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REDUCTION METHODS VIA MINIMAX

Alfonso Castro B.

Departamento de Matematicas
Centro de Investigacion del IPN

Apartado Postal 14740
Mexico 14, D.F. Mexico

1. Introduction

Let H be a real Hilbert space and J:H R a functional of

]

class C'. That is, there exists a continuous function VJ:H - H

such that for x,y € H

lig gi;+t{)-J(x) = <0 (x), y>
-+

where < , > 1is the inner product in H,

In this note we consider the existence of critical points of J,
which are points u € H such that 9J(u) = 0. The particular kind
of functional J that we study have the property that there exist
closed subspaces X and Y with H=X®Y and such that the
existence of critical points of J 1is equivalent to the existence of
critical points of a new functional J:X + R. The functional J s
given in the form J(x) = J(x+r{(x}), where r:X > Y 1is a continuous
function defined via a "minimax characterization“; that is, some

functional takes a minimum, maximum or minimax value at r(x) {see

Lemmas 1 and 3).

In section 2 the reader will find the basic abstract tools

wWhich will be used throughout the applications. As applications we



present the existence of solutions for Hammerstein integral equations,
periodic solutions of the forced pendulum equation and solutions to a

nonlinear Dirichlet problem.

2. Reduction Lemmas

temma 1. Let X and Y be closed subspaces of a neal Hilbent
space H such that H =X@®Y. Let J:H -+ R be a functional of

1

cfass C'. 1§ there exists an increasing function ¢:(0, =) + (0, =)

such that ¢(t) + o as t -+ = and

<9I {x+y) = VI(x+y ), ¥-yy> 2 lly-yqlle(lly-y4l1) (2.1)

jon all x E X, Ys¥yq EY, y# Yy then:

i) thene exists a continuous function r:X = Y such that
J(x+r(x)) = min{J(x+y); y € Y}; monreover, r{x) 4is the only critical
point of the functional J.:Y +R, y + J{x+y).

i1) the funetion J:X » R, x = J(x+r(x)) is of class C' and

<WI(x), xy> = <d(x+r(x)), x9> for all X,xj € X.

Proof: From (2.1) and the assumption that ¢ takes only positive
values it follows that Jx has at most one critical point. Also

from (2.1) we have
1
I y) = 3,00) & [ <vd (sy), yods
0 : (2.2)
2 3,011, O)Iyhe]  sllelsyl)es.

Since we are assuming that ¢(t) -« as t + =, there exists R >0
such that ¢(t) > 2(||vJd,(0)] + 1) for t > R. Hence, for [yll > 2R
we have J (y) > 3,(0) + 3yl + = as lyl|| + =. Therefore, in order

to prove that J, has a unique point of minimum it is sufficient to

|
_3
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1
- JO <yd (x+r(x)+sth), h>ds. (2.5)

In a similar manner it can be proved that

]
(3 (x+th)=T (x))/t) > [0 <vd (x+r(x+th) + sth), h>ds. (2.6)

From (2.5}, (2.6) and the continuity of VJ and r we obtain

<V3(x}, h> = <9d{x+r{x)), h>,

Hence J has continuous directional derivatives. Therefore J is of

class C1 and the Lemma has been proved.

Remarks. 1. In most of the applications the function ¢ has the form

¢(t) = mt.

2. 1t is not necessary that ¢ be increasing, double
checking the proof we see that it is sufficient to assume that

inflé(t); t > nl >0 for n > 0.

3. It is easy to verify that if (2.1) is replaced by “Jx
has a unique point of minimum r({(x) and the function r is bounded
in bounded sets, and VJ 1is continuous in the weak topology of H",

then the conclusions of Lemma 1 still hold.

4. The function J inherits the degree of differentiability

of J. For example we have

Lemma 2. I{ in addition to the hypotheses of Lemma 1 we assume that

2

J {5 of class C° then ) is of class CZ.

Proof. See [13, Theorem 4].

The condition (2.1) says that the graph of J, looks like a

“barabola*. There are cases in which the graph of J, 1looks like 2




show that J, 1is convex. Let y .y, €Y, ¢(t) = Jylyy + tlys - vq1))

and 0 < g « B < 1. Since J 1is of class C1, ¥ is of class C’.

From (2.1) we have

' (B)-¢'(a) <v\](xﬂf]"'B(.YZ'Y]))"VJ(x“’y?*a()'z*y]))s .Yz'f-l:'

1V

(B~a) (yomy Mol (B-a) (yp-y ll )/ (8-a) > 0.

Hence ¢ is convex, which implies that J, s convex. Consequently

we have proved that Jx has a unique point of minimum which we

denote by r(x).
Now we show that r(x) is continuous. If not, let & > 0 and

{xn} be a sequence converging to some x € X such that

ir{xy) = r(x)ll 2 26, (2.3)

Since VJ is a continuous function and <VI{x+r(x)), y> = 0 for all
y €Y, we have for n sufficiently large

[P*(va(x +r (x)I < ¢(8), (2.4)

where P* denotes the adjoint of the operator P(x+y) =y for

x €EX, y €Y, Thus from (2.1) we obtain

1P (99 (e )M P () -r (Ol 2 <=93 (x4 (%)) s r(x)-r(x)>

2 VIxptr(x)) - VI(xper(x)), rx)-r(x)>

v

Ir(x,) - r(x)lle(28).
Since this inequality contradicts (2.4), we have proved that r is
continuous. This completes the proof of part i).

Let t >0 and h € X. From the fact that Jx attains its

minimum at r(x)}) we have
((I(x+th)-T(x})/t) = ((I(x+th+r{x+th))=I(x+r(x))

S ((I{x+th+r(x))-d(x+r(x)))/t)



"global saddle point". In the following Lemma we consider this

situation.

Lemma 3. Let X, Y and Z be closed subspaces of H such that
H=X®Y®I. Let J:H + R be a functional of class C]. 14 thenre
exists an Linecreasding function ¢:{0, =) + {0, =} such that

p{t) + = as t -+ = and
-“z1-22H¢(Hzl-22H)3<Vd(x+y+z1)-VJ(x+y+zz), 2, - 25>, (2.6)
<VI(x+y+2)-VI(x+y +2), y-ye> 2 lly-y,lledlly-y4l) (2.7)
fon all x € X, ¥s¥q 6 Y, vy # Y1 Zs24 E Z, z # 27> then:

i) theae exdiats a continuous function r:X - Y@ I such that
J(x+r(x)) = max{min{J(x+y+z}; y € Y}; z € Z}=min{max{0(x+y+z); z €Z};
y € Y}.

1

ii) the function J:X » R, x + J(x+r(x)) 4s of class C and

<Jd(x), Xq> = <VJ(x+r(x)), Xy>  fox Xy X, € X.

Proof: From (2.7) and Lemma 1 it follows that there exists a
continuous function Y:X @ Z + Y such that J{x+z+P(x+z)) =
min{d (x+z4y); y € Y}, J (x+z) = J(x+z+¥(xtz)) is of class C' and

<VJ](x+z), u> = <V3(x+z+¥(x+z)), u> for u € X® Z.

From the definition of ¥, (2.6) and the fundamental theorem

of calculus we infer

J1(x+z) J{x+z+¥(x+2)) < J(x+2z)

1
J(x)+<VI(x), z> + IO <VJd(x+tz) - YI(x), z>dt

A

1
IO IV TE S I ETEPEL

Arguing as in the paragraph following (2.2) we see that

Ja (x+2) i +Fz=mta s |21 = e (2.8)



Now we fix x € X. Let {zn} be a sequence in Z such that
Tim J1(zn) = sup {J](x+z]; 2 € Z}. From (2.8) we see that {zn} is
bgunded. Therefore, without loss of generality, we can assume that
{zn} converges weakly to some 2, g 7. By the definition of ¥ we
have

J](x+zn) < J(x+2z

nt w(x+zn))

1A

J(x+zn+w(x+zo)). (2.9)

From (2.6) it follows that the function 2z J(x+z+w(x+zo)) is
concave, therefore (see [20])

1im sup J(x+zn+w(x+zo)) < J(x+z°+¢(x+z°))
n

= J](x+zo). (2.10)

Hence, from {(2.9) and (2.10) we see that J1 attains its maximum

value at z,. Thus r(x) = 2z, + w(x+zo) satisfies

J(x+r{x)) = max{min{d(x+y+z); y € Y}; z € Z}. (2.11)

Now we show that r{x) is the only critical point of J,:Y + Z*R,
y + z + J{x+y+z). Suppose Y1+ 24 and Yotzp are two different
critical points of J, and say ¥, # yp. Since, from (2.7), the
function y Jx(z1+y) js convex and ¥1 js a critical point of
this function we have Jx(z]+y1) < J(z1+y2). From (2.6) we see that
the function 2 * Jx(y2+z) is concave. Hence, since 22 is a
¢critical point of this function, we have J(z1+y2) = J(y2+zz). From
the last two inequalities we have Jx(y]+z]) < Jx(y2+zz). In a
similar manner it can be proved that Jx(y2+zz) < Jx(y]+21). Since
the last two inequalities contradict each other, we have proved that
Jy has a unique critical point. Consequently r(x) is the unique
critical point of J,.

Another way to cobtain a critical point for J, is like this.




For each y € Y the function z -+ J,{y+z) has a unique point of
maximum p(x+y). Repeating the analysis we did on the function J.I
it is shown that the function y =+ Jx(y+p(x+y)) attains & minimum

value at some point Yor Therefore we have

Jylygtelx+y )) = d(x+y +o(x+y )} = min{J(x+y+p(x+y)k y E Y}

(2.12)

min{max{J(x+y+z); z € Z}; y € Y}.

Combining (2.11) with (2.12) and using the fact that r(x) 1is the
unique critical point of J, we have r(x) = Y it p(x+y0); thus

we have proved the variational characterization of the conclusien i).
The proof of the continuity of r is essentially identical to the
proof of the continuity of the function r in Lemma 1. For this

reason we leave this as an exercise.

We prove now that J s differentiable. From (2.12) we see

that for t > 0, x,h E X we have

5(x+th)-3(x) J(x+th+r1(x+th)+r2(x+th)) - J(x+r](x) + ro(x))
t T
J(x+th+r](x)+r2(x+th))-d(x+r](x)+r2(x))
<
. t
J(x+th+r1(x)+r2(x+th))-J(x+r](x)+r2(x+th))
t

A

1
I <VJ(x+sth+r](x)+r2(x+th)). h>ds. (2.13)
0

In the above we have written r(u) = r1(u) + ro{u) with r1(x) E Y
and rz(u) € Z. In the first inequality we have used that
J{x+th+r(x+th)) = min{J(x+th+y+r,(x+th)}; y € Y}. Similar argument
Justifies the next inequality. We leave it to the reader to show
that this type of analysis also leads to

J(x+th)-Jd(x)
t

1
> J <VJ(x+sth+r1(x+th)+r2(x)),h>ds. (2.14)
0

Clearly (2.13) and (2.14) imply that J is of class C] and



l‘

<¥I(x}, h> = < (x+r (x)+ry(x)), h> (2.15)
and the Lemma is proven.

We invite the reader to state for Lemma 3 analogs of Remarks

1-4 of Lemma 1. Several applications of Lemma 3 can be found in 3].

3. Applications to Hammerstein integral equations

Let @ Q.Rn be a bounded region and K:0xQ + R be such that
K(x,y) = K{y,x) for all x,y €n and K € Lz(ﬂxn). We define
k:L2(a) + L2(a) by

k(u)(x) = [ﬁ K{x.y)u(y)dy. (3.1)

Since [[k(uw)lf , < ikl » llull » , the operator k 1is
Lo(a L

) (axa) L7(Q)

continuous. From Fubini's theorem it follows that k is compact

{see [16, ch. IV]) and selfadjoint.

tet g:0xR + R, (x,y) = g(x,y) satisfy the Caratheodory
condition, that is, let g be continuous in u for each x and
measurable in x for each u. We consider the Hammens tedn infegral

equation

u(x) = JQ K(x.y)a(y u(y))dy. (3.2)

Now we show that finding solutions to (3.2) is equivalent to finding
critical points of a certain functional to be defined (see Lemma 5}.
Since k 1is compact and LZ(Q) is separable there exists a complete
orthonormal set {¢1,¢2,...} in LZ(Q) and a sequence of real numbers
{11,12,...} tending to 0 with k¢, = A;45, j=1,2,.... MWe denote
by Y the closed subspace of Lz(n) generated by {¢;5 Ay > 0}. 1t
is easy to show that if X denotes the orthogonal complement of ¥
then X 1is the closed subspace generated by {¢i; Ay < 0}. Hence,
given y € Y there exists a sequence of real numbers {c;} such

that c; = 0 if 1, <0 and y = I cy¢;. For u € LZ(Q) with
i=1
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© o ..L
u = iZ] d;¢; we define Qq(u) = iz as¢; with a; = d;{x;)* for
Aj 2 0 and a; = 0 for Ay < 0. It is easy to verify that
Q(x) = 0 for x € X, and Q1(Q1(¥)) = k{y) (3.4)

for all y € Y. In the same manner it can be shown that there exists

a selfadjoint operator Q:Lz(n) -+ LE(ﬂ) such that

Q(y) = 0 for y € ¥, and Q(Q(x)) = -k(x) (3.5)

for x € X. Now we can prove:

Lemma 4. For w € Lz(n) 2et g](w)(g) = g{E, w(E)). T4 (x,y)€eXxY
satisfies

x(E)4¥(E) = Qg0 (¥)+Q(x))(£))+Q;(97(Qq(¥)+Q(x))(E))  (3.6)

then u = Q(x} + Q](y) L8 a solution of (3.2). Convenrsely, Lf u
is a so0lution of (3.2) then thene exists (x,y) € X xY which satisfies

(3.6) and such that u = Q(x) + Qy(¥).

Proof: Let P:LZ(Q) -+ LZ(Q) be the orthogonal projection onto X
and P.l = I-P the orthogonal projection onto Y. Let ({x,y) be a
solution to (3.6) and let u = Q{x) + Q](y). Applying Q and 0,
to (3.6) we obtain

0(x) = -0%(g,(u)) = K(P(gq(u})) (3.7)

0y (y) = k(Pq(gq(u))) (3.8)
respectively. Adding (3.7) and (3.8) we see that u 1is a solution of
(3.2).

Suppose now that u s a solution to (3.2). Let Xy = P(u) and
yy = P{u). Hence x; = P(k(g7(u))) = k(P(g7(u))) = -Q%(P(gy(u))).
Thus, if we set x = -Q(P(g1(u))) then Q(x) = x4. Similarly

Y1 = Qq(y) with y = Q;(gy(u)). Hence -x = +Q(P(gi(xy*yy))) =
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+Q(6;(Q(x) + 0y (¥))) and y = Qy(95(Q(x) + Q,(y})). Adding the
last two equations we see that (x,y) € Xx¥ s a solution of (3.6)

and the Lemma is proved.

Lemma 5. Suppose there exist a neal number A and a funcition
B € Lz(n) such that
lg(x, u)| s Aful + B(x) (3.9)

w(E)
for (x,u) € R. For w € L%(R) et Gy(w)(E) = fo (e, s)ds.

14 J:LZ(Q) + R is the functional defined by

I(u) = [n (((Pqu)2 - (Pu)?)/2)-61(Q(u) 40y (u)) (E)4E, (3.10)

1

then J {8 of class C and U, is a cnitical point of J 4Lf4

(P(uo), P1(uo)) E XxY 4is& a sofution Zo (3.6).

Proof: For (x,u) € @R let G(x,y) = Iu g(x,s)ds. Since g
satisfies the Caratheodory condition, G giso satisfies it. From
(3.9) we have [G(£,u)| < (A+1)ju| + BZ(£). Hence J is well
defined for all u € Lz(Q). Let us show that J 1is of class Cl.

Let u,v € LZ(Q). A simple computation shows that

J(u+t{)-J(!l - J (Py{u)P (V) -P(u)P(v))(1-(t/2))
9]

(6 (@) v =6; ((@say) ))/8).

Hence, using the definition of G.l and the fact that (3G/3u)(x,u) =

g(x,u) we infer that

pip SLurty)-d(u) I (Py{u)P{(v)-P(u)P (V)
t+0 ¢

-]Q 97((0+07) (1)) (Q+Q5) (v).

- ]Q (P4 (0)-P (0)-(Q+Q; ) (97 ({240 ) (W))))ve  (3.11)

We observe that in obtaining the last equality we have used the




1)
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selfadjointness of Q and Q]. But P, P], Q0 and 01 are bounded
operators. Hence because of (3.9) and Nemytskii's theorem (see (20,
chapter 2]) the expression P1(u) - P(u) - (Q+Q])(g]((0+01)(u)))

defines a continuous operator with domain LZ(Q) and values in

1

LZ(Q). Hence J is of class C and

I(u) = Py(u)-P(u)-(Q+Qy ) (g, ((Q+Qy) (u))). (3.12)
From (3.12) we see that if VJ(u ) = 0 then
P(ug) = -Qgq((Q+Q7)(u,))) (3.13)
Pylug) = Q(97((Q+0;) (u,))). (3.14)

Adding the last two equations we see that (P(uo), PT(uo)) E X xY
is a solution to (3.6).

Conversely, if (P(uo), P](uo)) is a solution to (3.6) then
u, satisfies (3.13) and (3.14}. Hence from (3.72) we see that

VJ(uol = 0 and the Lemma has been proved.

Since the eigenvalues {li; i=1,2,...} form a sequence tending
to zero we can assume that they are ordered in the following way:
Ay 222 00202 ... 2 1_2 > A_y- Now we can proceed to apply

the results of the previous section to the equation (3.2).

Theorem 6. I4§ (3.9) hofds and there exist an integer N and real

numbers v, Y' and C such that:
a) (W3xg) <y <" < (W30
b) for u,v ER, x € @ (g(x,u) - g{x,v)){u-v) < Y‘(u-v)a,
¢} G(x,u) > (¥/2)ué-C fon (x,u) € xR

then:

A) the equation (3.2) has a sofution,

B) 4{§ the hypothesis C) ias neplaced by (g{x,u) - g(x,v})



—
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(u=v) 2 Y(u-v)2 fon all u,v ER, x € &, then (3.2) has a undique

solution.

Proof: In order to prove claim A) it is sufficient to prove that J
has a critical point {(see Lemma 5}). Without loss of generality we

can assume that N > 0. Let Y1 be the closed subspace of Lz(ﬂ)
containing {¢N+1’ ¢N+2’ ...} and X] be its orthogonal complement.
Thus X1 js the closed subspace generated by the Kernel of k, X

and the set (¢N, ¢N-1""'¢1}° Applying b) and (3.12) we have for

x € X], ¥a¥q € Y]
WA (xry ) TIxy) s yymy> = [y = 0P - (970000 (x¢yy)
- g]((Q+Q])(X+y)))(Q+Q])(x"'Y))
> [ty - 02 - v ). (3.15)
F s J 2 2
rom the definition of Q, we have that ﬂ(Q](y)) < Aned Jy .

Combining this inequality with (3.15) we have

<V (x+yy)-VI(x4y), yy7¥> 2 (1-Y‘AN+1)Hy1-yHi2(Q)- (3.16)

Since hypothesis a) implies that (1-7'AN+1) > 0, by Lemma 1 there
exists a continuous function r:X1 - Y1 sucht that J(x) =J(x+r(x)) =
min{ld(x+y); y € Y]}. Also from Lemma 1 {claim ii)) we know that

in order to prove that J has a critial point it is sufficient to

prove that J has a critical point.
For x € X], using c) we have

—23(x) 2 -2d(x)

"

- -ty en? - een? - 28 @ D)
Q

1V

2 2 2
P p
li ](x)HLz(Q) + i (XNILZ(Q) E Y”(Q+Q1)(XN1L2(R)

-2C meas(Q)
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2 (YAN-1)nx1ufz(n) + nP(x)nfz(n) - 2C meas(2),  (3.17)

where Xq denotes the orthogonal projection of x on the subspace

generated by {¢1"“’¢N}‘ From (3.17) it is clear that
J(x} » == as ||x|| » =, x € Xy (3.18)

Also (3.17) implies that J is bounded above.
Let {x,} be a sequence in X1 such that J(xn) + sup{i(x); x € X1}.
From (3.18) we see that {x,} s bounded. Thus without loss of

generality we can assume that {xn} converges weakly to x_ € X

] 1°
Let xﬁ denote the orthogonal projection of X, on the subspace
generated by {¢y,...,¢y}. Clearly {x )} converges to xé, where xa
is the orthogonal projection of X, on that subspace. Let us see
that {r(xn)} converges to r(xo). For y € Y, we have
0 = 11m <VJ(xn+¢(xn)), y>
- 1 t -
- lin [texgerce 97 ((0409) (x#r () )0y (). (3.19)

Setting, in (3.16), x = Xps ¥q = r(xn) and y = 0 we see that
{r(xn)} is bounded. Hence we can also assume that {¢(xn)} converges

weakly to some element y3 E Y]. Hence using the compactness of Q

and 01 we obtain

0 = [yg¥3, ((0+0) (43,0110 (¥) (3.20)

for all y € Y]. Since by Lemma 1 the only critical point of

Jxo(y) = J(xo+y) is r(xo), from (3.2) we see that Y= r(xo).

Therefore, setting in (3,16}, x = Xps Y1 = r(xn) and y = r(xo),

we have
(1-Y'AN+1)Mr(xn)-r(xo)ufz(n) < <TAxp+r(y)) = VI (xp+r(x)),

Pixg) = r(xg)> = [((r(xg) ) (r(xg)=r (1)) =8, (0407} (x#r(xg)))
0y (r(xg) - ri{x))). (3.21)
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Since Q, is compact the last expression in (3.21) tends to zero.

Consequently {r(xn)} converges to r(xo). Hence we have

supfd(x); x 6 Xy} = lim J(x,)

]

([ rxgn? - (P (x) )2 (x)2-267 (0403 ) (X1 (x0))))/2

A

I(x, * rixg)) = I(xy)- (3.22)
In obtaining the last inequality we have used that {r(xn)} converges
to r(xo), that xa converges to xs and that

I(P(xo))z < lim inf J(P(xn))z. From (3.22) it follows that x, is a

point of maximum of 5, which proves that J has a critical point.

Thus claim A) has beer proved.

Now we prove claim B). Imitating the proof of {3.15) we have

2
<VJ(X1+y) - VJ(x+.Y). X'I"x S (1"‘YAN)I5X1 - quz(Q):

o= o e

for X,Xy € X1 and y € Yy. Hence using Lemma 3 with X = {0},

ls= X1, Y = Y1 we infer that J has a unique critical point and, i

therefore, that (3.2) has a unique solution.

Remark. If in addition to a}, b), c) we assume that a(x,0} = 0,

(3g/au)(x,0) < (1/xy) for all x € @, &y € L"(2) and r(sd) € (@)
for |s| small, then (3.2) has a nontrivial solution. The proof of
this follows the following pattern. From the proof of the claim A)
of Theorem 5 we know that (3.2) has a solution which comes from a
point of maximum of J. The additional hypothesis permits showing
that for some small s, 3(s¢]) >0 = 3(0). Hence such a point of

maximum is not O,

4. On a result by A. Ambrosetti and G. Prodi

In this section we present a version of a classical result




—_
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proved in [4]. The proof of the next theorem is essentially taken
from [6].

Let @ be a bounded region in R". Let (A;» ¢;) be the ith

eigenvalue-eigenfunction pair of the problem

AU + Au 0 in Q@
u=0 in aq,

. 2 2 2 2
where A denotes the Laplacian operator 3 /ax] + ... + 0B /axn.
He assume I ¢$ =1 for all i=1,2,....

Q

We consider the problem

Au + g(u)

péy + h in @, (4.1)
u==0 in 239, (4.2)

where p s a real parameter, h E Lz(ﬂ), J h¢] =0 and g is a

2
continuous function satisfying

(1) Tim g(x)/x = <A
X=+=wm

(11) lim g{x)/x = v € (31, 12)
X0

(111} (g(u) - g(v))/(u-v) ¢ y<hrp, if wu # v.

Let H denote the Sobolev space of square integrable functions
in Q@ vanishing on 3Q and having generalized first order partial
derivatives in LZ(Q) (see [1, ch. III]). In order to state our
next theorem we recall that u € H is a weak so0lution to (4.1)-(4.2)

iff u dis a critical point of the functional J:H + R defined by
J{u) = J ("VUHZ/Z-G(U)+p¢1U+hU)
1Y)
u
where G{u) = J g(s)ds.
0

Theorem 7. 1§ g and h are as above then there exists p(h) such

that the problem (4.1)-(4.2) has
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(R) at Least fwo sofutions fon o > p{h)
(B) at Least one solution fon p = p(h)
(C) no sofution forn P < p(h).

Funthen, 4§ {hn} converges weakly to h 4n LZ(Q) then
p(hn) + p(h). 14, in addition, (IV) g 4s strictly convex, then

(A) and (B} ane valid with "at Leasit" neplaced by "precisely"” .

Proof: By choosing € < 11 - u, € 1large and considering the equation
Au + (11—e)u + g(u)-(k]-s)u+C) = phythy

it is clear that there is no loss of generality in assuming ¥ < 0

and g > 0. We will also take ¢, 2 0:i

Let X denote the subspace generated by ¢] and let Y be
its orthogonal complement in H. Since A 1is selfadjoint it is
easy to see that ¥ js the closure of the subspace generated by
{¢2, $qs ...}. Me leave it to the reader to prove that the
functional J is of class C]. From the hypothesis (III) follows it
that for x € X, y,y; €Y |

<VI(x+y ;) -V (x+y)s ¥q7¥> 2 O-v/ A )19¢yy - v, (4.3) 1

L2 (2)
Since X 1is one dimensional, from (4.3) and Lemma 1 we see that for
each real number t there exists r(t) € Y such that

J(t¢1+r(t)) = min{d(téq+y)s v € Y}. e wish to show that

d(ﬁ(t))/dt + -» as |t| +=. Note that, by claim ii) of Lemma 1,

Eﬂ}gl = <V (o 4r(t)), 09> =t JQIV¢]‘2+D-Jgg(t¢1+r(t))¢1. (4.8)

Since g is nonnegative, J'(t) + -® as t * -%. Aiso

J(t¢]+r(t))fd(t¢1)=t2 [Q|v¢]|2/2 i IQG(t¢1) + tp. (4.5)

From hypothesis (I]) we see that for any € >0 there exists C such
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that for all t > 0, 2G(t} > (v—e)t2 - 2C, Hence, from (4.5) we
obtain

J(t¢1+r(t))5(t211-(v~e)t2)/2+c + - 35 t @,
Hence, if 3'(t) does not tend to - as t -+ =, there must exist
a sequence t <+ = such that J'(tn) is bounded. From the

n
inequality in (3.4), the definition of J, and {(III) we have

[ e < o] epopertegn? + 00 (ep0pen(ey)

2 2 1 2
. ytnwjntr(tn)) +|g(0)|(tnjg¢1+(meas Y e e el o)

This implies that {HVr(tn)H 2(Q)/tn] is bounded and by taking
L
subsequence, we can suppose that {¢(tn)/tn} converges weakly in Y

to ¢ say. Replacing t by t, in (4.4}, dividing by t, and

taking 1imit as n =+ = give
2
0= JIV¢1[ - gy(8 +b)e, (4.6)

where g1(s) =us if s <0, g](s) Vs if s > 0. Notice that

lim <VJ(t by + r{t _})/t_, y> = 1lim O 0 mfor all By ExYiar . eals
n n n n

N+

(=)
1l

1;m IQ(Vr(tn)-Vy-g(tn¢]+r(tn))¥+hY)/tn

L}

I V-Vy - gq{ey+¥)y.
Q

But putting y = ¢ gives

2
TR 2 L S CA ORI I
L™ (a) L=(%)
which implies that ¢ = 0. Now (4.6) becomes 0 = Aq-v, 8

contradiction. Thus J'(t) » - as [t] » =, which implies the
existence of p(h) satisfying (A), (B) and (C). Observe that this

also implies that the set of zeros of J' is bounded.

The fact p(h) depends continuously on h will follow by
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showing that r(t} depends continuously on h. Llet h1,h2 € Lz(n)
with Jn ¢]h1 = IQ ¢1h2 = 0 and for fixed t ER let ¢] and wz

be the r{t) corresponding to replacing h in J by h1 and h,

respectively. Hence

0

(70700 = 41 = ((teg+07)n ) (420

and

o
1]

]Q(vw2~v(w1 - 0y) - (a(tbyrup)-hy) (#1705
Subtraction gives
0= H?(w]-wz)nz - fg(g(t¢1+w1)-g(t¢1+w2))(w;-w2)

' Jn(h*'hz)(w"wz’

> 193w 1% = vllwy-vgll® = 1hy=holllvg-vol (4.7)
where all the above norms are in LZ(Q). From (4.7) we have
IV (uy-wadll < X/ {xgp=v)lIhy = holl. (4.8)

Thus, for fixed t, the mapping h -+ r(t) s globally Lipschitzian
from Lz(n) to H. Now (4.8) shows that if h - h weakly, and if

Yps ¥ denote the corresponding r(t)'s, then {wn} is bounded in H.

Hence by the Sobolev embedding Theorem ([1, pp. 97]) we can assume
that by~ b in LZ(Q). Finally (4.7) shows that by Yy in H.
Thus we have proved that p(h) is continuous from the weak topology

in LZ(Q) to the reals.

The proofs of the implications of the hypothesis (1V) do not
depend on the abstract developements of section 2, so we rather refer

the reader to [6] for these details.

5. Periodic solutions of the forced pendulum equation

Let g:R + R be a continuous T-periodic function such that

(g(u) -~ g(v))(u-v) < (u-v)® for u#v. Let p:R~+R bea

— e ——
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2

continuous 2wm-periodic function such that J Py = 0. In [8], using

0
the methods of section 2 as we applied them in the previous two

sections it was proved that the 2m-periodic solvability of the pendulum
equation

x“(t) + g(x(t)) = p(t)=p,(t)+p, (5.1)

where p, is a constant, is given by:

Theorem 8: T4 Por Py and g ane as above, then thene exist real
numberns d(py}, D(p,) € [min{g(s): s € R}, max{g(s): s € R}] such that
the equation (5.1) has a solution 4Lff d(po) <Py < D(po). The functions
d and D a#re continuous in the weak ZLopology of Lz[D, 2m], di.e.,

r

L4 {P:} is a sequence converging weakfy Lo p, in LZ(Q) then

T
d(pg) + d(py)s D{pg) + D(p,). Moreover, d(p,) < “0 Q(S)ds}/TS D(py)-

14, in addition, {x: g(x} = minfg(s}: s € R}} and {x: g(x)

max{g(s): s € R}} axre discrete then d{(p ) = 0 or D{p,) =0 L4

Py = 0.

For details of the proof we refer the reader to f9].
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