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1. Introduction
N

Let §# T R be a bounded domain with smooth boundary 30. Let

4 be the Laplacian and A I A kj + 4w, the sequence of

eigenvalues of the boundary value problem

{Au + 2w =0 in @

1 u=0 on af
With respective eigenfunctions denoted by #1s #3s +e.. It ds well
known that Ay is simple, positive and ¢, can be chosen positive

in Q.

In this paper we stablish results on multiplicity of solutions

for the boundary value problem
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bu + au 4+ f(u) =0 in @
(1)
u=0 on 230
where o ER and f: R +R 1is an odd continuous function. The
existence of multiple solutions has been studied by many authors,
under various conditions on f, sSee e.g. Hempel [I]. Ambrosetti [2.ﬂ.
Rabinowitz [4,5], Castro-Lazer [7], Ambrosetti-Mancini [6],
Thews [11,12]. We shall be concerned here with the behavior of f
both at infinity and at the origin, i.e., we shall explore the
condition
lim sup f(s) < 0 (2)

5y

and the positions of both o« and the limit

£ = 1im inr L(5)

5
s+0+ .

with respect to the eigenvalues of =-A. A polinomial growth condition
is also required, namely, for all s ER

If(s)| < als|® + b (3)
with a,b,0 € [0,4%) and 1 <o <& if N> 2. Our main result is

as follows

Theorem 1. Assume f: R R L4 an odd continuous function saiisfying

(2)-(3) and suppose o < Ay. Then, problem (1) has
(i) at Leasi 2j+1 sofutions Li§f L > Lj-u
(i1) 4Anfinitely many sofutions Lf £ = +m,

In order to prove Theorem 1 we associate te (1) the family of problems

bu + mu + f“{u} =0 in @
(),

u=0 on an
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by truncating the function f conveniently. Then we obtain an

L” - a priori bound for the solutions of {1}n. independent of n. Let

X = B A, £ A

ke T hgaprl oo B A Tl
k=1,p=1, i.e., we assume L, has multiplicity p. The following

result will be applied to sclve {1]“.

Theorem 2. Assume f: R+ R s an odd bounded and continuous gunction
salisfying (2). Suppose in addition that w = 1& oL @ < l] in (1).

Then probfem (1) has
(1) at Least 2(j-k+p)+l solutions Lf L > Ajau, A

(11) 4Lnfinitely many solutions if L = +=

Our next result corresponds to the case in that o 15 between two
consecutive eigenvalues of -A and f 1is sublinear in the sense

that
1im £5) . o, (4)
5 =

Theorem 3. Suppose f: R + R L& an odd continuous function satisfying

(4) and the folfowing Lnequality
(F(s)=F(t))(s-t) < v(s-t)? (5)

for alfL s,t ER and some consdfant Y. Lef o B {lk,lk+1}. Then
problem (1} has at Least 2|j-k| + 1 solfutions provided eithen

£ F - A |
b j g ot

lim sup féél € A, < hh'
s+0 J

Theorems 2 and 3 are in fact an exploration of a result due to
Clark [10], (cf. section 2), concerning the existence of critical
peints for even E]-funct1una15. In the proof of Theorem 3 we apply

Clark's result in connection with reduction arguments. Our Theorem 1
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improves a result by Ambrosetti-Mancini [6], (Cf. Th. 5.7) where it
is assumed that f E ¢1 and f' is bounded from above. Theorems 2
and 3 are related to results by Rabinowitz [4], Thews [11,12] and

Castro-Lazer [}]. Our results remain true for higher order operators.

2. The Abstract Framework and Notations

Let L denote the collection of closed, symmetric (with
respect to the origin), subsets of E\{0}, where E 1is5 a real
Banach space. The genus <vy({(A) of an element A E L 1is defined to be
the least integer Jj > 0 such that there is an odd ¢ € C°(A, RI\{0}).
For the properties of genus see e.g. Rabinowitz [5] or Castro [&].
A C1-functiunal J: E+R satisfies [PSJ', provided any sequence
u E E for which Ju_ 1is bounded from below, Ju_ < 0 and J'un +0

n n n
has a convergent subsequence. If J 1is even we define

1,(d) = ;lrnﬂ_ Y(4,)

and

i,(9) = lim y(J,)

As=m

where J_ = {u € E | J(u) < a}. The following theorem is a
specialization of a result due to Clark [10] and follows from Clark's
version of the Ljusternik-Schnirelman Theory. For a proof see also

Castro [8].

Theorem 4 (Clark [10]). Suppose J: E + R L& an even E1-5uucziana£
with J(0) = 0, satisfying (PS)". Then, J has at Least 2m
eritical points w € E with J(u) « 0 provided m> 1 L& an

integer such that i,(J) - i,(Jd) 2 m.

In what follows we shall take E to be the Sobolev space Hl whose
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norm and inner product are given by |u|1 = Jl‘i-‘ul2 and
U, vy = [?u-?v respectively. (A1l integrals here are taken over Q).

We recall the following inequalities
j['i-'ul2 < l.qu u B < vty (6)
i ..] L] T!"’ L ¥ j

[17e1?

I

2 L
hj+lJH v 8 <¢].+..,¢j> g (7)

How, if f: R +R 1is an odd continuous function satisfying (3) it
1

follows that J: H'::I

+ R given by

Ju) = Jl?ul2 - au? - JF{UJ (8)

P —

where

F{z) J: f(s)ds, z ER

is a well defined even C'-functional with J(0) = 0. In fact,

<vd(u}.v}] = J"(u).v = I?u.?v - auv = flu)v, u,v E Hl.

3. Proofs

We associate with the odd, continuous function f & sequence
of odd, bounded and continuous functions as follows: for an integer

nz L -n , f(s) < -n

f (s} = {f{s), [f(s)] < n
n , Fis) =n
It is immediate that f satisfies (2)-(3) with the same constants
a,b,o. MNow, it follows, by applying the Linear Elliptic Theory. that

a weak solution u of (1) belongs to WEP 2 < p < +m, We denote

by Jn the energy functional associated with f, o as in (8).
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Lemma 5. Letf f: R +R be an odd continuous function satisfying
(2)-(3) and suppose a < M £n (1), Then, there exdisfs a constant C,

independent of n, such that

]

LI
L]

o

fon all solutions u of {1jn datid fyding d.(u) = 0.

Proof of Lemma 5. Let u be a solution of [1}n. Taking the L2~inner

product with u in (1), we find
JufntuJ > 0. (3)
Now, it follows from (2) that
Fn[s] <C, 52>0

for some constant C. (We shall use € to denote various constants

independent of n). Hence,
sf (s) < Cls|], s ER. (10)

Consequently,

sf (s) < =:5fn(5}| + 2C|s], s ER
and this together with (9) yeld
J!u“fn{uﬂ £ Clul o (1)
The remaining part of the proof is divided into three steps.

1) Assume that |u + o wWith

I
n LZ
Au, + au + fnfunj =0 in g {12)
and Jntun] < 0. We write U, = tn¢! ugs wg orthogonal to by

It follows from (2) that
Fn{zj <€, zER.
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Therefore,

Hence \
a 2
]‘ g v R
and |w |, is bounded. Then, [t |+ = and
2
u L
v, = — +t*¢]
'unlLZ
with t* =21, Suppose t* = 1. By passing to subsequences, if
necessary, we may assume that
Vot hye U, + t= and |vn| < h a.e, fin o

where h 15 some function in Lz. On the other hand, we find from (2)

and (10) that

lim sup fn{un} <0 a.e. in @
and

vnfn{un} < C|vn| a.e. in 0o

respectively. Then, by applying Fatou's Theorem in (9) and using the
ineguality
lim inf vnit—fn{un}] > ¢ lim inf(C-f (u.)) a.e. in @
We get
0 < lim sup Jvnfn[un} < J]im sup unfn{un] < J¢] lim sup fn(un}
which is a contradiction. In the case t* = -1 we obtain

-V > - e .. in @
Yo $7 and W, a,e in

50 that the earlier reasoning applies, since f is odd. Assume now,
Iy | i i n, > 1.
that |ug, Lz + =, Where u, s a solution of {!]nu for some o =

We arrive at a contradiction by a reasoning similar to the above one.
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This proves that the solutions u of {ljn such that Jn[u} < 0 are

bounded in L2+

2) We find from (11) and step 1 that

v &% 2 < f C i
Jivul? - au? < [lulig,1 < clul

Therefore,
|ul; ¢ €, (C independent of n)

for all solutions wu of (1), such that J_(u) = 0.

3) We shall use now a bootstrap argument to obtain |u|_, = C.

If N =2, we get from Sobolev's Imbedding Theorem and step 2 that
|u| p S C, 2 < p < 4=, Then, we apply the a-priori estimates of

L
Elliptic Theory to (1), and use the late inequality together with (3)

to get |U|H2'p <€, 2<p< 4= Thus, |u|_ < C. In the case N > 2,
Sobolev's Imbedding Theorem and step 2 give |u|L2* < Cy ?& = % - %.
Let p; = 2*|o. Then, using (3) and the a-priori estimates for
elliptic operators we get [u[u2'91 < C. Next, one studies two cases:
2= %% and 2 < é%, After repeating the argument a finite number of

times one arrives at J|ul_ < C. This proves Lemma 5.

=

Proof of Theorem 2. Let o = lk k=>1,7 = {¢I“"’¢k—p}’

N = {¢k—p+}""'¢k>’ W = <¢k+1....> and e o i with

Yo, €V, v, €N and w E W. Assume |un|1 + = and J(u ) + 0. Then,

(6)-(7) and the boundedness of f yeld

A
2 2 k 2
e lewn] “Aun - Flygrvgregde, 2 [1 i EI:T)|N“]1_E1WH|]'

Therefore, ;wn:1 is bounded. Similarly. we find, by computing
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<Pd(u )by,>ys that |y [, is also bounded. So, |[v [} +=. On the
other hand,
|2

Jug) = % Jlgwn » Akms & % leynla ® lkfﬁ i thyn t gty

> - - JF{unj.

Now, it follows from (2) that F{z) - -» as |z| + =. Consequently,

(Cf. Rabinowitz [4])
JF[un] - -m

Hence, J{un} + 4o 50 that every sequence up such that

=C = J{un} <0 and ¥J{u ) + 0 is nacessarily bounded. It is easily

seen that :

Vi(u) = u - Ku, uEH,

where K 1is a compact mapping in H;.

apply Clark's result. It suffices to show that i,(J)-i,(J) > j-k+p.

This proves (PS)". We shall

We find from & = lj - lk J = k, that

F{z} =

e
[ ]
-
[
iy
"

for any €& > 0 and some n > lj - lk" Let wu E <¢1...+,¢k....,¢j3,
U= uy + u with Uy E <¢|.....¢k> and us £ <¢k+1""’¢j>' Then,

for €* > 0 properly chosen and lul, = e*,

JORE: J'”“z SYURE. I""“z'z - Ay - JFEuJ

A
2
3 |1 - )it - o i

Therefore, sup J(u) < 0, where 5_, 1is the sphere of radius e*
ues _, =
E
in {¢],...,¢Jb. Consequently, (we recall that T{SE*] = ]},

1]{J} > j. On the other hand, for u = vtw EN@ W
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A
I(u) = 3 J|?m|2 - 2 of - JF{V«»} >3 [1 A IE{T)M%-EIMI, - IFH]
> =C.

Let a < -C. Then J N (N@W) = § so that ¥(J,) < k-p. Thus,
izfd} < k=p. In the case & = += we find that il{d] > j for any
J z k. The case o < 1] is handled similarly by observing that J

is bounded from below in Hl. Theorem 2 is proved.

Proof of Theorem 1. We apply Theorem 2 to soclve {I}n with o < ll
and observe that the solutions wuw obtained via Th. 2 satisfy

Jo(u) < 0. Consequently, |ul, < C and from (3),
[flu(x))| < ¢, x & 4a,

Let n, * C. Then, the solutions of {I}n obtained via Th. 2 are also
1

solutions of (1). This proves Theorem 1.

Proof of Theorem 3. It follows from (4) that

If(s)| celsl+ ¢, e>0, s ER.

Suppose Wi, e with Vo € <¢1.+...¢k? and mriE W E<¢k+1“..>

satisfies:
V(u,) =0 and |Jun| £ C:

Then ¥
|€‘JJ{'|I'“+UJ“}. 'u'n-uun}.l | >

Iy

2 2 2 2
[[19vg12 = av? = [17wy12-002| « [170u, + w) 1v,-6,]

"

a 2 F4 Fs
[1: - ‘]]vHI] + Il - Tit;]lmn|1 - elvoru 17-C lvre |q.

On the other hand,



3
|<vJ[vn+mn}. Vosuoly € eiun+un|1.

Therefore, u is bounded, so that J satisfies (PS]'. Now, let

m > k+1 be such that o+y < }Lm_ﬂ, X = <¢l,...,¢m‘r‘ and Y the
orthogonal complement of X in Hl. By well known results on the
reduction method (Cf, Castro [9]) we get, by applying (5), that

there exists a continuous mapping ¢: X = Y such that
J{ved(v)) = min J(v+), v E X,
wgy

Moreover, u & H; is a critical point of J iff u = LR ¢[v°}

with v, 2 critical point of the functional J: X +R given by

J{v) = J{v+d(v)), v E X,

On the other hand, it is easily seen that J satisfies (PS)” once J
satisfies it. Thus, according to Clark's Theorem it suffices to show
that 1,(J) - i,(J) > |i-k|. We consider only the case j > k.

The proof of the case Jj < k 1is the same, replacing J by =i}; Now ,
it follows by using the condition & > Aj > lk. as in the proof of
Theorem 2, that

J(v) (V) <0 v E <b,...,8;>, vl ="

with e* > 0 properly chosen. Consequently,
i(d) 2 3.
Next, we show that

gt ) 2 K

From (4) it follows that for any € > 0 there exists C_. > 0 such

£

that e .2
F(z) 5 2% ¢+ c.lz|l, z €R,

Let © >0 be such that a+e < lk+l' Hence, if w € W, we find

Ww) 2§ [19l? - (ase)e? - ¢ lul,
z =C

o



Thus,

J{vlj > —CE. Vi € <@ qreeeeatp>.

This implies, as in the proof of Theorem 2, that for a < -I:ﬂ
TEJ,J < k.

Hence, 12{5} < k and Theorem 3 is proved.
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