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MULTIPLE SOLUTIONS FOR A
NONLINEAR DIRICHLET PROBLEM*

ALFONSO CASTRO# AND JORGE COSSIO$

Abstract. The authors prove that a semilinear elliptic boundary value problem has five solu-
tions when the range of the derivative of the nonlinearity includes at least the first two eigenvalues.
Extensive use is made of Lyapunov-Schmidt reduction arguments, the mountain pass lemma, and
characterizations of the local degree of critical points.

Key words, nonlinear elliptic equations, multiplicity of solutions, local degree, mountain pass
lemma

AMS subject classifications. 35J65, 35J20

1. Introduction. Let f" R R be a differentiable function such that f(0) 0,
and

(1.1) ff(oc) lim
f(u) e .

Let f be a smooth bounded region in n, and A the Laplacian operator. Let
/1 < ’2 -- _

k -- be the eigenvalues of-A with Dirichlet boundary condition
in f.

The solvability of the boundary value problem

Au + f(u) 0 in 12,
(1.)

u 0 on 0,

has proven to be closely related to the position of the numbers if(0), ff(cx)) with
respect to the spectrum of-A. In fact, Castro and Lamer in [11] showed that if
the interval (f’(0),ff(oc))t3 (ff(oc),f’(0))contains the eigenvalues Ak,...,zkj and
if(t) < Aj+l for all t E then (1.2) has at least three solutions. The proofs in [11]
are based on global Lyapunov-Schmidt arguments applied to variational problems.
Subsequently Chang (see [12]) approached the same problems using Morse theory,
and Hofer (see [14]) obtained the existence of five solutions when ff(oc) < 1. For
other results in the study of this problem we refer the reader to [3], [4], [6], [8], [10],
[17], [18], and [19], among others.

Here we prove the following.
THEOREM A. /f if(0) < , f’(c) e (k,k+)with k >_ 2, and

if(t) <_ " < Ak+, then (1.2) has at least five solutions. Moreover, one of the fol-
lowing cases occur.

(a) k is even and (1.2) has two solutions that change sign.
(b) of oI *he
(c) k is odd and (1.2) has two solutions that change sign.
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(d) k is odd and (1.2) has three solutions of the same sign.
The assumption k _> 2 is sharp; Theorem B of [11] gives sufficient conditions

for (1.2) to have exactly three solutions when k 1. We prove Theorem A by using
Lyapunov-Schmidt arguments to reduce the solvability of (1.2) to a finite-dimensional
problem, and then we use degree and index theories applied to critical points. We
make intensive use of the fact that the Leray-Schauder degree is invariant under the
Lyapunov-Schmidt reduction process. In order to calculate various indices and degrees
we prove that in large regions the Leray-Schauder degree of maps arising in problems
like (1.2) where f crosses the first eigenvalue

(__lim f(u) < 1 <limu,-, f(U))u
is equal to zero. We also use "mountain pass arguments" of the Ambrosetti-Rabino-
witz type (see [5]).

In 2 we recall the framework that allows studying solutions to (1.2) in terms of
variational functionals and the Lyapunov-Schmidt reduction method. In 3 we calcu-
late the index of the trivial solution when the nonlinearity crosses the first eigenvalue,
establish the existence of positive and negative solutions, and compute their indices.
In 4 we prove Theorem A.

2. Preliminaries and notation. First we state a global version of the
Lyapunov-Schmidt method. For the sake of completeness we recall that if (I) is a
iunctional of class C and u0 is a critical point of (I) then u0 is called of mountain
pass type if for every open neighborhood U of uo (I)-l(-cx),(I)(uo)) U 0 and
(I)- (-cx, (I)(uo)) g V is not path connected.

LEMMA 2.1. Let M be a real separable Hilbert space. Let X and Y be closed
subspaces of M such that M X Y. Let j" M I be a functional of class C. If
there are m > 0 and a > 1 such that

(2.1) (Vj(x + y) Vj(x + yl),y- y) >_ mI[y- YII[ for all x E X, y, y E Y

then we have the following.
(i) There exists a continuous function " X -, Y such that

j(x + (x)) minj(x + y).
yEY

Moreover, (x) is the unique member of Y such that

(2.3)

(Vj(x+(x)),y>=O for all y e Y.

(ii) The function " X ] defined by (x) j(x + (x)) is of class C1, and

(V(x),xl} (Vj(x / (x)),Xl} for all x, 1 e X.

(iii) An element x X is a critical point of if and only if x + (x) is a critical
point of j.

(iv) Let dimX < oc and P be the projection onto X across Y. Let S c X and
E C M be open bounded regions such that

{x + (); x e s} r {x + (x); x e x}.

If V)(x) # 0 for x OS then

d (V, S, O) d (Vj, E, 0),
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where d denotes the Leray-Schauder degree.
(v) If uo xo + (x0) is a critical point of mountain pass type of j then Xo is a

critical point of mountain pass type of.
Proof. The reader is referred to [9] for the proof of parts (i)-(iii). The proof of

part (iv) follows by arguing as in Lemma 2.6 of [16]. Now we proceed with the proof
of part (v).

Suppose xo is not of mountain pass type of . Let V be an open neighbor-
hood of xo in X such that either -(-x,(x0)) V is empty or path connected.
If )-l(-oc,(x0))n V is empty, by part (i) we see that {x + y;x E V,y Y} N
j-l(-oc, j(uo)) is also empty. Thus u0 is not of mountain pass type for j. On
the other hand if -l(-c,(x0))n V is path connected, letting W {x + y;x e
V, IlY (x)ll < 1} and using again part (i) it is easily seen that W j-(-oc, j(uo))
is also path connected. This concludes the proof of Lemma 2.1.

For each positive integer m let m denote an eigenfunction corresponding to the
eigenvalue Am. Let H be the Sobolev space H(D) which is the completion of the
inner product space consisting of real C functions having support contained in Ft
with inner product

<u, v> ] Vu(x) Vv(x)dx.

As it is well known, the set {(m) can be assumed to be complete and orthonormal in
H.

We say that u H is a weak solution to (1.2) if for every H

(Vu.V
f(u) ) dx 0

By standard regularity for elliptic operators (see [11]) it follows that weak solutions
are classical solutions when f is continuous and sublinear, i.e., when f is continuous
and there is a positive constant a such that

If( )l < +

Let J" H denote the functional defined by

(2.5) J(u) J Il]Vu]]2 F(u)) dx,

where F() fo f(s)ds. Since
J e C(H,) (see [19]) and

e (Ak,Ak+l), f satisfies (2.4). Thus

(2.6) (VJ(u), ) jn(Vu.V f(u) ) dx for H.

In particular u is a weak solution of (1.2) if and only if u is a critical point of J.
Let X denote the subspace of H spanned by {1, 2,..., k}, Y its orthogonal

complement, and J the functional defined by (2.5). We claim J satisfies hypothesis
(2.1). Indeed, from (2.6) and the mean value theorem

(2.7) (VJ(x + y) VJ(x + yl),y yl) IlY Ylll 2 /fl f’()(Y Y):"
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Denoting by I10 the usual L2() norm and using that f’() < 7 < Ak+l, we have

(VJ(x + y) VJ(x + yl), y y} >_ IlY YII2 9/IlY YII
(> 1

Ak+
where we have used that [[z[[ 2 Ak+l[[Z[[ for all z e Y. Thus (2.1) holds with
m 1- 7/(Ak+) and a 2.

3. Index of the trivial solution when the nonlinearity crosses the first
eigenvalue. For /> A let p(/) :-p be the homogeneous function defined by

Tx for x > 0,
p(x)

f’(O)x for x < 0.

Let P be the primitive of p with P(0) 0, and r: H be the functional defined
by

(3.1) r(u)= f (llVul,2 P(u)) dx.

As observed in 2 (see (2.4)) r is a functional of class C1, and its critical points are
the weak solutions to

Au + p(u) 0 in
(3.2)

u 0 on 0.

Because f’(0) < and the principal eigenvalue of the Laplacian in any subregion of
F is bigger than or equal to A1, we see that if u # 0 is a weak solution to (3.2) then u
is a positive eigenfunction. Since this contradicts that 7 > A1, we conclude that u 0
is the only critical point of r.

LEMMA 3.1. If B is a ball in H containing zero then d (Vr, B, 0) 0.
Proof. By the definition of the Leray-Schauder degree if Z denotes the subspace

spanned by p, 2,..., Pz with big enough

(3.3) d (Vr, B, 0) d (P VTr, B 3 Z, 0),
where P denotes the orthogonal projection onto Z. Since 7 > we see that h(t) "=

p(t) Xlt > 0 for t # 0. Because l is in Z we have

(P VTr(x), l} (Vr(x), l)

(3.4) f(Vx.V x h(x)) dz

]a(-h(x)) dz < O if x E Z N OB,

where we have used that is positive in t. From (3.4) we have now, for each s E [0, 1]
and x Z f30B,

(3.5) <sPVTr(x) + (1 s)(-l), 1> < 0.

Hence by invariance under homotopy of the Leray-Schauder degree we have

(3.6) d (P Vr, B 3 Z, 0) d (g, B t3 Z, 0) 0,
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where K(x) -1 for all x E Z. From (3.3) and (3.6) the lemma is proven.
Let f+ be the function defined by

f+() { ff!) if>_ 0,
(0) if<0.

Let F+() fo f+ (s)ds, and J+" g If be the functional defined by

(3.7) J+ (u) IIVu]l 2 F+(u) dx.

Imitating the proof of Corollary 2.23 of [19] it readily follows that J+ satisfies the
hypotheses of the mountain pass theorem. Hence J+ has a critical point u+, which
by the maximum principle is a positive solution to (1.2). Therefore, by Theorems 1
and 2 of [15], if the set of critical points of J+ is discrete then at least one of them
is of mountain pass type and has local degree -1. Similar arguments produce either
infinitely many negative solutions to (1.2) or a negative solution u- which is a critical
point of mountain pass type and has local degree -1.

Let , f’(oc) and r as in Lemma 3.1. Since f’(x) is not an eigenvalue of
-A with zero Dirichlet boundary conditions, for p > 0 big enough and s E [0, 1] the
function sVJ+ + (1 s)Vr has no zero on the sphere centered at 0 with radius p.
Hence by Lemma 3.1 we have

(3.8) d(VJ+, Bp, 0) 0

for p big enough. For future reference we summarize the above discussion into the
following lemma.

LEMMA 3.2. Under the hypotheses of Theorem A, (1.2) possesses a positive
(respectively, a negative) solution. If the set of positive (respectively, negative) so-
lutions is discrete then at least one of them is a critical point of mountain pass type
and its local degree is -1.

Since 0 is an isolated local minimum of J+ and J we have

(3.9) d(Vg+, B, O) 1 d(VJ, B, 0),

where B is a ball centered at zero containing no other critical point (see [2]). Hence
if is a bounded region containing the positive solutions and no other critical point
of J we have

(3.10) d(VJ, , 0) d(VJ+, , 0)
d(VJ+, Bp-, 0)
d(VJ, 0)- d(VJ, B, O)
-1.

Similarly we see that if 1 is a bounded region containing the negative solutions to
(1.2) and no other critical point of J then

(3.11) d(VJ, , O) -1.

4. Proof of Theorem A. First, we show that there exists u0 H such that
VJ(u0) 0 and, if isolated, then

(4.1) d(VJ, V,O)--(-1)k
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in any region V containing no other critical point of J. In fact, by Lemma 2.1 and
(2.8) there exists " X --+ Y such that

J(x + (x)) min J(x + y).
yEY

Moreover, (x) is the unique member of Y such that

(4.2) (VJ(x + (x)), y> 0 for all y e Y,

the function 07. X --* N defined by (x) J(x + (x)) is of class C1, and

(4.3) (VJ(x),xl/= (VJ(x + (x)),Xl/ for all x, xl e X.

We now claim that for x E X

(4.4) g(x)

Because f’(oo) E (Ak,Ak+) there exists b IR and > Ak such that F() >_ (2/2) +
b. Hence

1 / 1 fax2_b[fJ(x) - Ilxll F(x) < - Ilxll 2

Since (x, x) _< Ak (x, X}o for x X, we obtain

J(x)<-llxll 1-
Because J(x) <_ J(x), (4.4)implies that

(4.5) .](x)
Since dimX < oo there exists x0 X such that

(xo) max J(x + (x)).
xEX

Taking uo x0 +(x0) we have (see Lemma 2.1) VJ(u0) 0. Suppose now that xo is

an isolated critical point of J, hence u0 is an isolated critical point of J. Since -J has
a local minimum at x0, taking W {x e X; x+(x) e V} then d (V7, W, 0) (-1)k.
Therefore by part (iv) of Lemma 2.1 we have (4.1).

Suppose k is even. Let R be large enough so that if V](x) 0 then Ilxll < R.
Because f(t) _< - < Ak+, there exist positive numbers c and c2 such that for all
X e X II)(x)ll Cl 2t- C211XlI. Thus if u x + y is a critical point of J then Ilxll <_ R
and IlYll <- Cl + c211xll. Because _7 is coercive, d (V7, BR, 0) (-1)k 1. Thus by
part (iv) of Lemma 2.1 d(VJ, C, 0)= 1 where C {x + y; Ilxll < R, IlYll < c + c2R}.
Suppose that K, the set of critical points of J, is finite. Let $1, $2 and $3 be disjoint
open bounded regions in H such that $1 C K {0}, $2 N K is the set of positive
solutions to (1.2), and 3 C g is the set of negative solutions to (1.2). By (3.10) and
(3.11) we have

(4.6) d (VJ, $2,0) d (VJ, $3,0) -1.

If u0 xo + (x0) t $2 U $3 we let $4 denote an open bounded region disjoint from
$1 U $2 U $3 such that S4CK {no}. By the excision property of the Leray-Schauder
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degree we have

1 d (VJ, C, 0) d (VJ, $1,0) + d (VJ, $2,0) + d (VJ, $3,0) -- d (VJ, $4,0)

+ d (VJ, C ($1 t2 $2 U $3 t2 $4), 0)
1 1 1 + 1 + d(VJ, C- (S u $2 U $3 t9 $4),0).

Thus, by the existence property of the Leray-Schauder degree we see that there exists

u E C (S U $2 U $3 U $4) such that VJ(u) 0, which proves that (1.2) has at
least five solutions. In this case both u0 and U change sign.

Suppose now that uo E $2 t2 $3; without loss of generality we can assume that
u0 $2. Let $4 be a neighborhood of u0 such that $4 K {uo}. By Lemma
3.2 there exists a critical point of mountain pass type ul $2 such that if $5 is a
neighborhood of Ul containing no other critical point of J+ then d (VJ, $5,0) -1.
Thus

-1 d (vg, $2,0) d (VJ, $4,0) + d (vg, $5,0) + d (VJ, $2 $4 U $5,0)
1 l+d(VJ, S2 $4 USh,0).

Thus, by the existence property of the Leray-Schauder degree there exists

u2 E $2 $4 U $5 with VJ(u2) 0. Finally,

1 d (VJ, C, 0) d (VJ, S1, 0) + d (VJ, $2,0) + d (VJ, $3,0)

+ d (VJ, C (S t2 $2 t2 $3), 0)
1 1 1 + d (VJ, C (S1 [-J $2 [-J $3), 0).

Thus there exists u3 C- (S t2S2 S) with VJ(u3) 0. Thus the set
{O, uo, ul,u2,u} together with a critical point of J in $3 shows that (1.2) has six
solutions. Since u3 $2 t2 $3 and uo, ul, u2 E $2, u3 is a sign changing solution and
uo, ul, u2 have the same sign. This completes the proof of Theorem A when k is even.

Suppose k is odd. Let Si, 1,2,3 be as above. Ifuo $2$3 the proof
follows very closely that of the case k even; the details are left to the reader. Suppose
U0 $2 I..J $3, say, u0 e $2. Because u0 > 0 in gt and Ouo/O? < 0 in OFt (here
0/07 denotes the outward unit normal derivative), using that X is finite-dimensionM
and standard regularity theory of elliptic operators it follows that for some e > 0
x + (x) > 0 in t if IIx- x011 < e. Thus and + coincide in {x; IIx- xoll < e}. Thus
]+ has a local maximum at x0. Since we are assuming (1.2) to have only finitely many
solutions, x0 is a strict local maximum of +. Let 5 > 0 be such that +(x) < ]+ (x0)
if IIx-x011 < 5. Since k > 2, {x;0 < IIx-x011 < 5} is connected. Thus xo is not
a critical point of mountain pass type. By Lemma 3.2 J+ has a critical point of
mountain pass type ul x +(x) such that if V is a neighborhood of u containing
no other critical point of J+ in its closure then d (VJ+, V, 0) -1. In particular, by
part (v) of Lemma 2.1 x0 - x. Let V0 (respectively, V1) be a neighborhood of u0
(respectively, Ul x ++(x)) containing no other critical point in its closure. Thus

-1 d(VJ+,S2,0) d(VJ+, Vo,0) + d(VJ+, V1,0) + d(VJ+,S2 (Vo V),O)
-2 + d (VJ+, 32 (V0 t2 V1), 0).

Thus by the existence property of the Leray-Schauder degree there exists a third
positive solution u2 $2- (Vo W V). Since by the existence property of the Leray-
Schauder degree (1.2) has a solution u3 e $3, we see that (1.2) has five solutions,
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namely 0, Uo, ul, u2, u3. Since Uo, ul, u2 E $2 they have the same sign. This proves
Theorem A. ]
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