β + T)α+S

Γ(α+ S)
xα+S−1e−(β+T)x1(x > 0)

dropping the subscript k for convenience. Γ(x) is an extension of the factorial function to all complex
numbers, where Γ(x) = (x− 1)! for integers, and

Γ(x) =

∫ ∞
0

tx−1e−t dt.

2

Proceeding with Bayes’ theorem and the Law of Total Probability,

fλ|β,S,T (x) =
fλ|β(x)P(S|β, λ = x)∫∞

−∞ fλ|β(u)P(S|β, λ = u)du

=
g(x)∫∞

−∞ g(u)du

where, using the fact that S! = Γ(S + 1),

g(x) =
(xT)Se−xT

S!

βα

Γ(α)
xα−1e−βx1(x > 0)

=
βαTS

Γ(s+ 1)Γ(α)
xα+S−1e−(β+T)x1(x > 0).

Then, using the definition of Γ(x),∫ ∞
−∞

g(u) du =
βαTS

Γ(S + 1)Γ(α)

∫ ∞
0

uα+S−1e−(β+T)u du

=
βαTS

Γ(S + 1)Γ(α)

1

(β + T)(α+S)

∫ ∞
0

vα+S−1e−v dv

=
βαTS

Γ(S + 1)Γ(α)

Γ(α+ S)

(β + T)(α+S)
.

Therefore,

fλ|β,S,T (x) =
g(x)∫∞

−∞ g(u)du

=
βαTS

Γ(s+ 1)Γ(α)
xα+S−1e−(β+T)x1(x > 0)

Γ(S + 1)Γ(α)

βαTS
(β + T)(α+S)

Γ(α+ S)

=
(β + T)α+S

Γ(α+ S)
xα+S−1e−(β+T)x1(x > 0),

which completes the derivation of the first conditional distribution.
In a similar fashion, the second conditional distribution is equivalent to

fβ|~λ(b) =
(
∑
λk + δ)γ+10α

Γ(γ + 10α)
bγ+10α−1e−(

∑
λk+δ)b1(b > 0)

where ~λ denotes the vector of the λk.
As before, we have

fβ|~λ(b) =
h(b)∫∞

−∞ h(u) du

where, by conditional independence of the λk given β, we have

h(b) = f~λ|β=b(b)fβ(b)

=

10∏
k=1

bα

Γ(α)
λα−1
k e−bλk

δγ

Γ(γ)
bγ−1e−δb1(b > 0)

=
δγ(
∏
λk)α−1

Γ(α)10Γ(γ)
bγ+10α−1e−(

∑
λk+δ)b1(b > 0).

3

Integrating h(b), we have∫ ∞
−∞

h(u) du =
δγ(
∏
λk)α−1

Γ(α)10Γ(γ)

∫ ∞
0

uγ+10α−1e−(
∑
λk+δ)u du

=
δγ(
∏
λk)α−1

Γ(α)10Γ(γ)

Γ(γ + 10α)

(
∑
λk + δ)γ+10α

.

Finally,

fβ|~λ(b) =
h(b)∫∞

−∞ h(u) du

=
δγ(
∏
λk)α−1

Γ(α)10Γ(γ)
bγ+10α−1e−(

∑
λk+δ)b1(b > 0)

Γ(α)10Γ(γ)

δγ(
∏
λk)α−1

(
∑
λk + δ)γ+10α

Γ(γ + 10α)

=
(
∑
λk + δ)γ+10α

Γ(γ + 10α)
bγ+10α−1e−(

∑
λk+δ)b1(b > 0)

which completes the derivation of the second conditional distribution.

The joint distribution of β and ~S is also of vital importance.

Fact 2. The joint distribution of β and ~S is

fβ,~S(b, ~s) =
δγ

Γ(α)10Γ(γ)
b10α+γ−1e−δb

10∏
k=1

T skk Γ(α+ sk)

Γ(sk + 1)(Tk + b)α+sk
1(b > 0)

Proof. We can write the full joint distribution as a product of the conditional distributions and
integrate over all values of ~λ to write the desired joint distribution as

fβ,~S(b, ~s) =

∫
~x∈R10

fβ,~S,~λ(b, ~s, ~x) d~x

=

∫
~x∈R10

fβ(b)f~λ|β(~x)f~S|β,~λ(~s) d~x.

The λk are conditionally independent of each other given β and Sk is conditionally independent of
β and the rest of ~S given λk, so f~λ and f~S can be expressed as products of fλk

and fSk
, respectively.

fβ,~S(b, ~s) =

∫
~x∈R10

fβ(b)

10∏
k=1

fλk|β(xk)

10∏
k=1

fSk|λk
(sk) d~x

= fβ(b)

∫
~x∈R10

10∏
k=1

bαxα−1
k e−bxk(xkTk)ske−xkTk

Γ(α)Γ(sk + 1)
d~x

= b10αfβ(b)

10∏
k=1

T skk
Γ(α)Γ(sk + 1)

∫
~x∈R10

10∏
k=1

xα+sk−1
k e−(b+Tk)xk d~x.

The integral in the above equation is an unnormalized product of Gamma distributed random
variables. Therefore, the integral must be equal to the reciprocal of the product of the individual
normalizing constants, or∫

~x∈R10

10∏
k=1

xα+sk−1
k e−(b+Tk)xk d~x =

10∏
k=1

Γ(α+ sk)

(Tk + b)α+sk
.

4

Finally,

fβ,~S(b, ~s) =
b10α

Γ(α)10
fβ(b)

10∏
k=1

T skk Γ(α+ sk)

Γ(sk + 1)(Tk + b)α+sk

=
δγ

Γ(α)10Γ(γ)
b10α+γ−1e−δb

10∏
k=1

T skk Γ(α+ sk)

Γ(sk + 1)(Tk + b)α+sk
1(b > 0)

The goal with this model would be to draw β given only ~S, and then to use Fact 2 to draw ~λ
given ~S and β. This would require f~S(~s), using which we could find fβ|~S(b, ~s) by

fβ|~S(b, ~s) =
fβ,~S(b, ~s)

f~S(~s)

However, this would require integrating fβ,~S(b, ~s) over the range of β:

f~S(~s) =

∫ ∞
0

δγ

Γ(α)10Γ(γ)
b10α+γ−1e−δb

10∏
k=1

T skk Γ(α+ sk)

Γ(sk + 1)(Tk + b)α+sk
db.

Instead, since ~S is known, f~S(~S) would be a normalizing constant for fβ|~S(b, ~s), making f̂β(b) =

fβ,~S(b, ~s) an unnormalized version of the distribution from which we want to draw. Therefore, we
can use AR sampling to complete the inference.

3 New Methods

3.1 The AR Algorithm

The AR sampling procedure hinges on two ideas. First, given draws from a certain distribution
f over A ⊂ R, it is possible to make a draw from f conditioned to lie in B ⊂ A (ie: from the
distribution f(x)/

∫
B
f(t) dt for x ∈ B); it would simply require ”rejecting” draws from f until a

member of B was drawn, at which point it would be ”accepted.” This is formulated in Theorem 4
from [7]:

Theorem 1. Suppose that ν is a finite measure over A, and B ⊂ A where ν(B) > 0. Then if
X1, X2, ... ∼ ν(A) and T = inf{t : Xt ∈ B} then

XT ∼ [X1|X1 ∈ B]

The second idea is summarized in the following theorem [7]:

Fundamental Theorem of Monte Carlo Simulation. Suppose that X has density fX over
measure ν on Ω. Then if [Y |X] ∼ Unif([0, fX]), then (X,Y) is a draw from the product measure
ν × Unif over the set (x, y) : x ∈ Ω, 0 ≤ y ≤ fX .

(For an introduction to the relevant measure theory, see [2].) Intuitively, this means that for some
distribution h, it is possible to draw a point (X,Y) uniformly from the area beneath h(x) given a
draw X ∼ h. Furthermore, by multiplying Y by some constant c, (X, cY) becomes a draw from the
area beneath c ·h(x). To draw from some possibly unnormalized distribution f over A ⊂ R, we start
with a distribution h over A from which we can draw easily. Then, we fix c such that c ·h(x) ≥ f(x)
for all x ∈ A. We could then draw both X ∼ h and Y ∼ Unif([0, h(X)]) until (X, cY) were in the
area beneath f(x) (ie: when cY < f(X)). However, for a fixed X, (X, cY) would fall in the area
beneath f(x) with probability f(X)/c · h(X). Therefore, after drawing X, it is only necessary to
draw B ∼ Bern(f(X)/c · h(X)); X is a variate from f(x) when B = 1. The AR algorithm for
drawing X ∼ f can be summarized as follows:

5

1. Let h be some distribution over A and fix c such that c · h(x) ≥ f(x),∀x ∈ A.

2. Draw X ∼ h.

3. Draw B ∼ Bern(f(X)/c · h(X)).

4. Repeat 2. and 3. until B = 1.

5. X ∼ f .

3.2 Implementation

For the purposes of this hierarchical model, the unnormalized distribution of interest is

f̂β(b) =
δγ

Γ(α)10Γ(γ)
b10α+γ−1e−δb

10∏
k=1

tSk

k Γ(α+ Sk)

Γ(Sk + 1)(Tk + b)α+Sk
1(b > 0)

= b10α+γ−1e−δb
10∏
k=1

(Tk + b)−(α+Sk)c(~S)1(b > 0),

where c(~S) is a constant with respect to b; dropping this term simply changes the normalizing
constant for the distribution and simplifies the implementation. Therefore, for the AR algorithm

f(b) = b10α+γ−1e−δb
10∏
k=1

(Tk + b)−(α+Sk)1(b > 0). (1)

Figure 1: Plot of f(b)

The next step is to determine h, a distribution for which a sampling algorithm already exists, as
well as a constant c such that c · h(x) ≥ f(x),∀x > 0 in this case. It is also important to note that
the choice of c and h determines the running time of the algorithm in the following way [7]:

6

Theorem 2. Let Zf and Zh be the normalizing constants for f and h respectively. The AR algorithm
accepts a draw from h with probability

Zf
cZh

=

∫
x∈A f(x) dx∫

x∈A c · h(x) dx

Therefore, it is sensible to choose h and c such that c · h(x) − f(x) is as small as possible for
x ∈ A. For this f , no single family of distributions provides an easily-provable bound for f , so a
piecewise approach for defining h is taken instead. The following fact is useful for this purpose:

Fact 3. For all b ∈ [b1, b2], e(b1, b2) ≤ f(b) ≤ g(b1, b2), where

g(b1, b2) = b10α+γ−1
2 e−δb1

10∏
k=1

(Tk + b1)−(α+Sk)

e(b1, b2) = g(b2, b1)

Proof. We can factor e, f, and g into the functions i, j, and k, where

i(b) = b10α+γ−1 = b17.03

j(b) = e−δb = e−b

k(b) =

10∏
k=1

(Tk + b)−(α+Sk)

and

e(b1, b2) = i(b1)j(b2)k(b2)

f(b) = i(b)j(b)k(b)

g(b1, b2) = i(b2)j(b1)k(b1).

For b > 0, the function i is monotonically increasing, while the functions j and k are monotonically
decreasing. Since b1 ≤ b ≤ b2,

i(b1) ≤ i(b) ≤ i(b2)

j(b2) ≤ j(b) ≤ j(b1)

k(b2) ≤ k(b) ≤ k(b1)

Since each factor of e is less than the corresponding factor of f , e(b1, b2) ≤ f(b),∀b ∈ [b1, b2]. A
similar argument holds for f and g.

Therefore, for b in an interval [b1, b2], h(b) = g(b1, b2) would be a viable bounding distribution for
the purposes of AR sampling. Furthermore, the function e provides a convenient way to determine
how to partition R. The probability that AR accepts a draw in a given interval is a function of the
endpoints of the interval according to the following fact:

Fact 4. Let h(b) = g(b1, b2) for some interval I = [b1, b2], c be 1, and P be the probability that the
AR algorithm accepts a draw from h over I as a draw from f over I. Then

P ≥ e(b1, b2)

g(b1, b2)
.

7

Proof. By Theorem 2,

P =

∫ b2
b1
f(x) dx∫ b2

b1
h(x) dx

=

∫ b2
b1
f(x) dx

(b2 − b1)g(b1, b2)

Since f(b) ≥ e(b1, b2) for b ∈ I,∫ b2

b1

f(x) dx ≥
∫ b2

b1

e(b1, b2) dx = (b2 − b1)e(b1, b2)⇒
∫ b2
b1
f(x) dx

(b2 − b1)g(b1, b2)
≥ e(b1, b2)

g(b1, b2)
.

To ensure that the AR algorithm accepts at least A% of draws from the bounding distribution,
a starting point b1 > 0 is chosen and bi+1 is chosen as the largest point where

e(bi, bi+1)

g(bi, bi+1)
≥ A%,

which can be accomplished through a simple binary search. The point b1 must be greater than 0
because e(0, b) = 0 for all b, meaning the search would not terminate. This process can continue as
long as desired; for this problem, the process was continued until bi ≥ 7.5 for some i, which is well
past the peak of the distribution, with a minimum acceptance probability of 1/1.9 (see Figure 1 and
global variables in Section B.1). In order to bound the tail of f , we make use of the following fact:

Fact 5. If h is the distribution for a Gamma-distributed random variable with shape parameter
α = 10α+ γ and rate parameter β = 1, then ∀b0 > 0 and ∀b > b0,

f(b) ≤ Γ(10α+ γ)

10∏
k=1

(Tk + b0)−(α+Sk)h(b) = c · h(b)

Proof. The distribution of the Gamma-distributed variable is

h(b) =
1

Γ(10α+ γ)
b10α+γ−1e−δb ⇒ c · h(b) = b10α+γ−1e−δb

10∏
k=1

(Tk + b0)−(α+Sk).

For b > b0 > 0, by monotonicity of k(b) in the proof of Fact 3

10∏
k=1

(Tk+b)−(α+Sk) ≤
10∏
k=1

(Tk+b0)−(α+Sk) ⇒ f(b) ≤ b10α+γ−1e−δb
10∏
k=1

(Tk+b0)−(α+Sk) ⇒ f(b) ≤ c·h(b).

Altogether, after the endpoints bi for i = 0, 1, ..., n have been properly selected, we have

h(b) =

{
g(bi, bi+1) : b ∈ [bi, bi+1)

b10α+γ−1e−δb
∏10
k=1(Tk + bn)−(α+Sk) : b ≥ bn

(2)

The final step is to draw variates from h, which proceeds as follows. For ~L ∈ Rn+1, let Li = h(bi)
for i = 0, 1, ..., n− 1 and

Ln = P(X > bn) · Γ(10α+ γ)

10∏
k=1

(Tk + b0)−(α+Sk) where X ∼ Gamma(10α+ γ, 1).

First, a random variable I is drawn from 0, 1, ..., n according to the distribution

~L′ =
~L∑n
i=0 Li

.

8

As the sequence {bi} can be made arbitrarily long, it is important that this draw be accomplished in
constant time, which can be done with O(n) space using Walker’s alias method [3]. This was done
automatically through the use of R’s ”sample” function [9], which uses the alias method for n > 200.
Then, if I < n, X ∼ h is simply drawn uniformly from [bI , bI+1]. Conversely, if I = n, then a draw
needs to be made from the Gamma-tail of h. This is accomplished through a slight modification of
the inversion method [3]: Let dΓ and qΓ be the cdf and quantile functions of the Gamma random
variable described in Fact 5 and draw J ∼ Unif([dΓ(bn), 1]). X ∼ h is then simply the value qΓ(J).

4 Results

To evaluate the accuracy of a particular implementation of an empirical model, it is necessary to
carry out two general classes of testing:

1. verification, or confirming that the model is implemented correctly according to its design, and

2. validation, or determining whether the model can be used to achieve the goals for which it was
designed.

4.1 Verification

0
10

20
30

40

number of samples

ru
nt

im
e

(s
)

100 101 102 103 104 105

Figure 2: runtime for various numbers of samples

The first goal during verification was to measure the runtime of the AR algorithm for generating
n samples. As Figure 2 demonstrates, the AR algorithm appears to run in linear time. Of course,
before variates can be drawn with this implementation, the support of the distribution has to be
partitioned by {bn}. This took less than 1 second (using an Intel R© Core(TM) i5-4570 CPU @
3.20GHz with R version 3.2.0), and is dominated by the actual sampling process for large numbers
of variates. A sample {xk} of 100,000 variates was generated for the remaining verification, which
took about 30 seconds.

9

To determine whether the variates followed the necessary distribution, a histogram was plotted
along with the original plot of f (Figure 3). In addition, the mean of f was estimated through
numerical integration (using the trapezoidal rule [1]):∫ ∞

0

b · f(b) db ≈ 2.470975 vs x̄ = 2.471813

Both of these suggest that this implementation samples from the unnormalized distribution correctly;
the histogram matches the plot of f and the sample mean and estimated population mean are close.

samples

F
re

qu
en

cy

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

1 3 5 7

Figure 3: histogram of 100,000 samples with f(b)

4.2 Validation

The implementation provided more of a challenge with respect to validation. The intent of the
model is to accurately infer the values of β and ~λ. Therefore, a way to validate the implementation
withe respect to inferring β would be to:

1. Let Tk = 1 for k = 1, ..., 10.

2. Fix β.

3. Draw λk ∼ Gamma(α, β).

4. Draw Sk ∼ Po(λk).

5. Use AR to draw a sample from f .

6. Use the sample to estimate β and ~λ (ie by using the mean of the sample as an estimate for β).

10

7. Compare the estimates to the ”ground truth” values.

However, differing values of ~S cause the resulting f to vary wildly in scale. This led to problems
relating to numerical underflow, as well as difficulties with the partitioning process. These would not
be serious issues in practice since it is straightforward to tune the implementation for a particular
scale of f . However, automating the tuning process for various ~S proved nontrivial. Therefore, after
generating β,~λ, and ~S as above, the following approach was taken instead:

1. Use numerical integration to estimate the mean of f .

2. Estimate β and ~λ using the estimated mean of f .

3. Compare the estimates to the ”ground truth” values.

Murdoch and Green describe the prior on β as ”relatively diffuse” [8]. However, according to
this prior, P(β > 2.472) ≈ 2.63 × 10−4, where β ≈ 2.472 was our AR estimate. Therefore, we
begin by testing values of β from 0 to 3. As Figure 4 shows, the inference appears to be unbiased,
though the plot also demonstrates clear heteroskedasticity in the data. A simple linear regression

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

actual beta

es
tim

at
ed

 b
et

a

Figure 4: estimated β vs true β, with y = x line

with heteroskedasticity-robust standard errors yields the following:

β̂ = 0.1625
(0.0594)

+ 0.7547
(0.0531)

β

where both the intercept and the coefficient are significant at the 99.9% confidence level. This
underestimating bias becomes even more pronounced when much higher values of β are tested (see
Figure 5). This is likely due to the influence of the prior, suggesting that extreme values of β will

be harder to detect if the prior reflects the reality. To validate the inference of ~λ, we can use the
estimate of β to generate an estimate for ~λ (which will be discussed in detail in Section 4.3). The

11

0 2 4 6 8 10

0
2

4
6

8
10

actual beta

es
tim

at
ed

 b
et

a

Figure 5: estimated β vs true β, with y = x line

accuracy of the estimate will be assessed using the L1 norm of the difference between the estimated
and actual ~λ’s, or:

10∑
k=1

|λk − λ̂k|

where λ̂k is the estimate. These differences are plotted in Figure 6, where it appears that the least
extreme values with respect to the β prior yield the worst estimates of ~λ.

4.3 Analysis of the original data

Given the generally positive results from verification and validation (at least for β ≈ 2.472), the
model can be used for inferences and prediction about the given data. The primary goal is to
estimate ~λ, which can be done with a sample of β’s from f . We know from Fact 1 that

[λk|β, Sk, Tk] ∼ Gamma(α+ Sk, β + Tk)⇒ E[λk|β, Sk, Tk] =
α+ Sk
β + Tk

.

Therefore, if xi is a variate from the sample,

E
[
α+ Sk
xi + Tk

]
=

α+ Sk
E[xi] + Tk

is an estimate for λk. In this way, the hierarchical model approach takes into account the entire
vector ~S for the estimation of each λk. Conversely, in a naive approach that did not make use of
this hierarchical model, the best point estimate for λk would be the empirical failure rate, Sk/Tk by
the following:

12

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

20
30

40

actual beta

er
ro

r

(a) reasonable β values

0 2 4 6 8 10

0
10

20
30

40

actual beta

er
ro

r

(b) extreme β values

Figure 6: error in estimating ~λ vs true β

Fact 6.

argmax
x

P(Sk = Sk|λk = x) =
Sk
Tk

Proof. Dropping the subscript k again for convenience,

P(S = S|λ = x) =
TS

S!
xSe−Tx.

Then we maximize the log of the probability:

d

dx
log(P(S = S|λ = x)) =

d

dx

(
log

TS

S!
+ S log x− Tx

)
=
S

x
− T.

Setting the derivative equal to zero yields the result.

In Figure 7, we compare our results to those that would be obtained from this naive procedure,
as well as estimates provided by [6], which examined the same data using Gibbs samplers with
various prior distributions on α (The actual data for this and the following charts can be found in
Section A). Note that the AR estimates have a smaller effective range than the other two series of
estimates.

In a similar fashion to [6], we also consider the effect on our model of differing values of α.
Confidence intervals were generated by taking a 100,000-variate sample, ordering it, and then taking
the 2,500th entry and the 97,500th entry. As Figure 8 demonstrates, the model is robust to changes
in α over the range [1, 10].

5 Conclusion

The model provided accessible conditional distributions for each parameter given the others and the
data. Using this, we were able to access an unnormalized probability distribution f . Then, through
the use of AR sampling with a procedurally-generated bounding distribution h, it was possible to
draw from f with a high rate of acceptance. This allowed the rapid generation of large samples

13

2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

k

la
m

bd
a

k

AR

Gibbs

Naive

Figure 7: comparison of λ estimates

from the posterior of β, which we could then use to make inferences about ~λ using the distribution
of ~λ, conditioned upon β and the data Sk and Tk. Our results agreed with the results from similar
inference performed using a MCMC method, and displayed somewhat less dispersion than a less
sophisticated method that did not use a hierarchical model. This project highlighted a number of
directions for future study. For the purposes of determining the time advantage of AR sampling,
it would be good to test an R implementation of the MCMC methods that have been used with
this model side-by-side with this implementation. Furthermore, with further study, it might be
possible to find a single reasonable bounding distribution h for the posterior f , or to automate the
partitioning process in such a way as to make possible a more detailed validation of the algorithm.

A Data

Table 1: Pump data set

k Sk Tk
1 5 94.320
2 1 15.720
3 5 62.880
4 14 125.760
5 3 5.240
6 19 31.440
7 1 1.048
8 1 1.048
9 4 2.096

10 22 10.480

B Code

B.1 AREstimate.R

14

2 4 6 8 10

1.
0

2.
0

3.
0

4.
0

alpha

be
ta

Figure 8: confidence intervals for varying α

Table 2: Lambda estimate comparison

AR Gibbs Naive
0.07 0.06 0.05
0.15 0.11 0.06
0.10 0.09 0.08
0.12 0.12 0.11
0.63 0.60 0.57
0.61 0.61 0.60
0.83 0.88 0.95
0.83 0.89 0.95
1.30 1.56 1.91
1.84 1.98 2.10

This f i l e implements a l l the f u n c t i o n s needed to c r e a t e a bounding
d i s t r i b u t i o n , sample from i t , and sample from the unnormalized d i s t r i b u t i o n

i n i t i a l i z e parameters o f the model−−
ALPHA <− 1 .802
DELTA <− 1
GAMMA <− . 01

i n i t i a l i z e g l o b a l v a r i a b l e s−−
DOMINANCE <− 1 .9 # The l a r g e s t f a c t o r by which g (x) i s a l l o w e d to dominate e (x)
END OF DISCRETE <− 7 .5

How f a r out to d i s c r e t i z e
RANGEFIND <− END OF DISCRETE / 10

The l e n g t h o f the f i r s t i n t e r v a l searchPoint t r i e s
EPSILON <− . 0001 # The i n t e r v a l l e n g t h at which searchPoint says ”Good Enough”
FIRST OUT <− . 01

d e f i n e lower and upper bound f u n c t i o n s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15

Table 3: Confidence intervals with varying α

α lower mean upper
1 1.3158 2.4710 4.1060
2 1.3151 2.4709 4.0998
3 1.3172 2.4692 4.0872
4 1.3140 2.4693 4.0834
5 1.3192 2.4686 4.0784
6 1.3197 2.4722 4.0939
7 1.3087 2.4700 4.0928
8 1.3174 2.4711 4.0915
9 1.3184 2.4712 4.0989

10 1.3194 2.4734 4.0947

h e l p e r f u n c t i o n f o r lower and upper bound f u n c t i o n s t h a t
computes the b i g product at the end o f f (x)
lastTermF <− function (b){

answer <− 1
for (k in 1 : 10){

term <− (T[k] + b)ˆ(−1∗ (ALPHA + S [k]))
answer <− answer ∗ term

}
return (answer)

}
the upper bound on f (x) f o r x in [b1 , b2]
gFunc <− function (b1 , b2){

bExponent <− 10∗ALPHA + GAMMA − 1
return ((b2ˆbExponent)∗ (exp(−DELTA∗b1))∗ lastTermF (b1))

}

l o g a r i t h m i c a l l y implemented v e r s i o n s o f gFunc , eFunc , and fFunc
gFunc2 <− function (b1 , b2){

bExponent <− 10∗ALPHA + GAMMA − 1
logGFunc <− 0
for (k in 1 : 10){

term <− log (T[k] + b1)∗(−1∗ (ALPHA + S [k]))
logGFunc <− logGFunc + term

}
logGFunc <− logGFunc − (DELTA∗b1) + (log (b2)∗bExponent)
return (exp(logGFunc))

}

eFunc2 <− function (b1 , b2){
return (gFunc2 (b2 , b1))

}

fFunc2 <− function (x){
return (gFunc2 (x , x))

}

the lower bound on f (x) f o r x in [b1 , b2]

16

eFunc <− function (b1 , b2){
return (gFunc (b2 , b1))

}
f (x) i t s e l f
fFunc <− function (x){

return (gFunc (x , x))
}

d e f i n e f u n c t i o n s t h a t a l l o w d i s c r e t i z a t i o n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

t e s t s whether g (x) < DOMINANCE ∗ e (x) over the i n t e r v a l [b1 , b2]
lowEnough <− function (b1 , b2)
{
g <− gFunc (b1 , b2)
e <− eFunc (b1 , b2)
quo <− g/e
return (quo < DOMINANCE)
}

uses a b inary search a l g or i thm to f i n d the g r e a t e s t p o i n t b2
f o r which lowEnough (b1 , b2) i s t r u e
searchPoint <− function (b1){

start <− b1
end <− b1 + RANGEFIND
range <− RANGEFIND
while (range > EPSILON){

i f (lowEnough (b1 , end)){
start <− end
end <− start + range

} else {
end <− (range/2) + start

}
range <− end − start

}

i f (start > b1){
return (end)

} else {
print (” searchPoint terminated without f i n d i n g a s u c c e s s f u l po int ”)
stop

}
}

s p l i t s up the r e a l l i n e between 0 and end in the r e q u i r e d way
d i s c r e t i z e <− function (end){

I <− vector (mode=”numeric ” , length=1000)
I [1] <− 0
I [2] <− FIRST OUT
lastElement <− 2
while (I [l a stElement] < end){

start <− I [l a stElement]
b2 <− searchPoint (start)

17

I [(lastElement + 1)] <− b2
lastElement <− l a s tElement + 1

}
I [l a stElement] <− end
return (head (I , l a stElement))

}

Given a s e t o f i n t e r v a l s (prov ided by d i s c r e t i z e) , s t e p I n t e g r a t e
c a l c u l a t e s the area underneath h between 0 and END OF DISCRETE, where :
h (x) = gFunc (b [i] , b [i +1]) f o r x in [b [i] , b [i +1]]
s t e p I n t e g r a t e <− function (i n t e r v a l s){

area <− 0
for (k in 2 : length (i n t e r v a l s)){

b1 <− i n t e r v a l s [k−1]
b2 <− i n t e r v a l s [k]
intLength <− b2 − b1
intHe ight <− gFunc (b1 , b2)
area <− area + (intLength ∗ i n tHe ight)

}
return (area)

}

normal i z ing cons tant f o r the gamma t h a t bounds f (x) f o r x > b
s ca l ingConstant <− function (b){

answer <− (DELTAˆ(10∗ALPHA+GAMMA))/gamma(10∗ALPHA+GAMMA)
return (answer / lastTermF (b))

}

sampling f u n c t i o n s−−−

h e l p s sampleFromH by drawing a buc ke t
drawBucket <− function (){

return (sample ((1 : length (probs)) , replace = TRUE, s i z e = 1 , prob = probs))
}

h e l p s sampleFromH by drawing from a g iven buc ke t
sampleFromBucket <− function (bucket){

i f (bucket == length (probs)){
This i s the case where we have to genera te from the
gamma t a i l
minQuant <− pgamma(END OF DISCRETE, shape=(10∗ALPHA+GAMMA) , ra t e=DELTA)
sample <− runif (1 ,min=minQuant , max=1)
return (qgamma(sample , shape =(10∗ALPHA+GAMMA) , ra t e=DELTA))

} else {
b1 <− i n t e r v a l s [bucket]
b2 <− i n t e r v a l s [bucket +1]
return (runif (1 ,min=b1 ,max=b2))

}
}

h e l p s sampleFromF by drawing from the bounding d i s t r i b u t i o n H
sampleFromH <− function () {

bucket <− drawBucket ()

18

return (sampleFromBucket (bucket))
}

h e l p e r f u n c t i o n f o r hFunc − determines which bu cke t the argument comes from
whichBucket <− function (b) {

for (i in 1 : length (i n t e r v a l s)){
i f (b < i n t e r v a l s [i]) {

return (i −1)
}

}
return (length (i n t e r v a l s))

}

the pdf f o r the bounding d i s t r i b u t i o n , h
hFunc <− function (b) {

bucket <− whichBucket (b)
i f (bucket == length (i n t e r v a l s)){

return (dgamma(b , shape =(10∗ALPHA+GAMMA) , ra t e=DELTA)/Z)
} else {

return (gFunc (i n t e r v a l s [bucket] , i n t e r v a l s [bucket +1]))
}

}

does AR to draw from f (b)
sampleFromF <− function (){

h <− sampleFromH ()
C <− rbinom (1 , s i z e =1,prob=(fFunc (h)/hFunc (h)))
i f (C == 1){

return (h)
} else {

return (sampleFromF ())
}

}

B.2 SetUp.R

This f i l e w i l l s e t up data so t h a t ”sampleFromF ()” in AREstimate w i l l work
p r o p e r l y . Note t h a t i f any c a p i t a l i z e d g l o b a l v a r i a b l e s are changed (eg
ALPHA) , t h i s needs to be run again .

i n t e r v a l s <− d i s c r e t i z e (END OF DISCRETE)

discArea <− s t e p I n t e g r a t e (i n t e r v a l s)
Z <− s ca l ingConstant (END OF DISCRETE)
t a i l A r e a <− (1 − pgamma(END OF DISCRETE, shape=(10∗ALPHA+GAMMA) , ra t e=DELTA)) / Z

tota lArea <− discArea + t a i l A r e a
probDisc re te <− discArea / to ta lArea
probDisc re te

Generate unnormalized p r o b a b i l i t y v e c t o r corresponding to each bucket ,
i n c l u d i n g an entry f o r the e n t i r e area pa s t END OF DISCRETE
probs <− vector (mode=”numeric ” , length=length (i n t e r v a l s))

19

for (k in 2 : length (i n t e r v a l s)){
b1 <− i n t e r v a l s [k−1]
b2 <− i n t e r v a l s [k]
intLength <− b2 − b1
intHe ight <− gFunc (b1 , b2)
probs [k−1] <− intLength ∗ i n tHe ight

}
probs <− append(probs , t a i l A r e a)
sum(probs)

B.3 Verification.R

Assumes the pump data i s loaded .

Checking runtimes (t a k e s a w h i l e)−−−
runtimes <− rep (0 , 21)
for (i in 0 : 20){

NUM SAMPLES <− 1 .8ˆ i
start <− proc . time ()
timeSamples <− drawWithAlpha ()
end <− proc . time ()
x <− end − start
runtimes [i +1] <− x [3]

}
plot (1 . 8 ˆ (0 : 2 0) , runtimes , log=’ x ’ , xaxt=’n ’ , col = ’ red ’ ,

x lab = ’ number o f samples ’ , y lab = ’ runtime (s) ’)
t i c k s <− seq (0 , 5 ,by=1)
labels <− sapply (t i c k s , function (i) as . expression (bquote (10ˆ . (i))))
axis (1 , at=10ˆ t i ck s , labels=labels)

Confirming d i s t r i b u t i o n−−−

determining mean by numerical i n t e g r a t i o n (us ing t r a p e z o i d method as l a i d
out at ” h t t p ://en . w i k i p e d i a . org/w i k i/Trapezo ida l r u l e ”)
x <− (0 : 100 0)/100 # only need to go out to 10
y <− fFunc (x)
estNormConst <− (10/2000)∗(2∗sum(y) − y [1] − y [1 0 0 1])
estNormConst
f i rstMomentIntegrand <− function (x){

return (x∗ fFunc (x)/estNormConst)
}
z <− f i r stMomentIntegrand (x)
estMean <− (10/2000)∗(2∗sum(z) − z [1] − z [1 0 0 1])
estMean
mean(samples)

comparison his togram (t h i s par t i s hard coded f o r NUM SAMPLES = 100K)
x <− (1 : 500 0)/(5000/7)
y <− fFunc (x)
y <− y ∗(29000/y [1 6 0 7])
hist (samples , i n c lude . lowest=TRUE, xaxt=”n” , main=NULL)
axis (1 , at=c (0 , 1 , 3 , 5 , 7 , 9) , labels=c (0 , 1 , 3 , 5 , 7 , 9))

20

l ines (x , y , col=” red ”)

Robustness to a lpha p r i o r (t a k e s a w h i l e) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

alphasToTest <− 1 :10
high95 <− vector (mode=”numeric ” , length=10)
low95 <− vector (mode=”numeric ” , length=10)
for (alph in 1 : 10){

ordSamples <− sort (drawWithAlpha (alphasToTest [alph]))
high95 [alph] <− ordSamples [9 7 5 0 0]
low95 [alph] <− ordSamples [2 5 0 0]

}

Checking lambda e s t i m a t e s −−

lambdaMeans <− matrix (nrow=NUM SAMPLES, ncol=10)
lambdaMeanEstimates <− vector (mode=”numeric ” , length=10)
for (lamb in 1 : 10){

vector <− (ALPHA+S [lamb]) / (samples + T[lamb])
lambdaMeans [, lamb] <− vector
lambdaMeanEstimates [lamb] <− mean(vector)

}
CLDEstimates = c (. 0 6 1 , . 1 0 6 , . 0 9 , . 1 1 7 , . 6 0 3 , . 6 0 9 , . 8 8 4 , . 8 8 6 , 1 . 5 6 , 1 . 9 8 1)
plot (1 : 1 0 , S/T, col=” green ” , bg=” green ” , pch=21, ylab=”lambda k” , xlab=”k”)
points (1 : 1 0 , lambdaMeanEstimates , col=” red ” , bg=” red ” , pch=22)
points (1 : 1 0 , CLDEstimates , col=” blue ” , bg=” blue ” , pch=20)
legend (” t o p l e f t ”

, i n s e t = c (0 , 0 . 1) ,
, cex = 1 . 5 ,
, bty = ”n” ,
, legend = c (”AR” , ”Gibbs” , ”Naive”) ,
, text . col = c (” red ” , ” blue ” , ” green ”) ,
, col = c (” red ” , ” blue ” , ” green ”) ,
, pt . bg = c (” red ” , ” blue ” , ” green ”)
, pch = c (22 ,20 ,21)

)

B.4 Validation.R

save the o r i g i n a l data
OLD S <− S
OLD T <− T

Over r e a s o n a b l e be t a v a l u e s −−

betasToTest <− (0 : 1 0 0)/(100/3)
betasToTest <− betasToTest [2 : length (betasToTest)]
est imatedBetas <− (1 : 1 0 0)

21

estimatedLambdas <− matrix (nrow=length (betasToTest) , ncol=10)
actualLambdas <− matrix (nrow=length (betasToTest) , ncol=10)
T <− rep (1 , 10)
f i rstMomentIntegrand <− function (x){

return (x∗ fFunc (x)/estNormConst)
}
for (BETA in 1 : length (betasToTest)){

g e n e r a t i n g ground t r u t h v a l u e s
L <− rgamma(n=10, shape=ALPHA, ra t e=betasToTest [BETA])
S <− vector (mode=”numeric ” , length=10)
for (pump in 1 :10){

S [pump] <− rpois (n=1,lambda=L [pump] ∗T[pump])
}

e s t i m a t i n g be t a and lambdas
x <− (0 : 100 0)/100 # only need to go out to 10
y <− fFunc (x)
estNormConst <− (10/2000)∗(2∗sum(y) − y [1] − y [1 0 0 1])
z <− f i r stMomentIntegrand (x)

est imatedBetas [BETA] <− (10/2000)∗(2∗sum(z) − z [1] − z [1 0 0 1])
actualLambdas [BETA,] <− L
estimatedLambdas [BETA,] <− (ALPHA+S)/ (est imatedBetas [BETA] + T)

}
b eta p l o t wi th x=y l i n e
curve (x∗1 , from=0, to =3, xlab=” ac tua l beta ” , ylab=” est imated beta ”)
points (betasToTest , est imatedBetas , col=” red ”)

#r o b u s t s tandard e r r o r s
model <− lm(est imatedBetas ˜ betasToTest)
require (” sandwich”)
require (” lmtes t ”)
model$newse<−vcovHC(model)
c o e f t e s t (model ,model$newse)

lambda p l o t
lambdaErrors <− rowSums(abs (estimatedLambdas − actualLambdas))
plot (betasToTest , lambdaErrors , col=” red ” , xlab=” ac tua l beta ” , ylab = ” e r r o r ”)

Over extreme be t a v a l u e s −−−

betasToTest <− (0 : 1 0 0)/(100/10)
betasToTest <− betasToTest [2 : length (betasToTest)]
est imatedBetas <− (1 : 1 0 0)
estimatedLambdas <− matrix (nrow=length (betasToTest) , ncol=10)
actualLambdas <− matrix (nrow=length (betasToTest) , ncol=10)
T <− OLD T # b e t t e r r e s u l t s here us ing the o r i g i n a l T

for (BETA in 1 : length (betasToTest)){
g e n e r a t i n g ground t r u t h v a l u e s
L <− rgamma(n=10, shape=ALPHA, ra t e=betasToTest [BETA])
S <− vector (mode=”numeric ” , length=10)

22

for (pump in 1 :10){
S [pump] <− rpois (n=1,lambda=L [pump] ∗T[pump])

}

e s t i m a t i n g be t a and lambdas
x <− (0 : 100 0)/100 # only need to go out to 10
y <− fFunc (x)
estNormConst <− (10/2000)∗(2∗sum(y) − y [1] − y [1 0 0 1])
z <− f i r stMomentIntegrand (x)

est imatedBetas [BETA] <− (10/2000)∗(2∗sum(z) − z [1] − z [1 0 0 1])
actualLambdas [BETA,] <− L
estimatedLambdas [BETA,] <− (ALPHA+S)/ (est imatedBetas [BETA] + T)

}
b et a p l o t wi th x=y l i n e
curve (x∗1 , from=0, to =10, xlab=” ac tua l beta ” , ylab=” est imated beta ”)
points (betasToTest , est imatedBetas , col=” red ”)

lambda p l o t
lambdaErrors <− rowSums(abs (estimatedLambdas − actualLambdas))
plot (betasToTest , lambdaErrors , col=” red ” , xlab=” ac tua l beta ” , ylab = ” e r r o r ”)

r e l o a d the o r i g i n a l data
S <− OLD S
T <− OLD T

B.5 Thesis.R

Personal working f i l e f o r dura t ion o f t h i s p r o j e c t

i n i t i a l i z e wd and data −−−
setwd (”C:/Users/C h r i s t i a n/Desktop/Class Notes/Thesis/Simulat ion F i l e s ”)
setwd (”U: /Class2015/CAyala15/Thes is/Simulat ion F i l e s ”)
pData <− read . csv (”Pump Data . csv ”)
S <− pData$ s i
T <− pData$ t i

source (”AREstimate . r ”)
NUM SAMPLES <− 100000 #How many v a r i a t e s you want

Draw from d i s t r i b u t i o n −−−

drawWithAlpha <− function (alpha =1.802){
ALPHA = alpha
samples <− vector (mode=”numeric ” , length=NUM SAMPLES)
source (”SetUp . r ”)
for (s in 1 : length (samples)){

samples [s] <− sampleFromF ()
}
return (samples)

}

23

startTime <− proc . time ()
samples = drawWithAlpha ()
endTime <− proc . time ()

timing
endTime − startTime

The f o l l o w i n g c a l l t a k e s aw h i l e
source (” V e r i f i c a t i o n . r ”)

References

[1] Trapezoidal rule. Wikipedia.

[2] Robert B. Ash and Catherine A. Doleans-Dade. Probability and Measure Theory. 2nd edition,
1999.

[3] Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag New York, 1986.

[4] Donald P. Gaver and I. G. O’Muircheartaigh. Robust empirical bayes analyses of event rates.
Technometrics, 29.

[5] Alan E. Gelfand and Adrian F. M. Smith. Sampling-based approaches to calculating marginal
densities. Journal of the American Statistical Association, 85, 1990.

[6] E.I. George, U. E. Makov, and A.F.M. Smith. Conjugate likelihood distributions. Scandinavian
Journal of Statistics, 20:147–156, 1993.

[7] Mark Huber. Perfect Simulation. CRC Press. Forthcoming.

[8] D.J. Murdoch and P.J. Green. Exact sampling from a continuous state space. Scandinavian
Journal of Statistics, 25:483–502, 1998.

[9] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2014.

[10] Alex Reutter and Johnson Valen. General strategies for assessing convergence of MCMC algo-
rithms using coupled sample paths.

[11] Christian Robert and George Casella. Monte Carlo Statistical Methods. Springer-Verlag New
York, 2004.

24

	Claremont Colleges
	Scholarship @ Claremont
	2015

	Acceptance-Rejection Sampling with Hierarchical Models
	Christian A. Ayala
	Recommended Citation

	TitlePage
	Blank
	Thesis

