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Pollettino U. M. T,
(5) 18-B (1981), 733-742

On Periodic Solutions of Weakly Coupled Systems
of Differential Equations.

ArLroxso Castro (México, México)
Anax O, Lazenr (Cineinnati, Ohio)

Sunto. - Si dimostra ehe il sistema (3) possivde infinite soluziond 27T -perio-
dicke softo la condizionc di superlinearite (1) quando g ¢ dispari e le
. sono limitale ¢ dispari.

The scalar differential equation

&"(1) + g(x()) = p(t)

has been widely investigated under the suppositions that g is suf-
ficiently regular and [llim (g{w)/x) = 4 oo and that p{t)is continuous

and periodic. It is known that these hypotheses imply the existence
of at least one periodic solution having the same period as p (see {31).
If g and p satisfy certain symmetry conditions—for example, if ¢
aud p are odd or if p is even—then it is known that there are infi-
nitely many periodic solutions having the same period as p (see, for
example, [1], {2], [3], [4] and [6]). The purpose of this note is to esta-
blish results of the latter type for weakly coupled systems of diffe-
rential equations. Our principal result is

THEOREM 1. — For &t == 1, ..., let g.: R — R be locally Lipshit-
zian and satisfy the growth condilion

(1) M&oo as x| =00,
&

and suppose g, is odd. If for k=1, ...,n p: R — R salisfies
it + T, 2, ..., Z,) = Pilt, Ty ooy Zg)
where T > 0, and

Pil—1 — Ty eeey — X} = — Pelly Tiy ooy Zn)
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for «ll (8, 21, o 2,) € R™Y i . ds continuous in 4 and locally Tip-
shitzian in vy, oy @y and if there cxists 3 = 0 such that for cach k

{2) (9208 @1y ooey )| < M

o KR8, dhen there caist infinitcly many veelor solutions of the system

(3) wp - gulon) = Pafly oy, s )

sueh thal each component is odd and 2T -periodic,

The motivation for the theorem is as folows: In the case, where
for k=1, ..,», p. depends only on ¢, the srstem is uncoupled
50 infinitely many odd 27-periodic solution vectors exist according
to what is known about the scalar equution. Since the coupling
terms in (3) are bounded and, for Lk = 1,...,n, ¢ is superlinear,
it would scem that the effect of coupling terms becomes insignifi-
cant on a time interval in which m.(£) - ap(f)? is large for all k =
1,...,n. This will be the idea of our proof.

In the proof of Theorem 1 it may he assumed without loss of
generality that for Z=1,....u

(4) Tz >0 if 20

Indeed, according to (1), (4) Lolds for || sufficiently large.
Therefore if g, is replaced by the sum of g, and a suitable odd func-
tion with compaet support (4) will hold for all 2. Since the sum of
7 and an odd bounded function of z, alone will satisfy the same
hypotheses ag p, the claim is established. The proof of Theorem 1
will be established via a sequence of Lemmas.

Leyyma 1. - If a,, ..., a, are arbitrary numbers then the solution
of the system (3) salisfying the initial conditions 7,(0) = 0, 2;(0) == a,,
E=1,..,n crisis for all t.

Proor. — For each k = 1, ..., n let Gi() = [gi(s)ds. Clearly (1)
implies that G.(x) = co a8 |v| - co. If the assertion of the lemma
were not true there would exist a number i, > 0 such that the solu-
tion (%), ..., x,(f) exisls for O0<i <1, and such that

L3

lim > (@) 2,{1)?*) = 4 0.

t-rty— k=1

@

)

-
T

o
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If

P(1) :;_"1 (""1‘(”"') 4 G ((0)

k-

2

then E{l) — 4+ co as 1 = —.

But E{1) = > anit) pe(ty 2a(2), oo, 2.(2)) 80 LY (2) and the Schwarz

ey

L=

inequality #'(f)- (w,ﬂlﬁ(a';(t)ﬂ . +a','i(t)2))"‘. Since (4) implies
that G.()° 0 for all », F(1) = 3 (2nda(1))? for all ¢ & [0. 1), and lience
(Lt < (o) Jd g2yt i the e nten al. Flis contradie-
tion proves the lemma.

In the following if @ = (@15 ..oy @a) denotes o point in R we
let #,(1, @) denote the k-th component of the solution vector of (3)
defined by the initial conditions

(5) {0, @) =0, =m0, e)=a Lk=1I1...%n

L 2. — Fix k with L<k<n, Given v >0 there cxrists ¢ num-
ber Ru(r) = 0 such that if [ax| > Rur) ANA @yy ey Qs Gyiys ey Qu QT
arbitrary, then wy(l, @)t + @ty @) =92 for 0<1<2T.

Proor. - Let Eul, a) = xi(t, )22 4 Gu{ault, a)). We have
B0, a) = «3/2 and (dfdl) E.(1, a) = wi(t, @) pully m(t, Q. veny 201, 0)) >
— M (2E,(1, a))"‘ and hence, for 0i<2T,

Eidl, a))} > (E(0, a) i—£z>-|‘_‘£_|—w/§jff.
( ) V2.2

Given r > 0, let L(r) denote a number so large that y*/2 + Gu{z}>
L(r} implies that z*+ y*>r*—the existence follows from the
fact that Gu(z) = oo as |#] —~oco. It follows from the above that
if || >2MT 4 V2L(r) = R(r) then E.(1, a)> L(r) for 0 <t<2T. As
this implies that wi(t, a)? + i, @)2>72 on [0, T], the Lemma in
proved.

By virtue of the preceeding lemma, if ¥,> 0 and if |a|>R(r,)
and Ay, ceey Gpoyy Bpyay +ooy o Are arbitrary then there exist functions
rill, @) > 0 and 0,(f, a) continuous for te(0,27] and |a| > Rulr,)
and continuously differentiable in ¢ such that for te[0,2T]

(6) x(ty @) = 74(t, @) 8in 0:(t, a)

(T} o, a) = 1:(1, a) cos8 6,(¢, a) .

el e e
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The [unction 0,(1, «) is oniy deterinined within an integral mul-
tiple of 2%. Tlowever, if a, > 0 then the initial conditions =,(0, a) = 0,
23(0, a) = a, show that we may take 0,(0, ) = 0 so 0,(t, a) will
be uniquely defermined. We do this in what follows.

LeMMA 3. — iw k with 1 <k<n. Given any number ¢ > 0 there
exislts « number A (¢) > 0 such that if a,> A (e} and ay, ..., 4,
Qrpay eoes @y are arbitravy thew 04T, a)>c¢ and such that Ot a) >0
on [0, T').: ©.

Proor. - Tram (6) and (7} we see thai

' . 'BJ’:(t$ @)* — (L, (l).l‘:z(t’ a)
® A= e L i, o

(2, @) sin0,(t, a)) sin0.(t, a)
ri(t, @)

= (cos20,(1, a)) + gl

sin 0,(t, a)

—pi(ty 21ty @), ..., a(t, 2) 74ty @)

Given ¢ > 0 let N be an integer such that =N > ¢ and let ¢
satisiy

9) 0 < § < min {x/4, T/9N} .

If 2,> 0 and

(10) ma(zo) = min 22
[lzzs &

then according to (1), m(z,) = oo a8 z, = +- oo. Letry be so large
that the following three inequalities hold for a fixed J satisfying (9}

M 1
(11) 'E 1’
(12) m,(r, 8in 0) gin*é > g R
a
27 —46
e My (7,510 &) 8in2 & ’

We claim that if a,>RB.(r,) then 6,(T, a)>e¢. To see this first
let us suppose that ¢ € [0, 27] and that 6,(, a) belongs to an interval
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of the form [j — &, jm - 6] where j is an integer. By (2), (4) and (8)
we have for r, = 7. 0{t, @)= cos* O — M jry. Mence by (9) and (11)
we have for te (0, 207

{14) ay = (v} Ou(t, ) € U [ — 9, jm 4 01,

implies 0h(f, a)=1/+, where we have used Lemma 2.

On the other hand if 0.(f, «) belongs to an interval of the form
[z -+ 8, (j 4- 1) — &] where § isan integer and r(i, «) =7, it follows
by {8) and (10} 1

gi(rts @) sinQ(t, @)) N
7.(2, @) sin0,(¢, a) e

0i(t, @) = (sinz0.(¢, a))

Therefore, by (10) and (12) we see that
(15) > Rury), 06.(1,a)€ Ul + 6, (f + 1)m— 6]

implies 04(t, a) = m,(r, sin 8)(sin* () /2.

In the following we assume that a; > IR(ro). Since 0,(t, @) must
belong o one of the two types of intervals appearing in (14) and (15)
we have

(17) 0i(t, @) >0 for tef{0,2T]
Suppose that ¢ € [0, T) is a number such that
(18) {495<T, Olft,a)=ijn
where j is a nonnegative integer. From (14) we see that for
in< 0.t a) <jrn+ 8, 0i(f, a)>% therefore Gy(t, a) cannot Temain in

the interval [j=, j= 4+ 8] for a duration of time longer than 44.
Thus there exist a number ¢, such that

(19) i<ti<i+ 46, Ofl,a)=jz+3d.
For jm + 6<0:(t, a)<(j + 1) — & it follows from {15) that
B}(t, a) > myr, sin 8)(sin? {8)) /2 and therefore 6.(2, ) cannot remain in

the interval [jz + 6, (j + 1)z — &] for a duration longer than

2(; — 20)
m(ry 5in &) sm29d

< d

where the last inequality follows from (13).

47
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Therefore there exists 1. such that
(20) 1"l<t'."<-: f-] _]" (51 Ok(l'n”) (? 'i' l)ﬂ—é

For (§ 4+ 1) — 6<0,(¢, )< (j 4- 1)z it follows from (14) that
0:{t, a)>1 so 0.{i. a) cannot remain in the interval [(j + 1)x— 4,
(j -+ 1)z} onger than 44. Hence from (18), (19) and (20) we see
that there exists number £% such thatt, < * <1, - 16 <l 4+ 95 = 7'
and 0.(t%, a) = (j + 1}x. In summary we have shown that when-
evor O -7 ~f 2 08 1 awd 047 ) - iwo§oan imteger. then thers
exists t* € (f, L 4 9) with 0,(t%, a) = (i + 1)=.

Sinee (0, @) = 0 and since, by (9), N(99) < ', there exist
numbers s;, j=1,...., N such that 0 <s; < ... <sx <X, 5,5 —
— <90, j=1,..., N —1 und 0.(s;,a)=jm. Since 0., «) in
inereasing on [0, '] it follows that 0(Z, a) > 0y (sy. a) = Na>c.
Hence, if 7, satisfies (11), (12) and (13) for some & satisfying (9)
the lemma follows by setting A,(¢) = 2. (r,)-

Lexnra 4. — Fiz &k owith 1<k <. Let ax, be a number such thal
ag, > Bi(ro), for some number ro> 0. (See Lemma 2). There exisls
a number Q{a;) such that if a, = ¢y, and a; j=1,..;n j=k
are arbitrary then 0 (2 a) <2 {uy,)-

Proor. — Letting E,(#, a) have the same meaning as in the proof
of Lemma 2 we see that

a(-l-iEk(t, a) = x(l, ) )L, 24(L, @), ...y .., Talt, a) K M(2E,(1, a))H,
80
(Bi(ty a)) <{Eu(0, a))} + Mf(2)}, 1>0.
Hence
(21) (Bt @) < (o, + MT)[(2)

Since ¥%/2 + G {r) = oo a8 x® 4 y* — oo there exist a number
o(a,) such that /2 - Gi(z)<a, JVZ 4+ MT34/2 implies =*-
y=<a(ak)= Hence (21) for 0<ti< . From (2), (8) and the hypo-
thesis that a, > R.(r,) that if Ly(e,,) = ma.x |g,,(a;)| then for ¢ e [0, I]

Lk(a'k,) + E_I

Ta To

0,8, @) <1 4 ——=

O
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and therefore, since G0, a) = 0,

Lo (g, ]
i ('('?.) E ‘r) _IT‘ .—(_): [ﬂ; ] )

0,01, @ =1 4 Ludas,)
Fy o
This proves the Lemnu.
To eomplete the proof of Theorem 1 we use the following theo-
rem which was given by Miranda in [3].

GENERALIZED I NTERMEDIATE VALUE TIRORIM. — Let j2 Y == v
he o contivrous faoction defiuid g 0 L ) 4 fatsc i, s
ay<ay by, Tgk=ml. I fla)y = (fila), .. To()) and for cach L =
1, ...,n we have

(22)  fal@y ey Prmrs Uiy Lrgpe ey ) <O @il ik,
and

(23} fal@1y eoes @py Big Tpgay ooy @) > 0 a5, e et L,

then there cxists (Tyy ... Ty) € K such that [®y, ey Ba) =0 for
L=1,..,%

Although Mirmda showed that this result is cquivalent tlo
Brouwer’s fixed point theorem, a simple proof can be hased on the
degree of 2 mapping. By a linear change of variables we may assume
a,=—1, by =1, k=1, ..,n Since for cach s € [0, 1] the vector
field H(m, s) = (1 —s)x + sf(x) does not vanish on @K, d(f,int K,
0) = d(Id, int I, 0) = 1 so f has a zero in the interior of . See
also [7, pag. 178}

To prove Theorem 1 we observe that the n-tuple #(f) = {a(2), -
z,4(1)) is 2n odd T-periodic solution of (3) if and only if z satisfies (3)
and =(0) = z(T) = 0. This condition is certainly necessary.

Conversely if «(2) is a solution of (3) with z{0) =0, then, since
y(t) = — z(—1) is also a solution because of (3), and since z(0) =
y(0) = 0, z'(0) = ¥'(0), a(t)=—az(—1) by uniqueness. If, in
addition, 2(T) = 0 then since (! + 2T) = w(t) is also a solution
with w(— T) = #(T) = 0 = 2(— T) and 2’ (— T) = z'(T) = 2'(—T),
z(t 1+ 27) = =(t).

Theorem 1 will follow from the following

Lema 5. — There exist integers m; >0, ..., Ma, >0 such that if
My eeey My are inlegers with my>my,, k=1, ..., 7, then there exists
a solution vector (@y(1), ..., za(t)) of (3) such that z(0) = (T)=0
for k=1,...,n and such that z,(t) has cxactly m, simple zeros on
the open interval (0, T).
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Proor. — By lemmas 2 and 3 there exist numbers a, ..., a,,
el that, fov fixed Lol a0 can and e, j = 1. 00,n, -k, are
arbitrary, then . o dmpHes that au(f @) = ot )2 >0 for

Le (0, I and sueh that 0,07, @) defined by (6) and (7) and the con-
dition 0,04, ) = 0 sulisfies

(24) Gt a)y >0 1e[o, 1.

By Lemma £, theye exists an inteser m, = 0 such that if a, = a,,
sibid a,, Ly e ¢ then b3, ey oty - 1)a. Howrg 13 an
integer with 22, = m, . then, necording to lemma 3, there exists aj> "y,
such that if p, = «) and «,. j=1,....n, j=k, are arbitrary then 0.(7,
a) = (m - 1}7. Let A he the set of points {#;. ay, ..., a,) in R®
such that «, —a,-—ep for L=1,...0. For 1ghgn let 1{a) =
@y, e ay) = 00, @) — (g, -- 1)z, These functions are con-
tinuous on A and, according to the ahove, for any % between 1
and » we have the inequalities

(25)  Filay, s 0y Gy Qypyy ey @) <0 ay
anmd
* - - ¥ : .
Ty, ey @y Oy Qrpry oy @) >0 @5 <a;<a;, j#Ek.

Henee by the intermediate valuze theorem there exists (a,, ...,
@,) = a such that 0(T, @) = (m, 4 1)z for 1<k<n. Since for
1<k<n, 0,{t, @) > 0 and 0,(0,a) = 0, we see that 6,(¢, a) assumes
each of the values In I = 1, ..., m, exactly once on {0, T'). Hence,
by (6) and (7), for & = 1, ..., n, 2,(t, @) has exactly m, simple zeros
on (0, T) and satisfies (0, @) = x(T, @) == 0, This proves the
lemma and by earlier remarks this completes the proof of Theorem 1.

By examining the proof of lemmas 1 through 4 we see that these
lemmas do not depend on the fact that ¢, is odd for k= 1,...,n
nor on the conditions that, for 1 <k<n, p, be odd and 27 periodic
in t.

By obvious modifications in the proof of theorem 1 we have

THEOREM 2. — Supposc for cach k =1, ..., n g: R — R is locally
Lipshitzian and satisfies (1). Suppose that for each k=1,...,7n
pe:R™ = R is continuous, locally Lipshizian in 1, ...,%,, and
satisfies (2). If atyy ceey Ony Py ooey Ba are arbitrary numbers the boundary

o
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walrue problem

£ |'. ! _fh_,(.l"l-_,) | ?'1’.‘(’) T s U J'C)
o, (0) €08 & — 3.(0) sina. = 0

r(Mycos B —al(T)sinf,=0 TIT>0

== 1, ... has infinitely many solutions. In fact if Ny, ..., N, are
sufficiently large posiiive integers then there exists a solution such

Pt e hos voietly Noowim e zevos on (14 iR

Finadly let us suppose that for 1.:L- a g, and p, salisfy the
conditions of Theorem 2 and in addition that

(25) Pully e veey 1€)== Prli—t, @ya ey &)

(26) pelt = 20, 2y, o, ) = iy 2y, o, @)

for all k= 1, ..., n and all {{, ay, ..., m,) € R**. In this case a sym-
metry argnment similar to the one used to prove Theorem 1 shows
that (xy(1), ..., 2,(1)) is an even 24'-periodic solution of (3} ill it
satisfies (3) and the boundary conditions

r0) = a (1Y k=1,..,n

Therelore we have

TEEOREM 3. — If for k =1, ..., % g. and p, satisfy the hypotheses
of Theorem 2 and in addition p, satisfies (25) and (26) then there
erist infinilely many 22-periodic even solulions of (3).
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