#### **Claremont Colleges**

### Scholarship @ Claremont

All HMC Faculty Publications and Research

**HMC Faculty Scholarship** 

1981

## On Periodic Solutions of Weakly Coupled Systems of Differential **Equations**

Alfonso Castro Harvey Mudd College

A. C. Lazer University of Miami

Follow this and additional works at: https://scholarship.claremont.edu/hmc\_fac\_pub



Part of the Mathematics Commons

#### **Recommended Citation**

Castro, Alfonso and Lazer, A. C., "On Periodic Solutions of Weakly Coupled Systems of Differential Equations" (1981). All HMC Faculty Publications and Research. 1163. https://scholarship.claremont.edu/hmc\_fac\_pub/1163

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

# On Periodic Solutions of Weakly Coupled Systems of Differential Equations.

ALFONSO CASTRO (México, México) ALAN C. LAZER (Cincinnati, Ohio)

Sunto. – Si dimostra che il sistema (3) possiede infinite soluzioni 2T-periodiche sotto la condizione di superlinearità (1) quando g è dispari e le  $p_k$  sono limitate e dispari.

The scalar differential equation

$$x''(t) + g(x(t)) = p(t)$$

has been widely investigated under the suppositions that g is sufficiently regular and  $\lim_{|x|\to\infty} (g(x)/x) = +\infty$  and that p(t) is continuous and periodic. It is known that these hypotheses imply the existence of at least one periodic solution having the same period as p (see [3]). If g and p satisfy certain symmetry conditions—for example, if g and p are odd or if p is even—then it is known that there are infinitely many periodic solutions having the same period as p (see, for example, [1], [2], [3], [4] and [6]). The purpose of this note is to establish results of the latter type for weakly coupled systems of differential equations. Our principal result is

-38 (6.8)

THEOREM 1. – For k=1,...,n let  $g_k\colon R\to R$  be locally Lipshitzian and satisfy the growth condition

(1) 
$$\frac{g_k(x)}{x} \to \infty \quad as \ |x| \to \infty,$$

and suppose  $g_k$  is odd. If for k = 1, ..., n  $p_k : \mathbb{R}^{n+1} \to \mathbb{R}$  satisfies

$$p_k(t + T, x_1, ..., x_n) = p_k(t, x_1, ..., x_n),$$

where T > 0, and

$$p_k(-t, -x_1, ..., -x_n) = -p_k(t, x_1, ..., x_n)$$

for all  $(t, x_1, ..., x_n) \in \mathbb{R}^{n+1}$ , if  $p_k$  is continuous in t and locally Lipshitzian in  $x_1, ..., x_n$ , and if there exists M > 0 such that for each k

(2) 
$$|p_k(t, x_1, ..., x_n)| < M$$

on  $R^{n+1}$ , then there exist infinitely many vector solutions of the system

(3) 
$$x_k'' + g_k(x_k) = p_k(t, x_1, \dots, x_n)$$

such that each component is odd and 2T-periodic.

The motivation for the theorem is as follows: In the case, where for k = 1, ..., n,  $p_k$  depends only on t, the system is uncoupled so infinitely many odd 2T-periodic solution vectors exist according to what is known about the scalar equation. Since the coupling terms in (3) are bounded and, for k = 1, ..., n,  $g_k$  is superlinear, it would seem that the effect of coupling terms becomes insignificant on a time interval in which  $x_k(t)^2 + x'_k(t)^2$  is large for all k = 1, ..., n. This will be the idea of our proof.

In the proof of Theorem 1 it may be assumed without loss of generality that for k = 1, ..., u

$$(4) g_k(x) x > 0 \text{if } x \neq 0$$

Indeed, according to (1), (4) holds for |x| sufficiently large. Therefore if  $g_k$  is replaced by the sum of  $g_k$  and a suitable odd function with compact support (4) will hold for all x. Since the sum of  $p_k$  and an odd bounded function of  $x_k$  alone will satisfy the same hypotheses as  $p_k$  the claim is established. The proof of Theorem 1 will be established via a sequence of Lemmas.

· Ser Se

LEMMA 1. – If  $a_1, ..., a_n$  are arbitrary numbers then the solution of the system (3) satisfying the initial conditions  $x_k(0) = 0$ ,  $x'_k(0) = a_k$  k = 1, ..., n exists for all t.

PROOF. – For each  $k=1,\ldots,n$  let  $G_k(x)=\int g_k(s)\,ds$ . Clearly (1) implies that  $G_k(x)\to\infty$  as  $|x|\to\infty$ . If the assertion of the lemma were not true there would exist a number  $t_1>0$  such that the solution  $x_1(t),\ldots,x_n(t)$  exists for  $0< t< t_1$  and such that

$$\lim_{t\to t_1-} \sum_{k=1}^n \left(x_k(t)^2 + x_k'(t)^2\right) = +\infty.$$

$$E(t) = \sum_{k=1}^{n} \left( \frac{x'_k(t)^2}{2} \right) + G_k(x_k(t))$$

then  $E(t) \to +\infty$  as  $t \to t_1$ .

But  $E'(t) = \sum_{k=1}^{n} x'_k(t) p_k(t, x_1(t), ..., x_n(t))$  so by (2) and the Schwarz inequality  $E'(t) < (nM^2(x'_1(t)^2 + ... + x'_n(t)^2))^{\frac{1}{2}}$ . Since (4) implies that  $G_k(x) = 0$  for all x,  $E'(t) < M(2nE(t))^{\frac{1}{2}}$  for all  $t \in [0, t_1)$ , and hence  $(E(t))^{\frac{1}{2}} < (E(0)) = \mathbb{E}(n/2)^{\frac{1}{2}} t_1$  in the same interval. This centralication proves the lemma.

In the following if  $a = (a_1, ..., a_n)$  denotes a point in  $R^n$  we let  $x_k(t, a)$  denote the k-th component of the solution vector of (3) defined by the initial conditions

(5) 
$$x_k(0, a) = 0, \quad x'_k(0, a) = a, \quad k = 1, ..., n$$

LEMMA 2. – Fix k with 1 < k < n. Given r > 0 there exists a number  $R_k(r) > 0$  such that if  $|a_k| > R_k(r)$  and  $a_1, ..., a_{k-1}, a_{k+1}, ..., a_n$  aer arbitrary, then  $x_k(t, a)^2 + x'_k(t, a)^2 > r^2$  for 0 < t < 2T.

PROOF. – Let  $E_k(t, a) = x'_k(t, a)^2/2 + G_k(x_k(t, a))$ . We have  $E_k(0, a) = a_k^2/2$  and  $(d/dt) E_k(t, a) = x'_k(t, a) p_k(t, x_1(t, a), ..., x_n(t, a)) >$ —  $M(2E_k(t, a))^{\frac{1}{2}}$  and hence, for 0 < t < 2T,

$$(E_k(t,a))^{\frac{1}{2}} > (E_k(0,a))^{\frac{1}{2}} - \frac{M}{\sqrt{2}} t > \frac{|a_k|}{\sqrt{2}} - \sqrt{2} MT.$$

Given r > 0, let L(r) denote a number so large that  $y^2/2 + G_k(x) > L(r)$  implies that  $x^2 + y^2 > r^2$ —the existence follows from the fact that  $G_k(x) \to \infty$  as  $|x| \to \infty$ . It follows from the above that if  $|a_k| > 2MT + \sqrt{2L(r)} \equiv R(r)$  then  $E_k(t, a) > L(r)$  for 0 < t < 2T. As this implies that  $x'_k(t, a)^2 + x_k(t, a)^2 > r^2$  on [0, T], the Lemma in proved.

By virtue of the preceding lemma, if  $r_0 > 0$  and if  $|a| > R(r_0)$  and  $a_1, \ldots, a_{k-1}, a_{k+1}, \ldots, a_n$  are arbitrary then there exist functions  $r_k(t, a) > 0$  and  $\theta_k(t, a)$  continuous for  $t \in [0, 2T]$  and  $|a_k| > R_k(r_0)$  and continuously differentiable in t such that for  $t \in [0, 2T]$ 

(6) 
$$x_k(t,a) = r_k(t,a) \sin \theta_k(t,a)$$

(7) 
$$x'_k(t, a) = r_k(t, a) \cos \theta_k(t, a).$$

The function  $\theta_k(t, a)$  is only determined within an integral multiple of  $2\pi$ . However, if  $a_k > 0$  then the initial conditions  $x_k(0, a) = 0$ ,  $x'_k(0, a) = a_k$  show that we may take  $\theta_k(0, a) = 0$  so  $\theta_k(t, a)$  will be uniquely determined. We do this in what follows.

LEMMA 3. – Fix k with  $1 \le k \le n$ . Given any number c > 0 there exists a number  $A_k(c) > 0$  such that if  $a_k \ge A_k(c)$  and  $a_1, ..., a_{k-1}, a_{k+1}, ..., a_n$  are arbitrary then  $\theta_k(T, a) \ge c$  and such that  $\theta'_k(t, a) > 0$  on [0, T].

PROOF. - From (6) and (7) we see that

(8) 
$$\theta'_{k}(t, a) = \frac{x'_{k}(t, a)^{2} - x_{k}(t, a)x''_{k}(t, a)}{x_{k}(t, a)^{2} + x'_{k}(t, a)^{2}}$$

$$= (\cos^{2}\theta_{k}(t, a)) + \frac{g_{k}(r_{k}(t, a)\sin\theta_{k}(t, a))\sin\theta_{k}(t, a)}{r_{k}(t, a)}$$

$$- p_{k}(t, x_{1}(t, a), ..., x_{n}(t, a)) \frac{\sin\theta_{k}(t, a)}{r_{k}(t, a)}.$$

Given c>0 let N be an integer such that  $\pi N>c$  and let  $\delta$  satisfy

(9) 
$$0 < \delta < \min \{\pi/4, T/9N\}$$
.

If  $x_0 > 0$  and

$$(10) m_k(x_0) \equiv \min_{|x| \geqslant x_0} \frac{g_k(x)}{x},$$

then according to (1),  $m_k(x_0) \to \infty$  as  $x_0 \to +\infty$ . Let  $r_0$  be so large that the following three inequalities hold for a fixed  $\delta$  satisfying (9)

$$\frac{M}{r_0} < \frac{1}{4},$$

(12) 
$$m_k(r_0 \sin \delta) \sin^2 \delta > \frac{2M}{r_0},$$

(13) 
$$\frac{2\pi-4\delta}{m_k(r_0\sin\delta)\sin^2\delta} < \delta.$$

We claim that if  $a_k > R_k(r_0)$  then  $\theta_k(T, a) > c$ . To see this first let us suppose that  $t \in [0, 2T]$  and that  $\theta_k(t, a)$  belongs to an interval

of the form  $[j\pi - \delta, j\pi + \delta]$  where j is an integer. By (2), (4) and (8) we have for  $r_k > r_0$ ,  $\theta'_k(t, a) > \cos^2 \delta - M/r_0$ . Hence by (9) and (11) we have for  $t \in [0, 2T]$ 

(14) 
$$a_k > R_k(r_0), \quad \theta_k(t, \alpha) \in \bigcup_{-\infty}^{\infty} [j\pi - \delta, j\pi + \delta],$$

implies  $\theta'_k(t, a) > 1/4$ , where we have used Lemma 2.

On the other hand if  $\theta_k(t, a)$  belongs to an interval of the form  $[j\pi + \delta, (j+1)\pi - \delta]$  where j is an integer and  $r_k(t, a) > r_0$  it follows by (8) and (10) that

$$\theta'_k(t, a) \geqslant \left(\sin^2\theta_k(t, a)\right) \frac{g_k(r_k(t, a)\sin\theta_k(t, a))}{r_k(t, a)\sin\theta_k(t, a)} - \frac{M}{r_0}$$

Therefore, by (10) and (12) we see that

(15) 
$$a_k > R_k(r_0)$$
,  $\theta_k(t, a) \in \bigcup_{-\infty}^{\infty} [j\pi + \delta, (j+1)\pi - \delta]$ 

implies  $\theta'_k(t, a) > m_k(r_0 \sin \delta) (\sin^2(\delta))/2$ .

In the following we assume that  $a_k > R_k(r_0)$ . Since  $\theta_k(t, a)$  must belong to one of the two types of intervals appearing in (14) and (15) we have

(17) 
$$\theta'_k(t, a) > 0 \quad \text{for } t \in [0, 2T].$$

Suppose that  $\bar{t} \in [0, T)$  is a number such that

(18) 
$$\tilde{t} + 9\delta < T, \quad \theta_k(\tilde{t}, a) = j\pi$$

where j is a nonnegative integer. From (14) we see that for  $j\pi < \theta_k(t, a) < j\pi + \delta$ ,  $\theta'_k(t, a) > \frac{1}{4}$  therefore  $\theta_k(t, a)$  cannot remain in the interval  $[j\pi, j\pi + \delta]$  for a duration of time longer than  $4\delta$ . Thus there exist a number  $t_1$  such that

(19) 
$$\bar{t} < t_1 < \bar{t} + 4\delta, \quad \theta_k(t_1, a) = j\pi + \delta.$$

For  $j\pi + \delta < \theta_k(t, a) < (j + 1)\pi - \delta$  it follows from (15) that  $\theta'_k(t, a) > m_k(r_0 \sin \delta) (\sin^2(\delta))/2$  and therefore  $\theta_k(t, a)$  cannot remain in the interval  $[j\pi + \delta, (j + 1)\pi - \delta]$  for a duration longer than

$$\frac{2(\pi-2\delta)}{m_k(r_0\sin\delta)\,sm^2\delta}<\delta$$

where the last inequality follows from (13).

Therefore there exists  $t_2$  such that

(20) 
$$t_1 < t_2 < t_1 + \delta$$
,  $\theta_k(t_2, a) = (j+1)\pi - \delta$ .

For  $(j+1)\pi - \delta < \theta_k(t,a) < (j+1)\pi$  it follows from (14) that  $\theta_k(t,a) > \frac{1}{4}$  so  $\theta_k(t,a)$  cannot remain in the interval  $[(j+1)\pi - \delta, (j+1)\pi]$  onger than  $4\delta$ . Hence from (18), (19) and (20) we see that there exists number  $t^*$  such that  $t_2 < t^* < t_2 + 4\delta < \bar{t} + 9\delta = T$  and  $\theta_k(t^*,a) = (j+1)\pi$ . In summary we have shown that whenever  $0 < \bar{t} < \bar{t} + 9\delta = T$  and  $\theta_k(\bar{t},a) = j\pi$ , j an integer, then there exists  $t^* \in (\bar{t},\bar{t} + 9\delta)$  with  $\theta_k(t^*,a) = (j+1)\pi$ .

Since  $\theta(0, a) = 0$  and since, by (9),  $N(9\delta) < T$ , there exist numbers  $s_i$ , j = 1, ..., N such that  $0 < s_1 < ... < s_N < T$ ,  $s_{i+1} - s_i < 9\delta$ , j = 1, ..., N-1 and  $\theta_k(s_i, a) = j\pi$ . Since  $\theta_k(t, a)$  in increasing on [0, T] it follows that  $\theta_k(T, a) > \theta_k(s_N, a) = N\pi > c$ . Hence, if  $r_0$  satisfies (11), (12) and (13) for some  $\delta$  satisfying (9) the lemma follows by setting  $A_k(c) = R_k(r_0)$ .

LEMMA 4. – Fix k with  $1 \le k \le n$ . Let  $a_{k_0}$  be a number such that  $a_{k_0} \ge R_k(r_0)$ , for some number  $r_0 > 0$ . (See Lemma 2). There exists a number  $\Omega_k(a_{k_0})$  such that if  $a_k = a_{k_0}$ , and  $a_i$ , j = 1, ..., n  $j \ne k$  are arbitrary then  $\theta_k(T, a) \le \Omega_k(a_{k_0})$ .

PROOF. – Letting  $E_k(t, a)$  have the same meaning as in the proof of Lemma 2 we see that

$$\frac{\mathrm{d}}{\mathrm{d}t}E_k(t, a) = x(t, a)p_k(t, a), \dots, \dots, x_n(t, a) < M(2E_k(t, a))^{\frac{1}{4}},$$

7:30

80

$$(E_k(t, a))^{\frac{1}{2}} < (E_k(0, a))^{\frac{1}{2}} + Mt/(2)^{\frac{1}{2}}, \quad t > 0.$$

Hence

(21) 
$$(E_k(t,a))^{\frac{1}{2}} < (a_{k_0} + MT)/(2)^{\frac{1}{2}}$$

Since  $y^2/2 + G_k(x) \to \infty$  as  $x^2 + y^2 \to \infty$  there exist a number  $\sigma(a_{k_0})$  such that  $y^2/2 + G_k(x) < a_{k_0}/\sqrt{2} + MT^2/\sqrt{2}$  implies  $x^2 + y^2 < \sigma(a_{k_0})^2$ . Hence (21) for 0 < t < T. From (2), (8) and the hypothesis that  $a_{k_0} > R_k(r_0)$  that if  $L_k(a_{k_0}) = \max_{|x| < \sigma(a_{k_0})} |g_k(x)|$  then for  $t \in [0, T]$ 

$$\theta'_{k}(t, a) < 1 + \frac{L_{k}(a_{k_{0}})}{r_{0}} + \frac{M}{r_{0}}$$

and therefore, since  $\theta_k(0, a) = 0$ ,

$$\theta_k(T,a) \le \left(1 + L_k(a_{k_k}) \frac{L_k(a_k)}{r_0} + \frac{M}{r_0}\right) T = \Omega_k(a_k) \ .$$

This proves the Lemma.

To complete the proof of Theorem 1 we use the following theorem which was given by Miranda in [5].

GENERALIZED INTERMEDIATE VALUE THEOREM. – Let  $f: \mathbb{R}^n \to \mathbb{R}^n$  be a continuous function defined on the set  $K = \{x = (x_1, \dots, x_n): a_k < x_k < b_k, \ 1 < k < n\}$ . If  $f(x) = (f_1(x), \dots, f_n(x))$  and for each  $k = 1, \dots, n$  we have

(22) 
$$f_k(x_1, ..., x_{k-1}, a_k, x_{k+1}, ..., x_n) < 0$$
  $a_j < x_j < b_j$   $j \neq k$ , and

(23) 
$$f_k(x_1, ..., x_{k-1}, b_k, x_{k+1}, ..., x_n) > 0$$
  $a_j \leqslant x_j \leqslant b_j$   $j \neq k$ ,

then there exists  $(\overline{x}_1, ..., \overline{x}_n) \in K$  such that  $f_k(\overline{x}_1, ..., \overline{x}_n) = 0$  for k = 1, ..., n.

Although Miranda showed that this result is equivalent to Brouwer's fixed point theorem, a simple proof can be based on the degree of a mapping. By a linear change of variables we may assume  $a_k = -1$ ,  $b_k = 1$ , k = 1, ..., n. Since for each  $s \in [0, 1]$  the vector field H(x, s) = (1 - s)x + sf(x) does not vanish on  $\partial K$ , d(f, int K, 0) = d(Id, int K, 0) = 1 so f has a zero in the interior of K. See also [7, pag. 178].

To prove Theorem 1 we observe that the *n*-tuple  $x(t) = (x_1(t), ..., x_n(t))$  is an odd *T*-periodic solution of (3) if and only if *x* satisfies (3) and x(0) = x(T) = 0. This condition is certainly necessary.

Conversely if x(t) is a solution of (3) with x(0) = 0, then, since y(t) = -x(-t) is also a solution because of (3), and since x(0) = y(0) = 0, x'(0) = y'(0), x(t) = -x(-t) by uniqueness. If, in addition, x(T) = 0 then since x(t + 2T) = w(t) is also a solution with w(-T) = x(T) = 0 = x(-T) and x'(-T) = x'(T) = x'(-T),  $x(t + 2T) \equiv x(t)$ .

Theorem 1 will follow from the following

LEMMA 5. – There exist integers  $m_1 > 0, ..., m_n > 0$  such that if  $m_1, ..., m_n$  are integers with  $m_k > m_{k_0}, k = 1, ..., n$ , then there exists a solution vector  $(x_1(t), ..., x_n(t))$  of (3) such that  $x_k(0) = x_k(T) = 0$  for k = 1, ..., n and such that  $x_k(t)$  has exactly  $m_k$  simple zeros on the open interval (0, T).

PROOF. – By lemmas 2 and 3 there exist numbers  $a_{1_*}, ..., a_{n_*}$  such that, for fixed k, if  $a_k \circ a_{k_*}$  and  $a_j$ , j = 1, ..., n,  $j \neq k$ , are arbitrary, then  $a_k \circ a_{k_*}$  implies that  $x_k(t,a)^2 + x'_k(t,a)^2 > 0$  for  $t \in [0, T]$  and such that  $\theta_k(t,a)$  defined by (6) and (7) and the condition  $\theta_k(0,a) = 0$  satisfies

(24) 
$$\theta_k'(t, a) > 0 \quad t \in [0, T].$$

By Lemma 4, there exists an integer  $m_{k_k} > 0$  such that if  $a_k = a_{k_k}$  and  $a_1, j = 1, \ldots, r$ , j = k then  $b_k(T, a) < (m_{k_0} - 1)\pi$ . If  $m_k$  is an integer with  $m_k > m_{k_0}$ , then, according to lemma 3, there exists  $a_k^* > a_{k_0}$  such that if  $p_k = a_k^*$  and  $a_i, j = 1, \ldots, n, j \neq k$ , are arbitrary then  $\theta_k(T, a) > (m_k + 1)\pi$ . Let k be the set of points  $(a_1, a_2, \ldots, a_n)$  in  $R^n$  such that  $a_{k_0} < a_k < a_k^*$  for  $k = 1, \ldots, n$ . For 1 < k < n let  $\Gamma_k(a) = \Gamma_k(a_1, \ldots, a_n) = \theta_k(T, a) - (m_k + 1)\pi$ . These functions are continuous on K and, according to the above, for any k between 1 and n we have the inequalities

(25) 
$$\Gamma_k(a_1, ..., a_{k-1}, a_k, a_{k+1}, ..., a_m) < 0$$
  $a_{j_0} < a_j < a_j^*, j \neq k$ 

and

$$\Gamma_k(a_1, \ldots, a_{k-1}, a_j^*, a_{k+1}, \ldots, a_n) > 0$$
  $a_{i_0} < a_j < a_j^*, \quad j \neq k$ .

Hence by the intermediate value theorem there exists  $(\overline{a}_1, ..., \overline{a}_n) = \overline{a}$  such that  $\theta_k(T, \overline{a}) = (m_k + 1)\pi$  for 1 < k < n. Since for 1 < k < n,  $\theta'_k(t, \overline{a}) > 0$  and  $\theta_k(0, \overline{a}) = 0$ , we see that  $\theta_k(t, a)$  assumes each of the values  $l\pi \ l = 1, ..., m_k$  exactly once on (0, T). Hence, by (6) and (7), for k = 1, ..., n,  $x_k(t, \overline{a})$  has exactly  $m_k$  simple zeros on (0, T) and satisfies  $x_k(0, \overline{a}) = x_k(T, \overline{a}) = 0$ . This proves the lemma and by earlier remarks this completes the proof of Theorem 1.

By examining the proof of lemmas 1 through 4 we see that these lemmas do not depend on the fact that  $g_k$  is odd for k = 1, ..., n nor on the conditions that, for 1 < k < n,  $p_k$  be odd and 2T periodic in t.

By obvious modifications in the proof of theorem 1 we have

THEOREM 2. – Suppose for each k = 1, ..., n  $g_k : \mathbf{R} \to \mathbf{R}$  is locally Lipshitzian and satisfies (1). Suppose that for each k = 1, ..., n  $p_k : \mathbf{R}^{n+1} \to \mathbf{R}$  is continuous, locally Lipshizian in  $x_1, ..., x_n$ , and satisfies (2). If  $\alpha_1, ..., \alpha_n, \beta_1, ..., \beta_n$  are arbitrary numbers the boundary

1. SP 1. C

value problem

$$x''_k + g_k(x_k) = p_k(t, x_k, ..., x_\ell)$$

$$x_k(0) \cos \alpha_k - x'_k(0) \sin \alpha_k = 0$$

$$x_k(T) \cos \beta_k - x'_k(T) \sin \beta_k = 0 \qquad T > 0$$

k=1,...,n has infinitely many solutions. In fact if  $N_1,...,N_n$  are sufficiently large positive integers then there exists a solution such that  $x_k$  has exactly  $N_k$  simple zeros on (0,T).

Finally let us suppose that for  $1 \le k \le n$   $g_k$  and  $p_k$  satisfy the conditions of Theorem 2 and in addition that

$$(25) p_k(t, x_1, ..., x_0) = p_k(-t, x_1, ..., x_n)$$

(26) 
$$p_k(t+2T, x_1, ..., x_n) = p_k(t, x_1, ..., x_n)$$

for all k = 1, ..., n and all  $(t, x_1, ..., x_n) \in \mathbb{R}^{n+1}$ . In this case a symmetry argument similar to the one used to prove Theorem 1 shows that  $(x_1(t), ..., x_n(t))$  is an even 2T-periodic solution of (3) iff it satisfies (3) and the boundary conditions

$$x'_k(0) = x'_k(T)$$
  $k = 1, ..., n.$ 

Therefore we have

THEOREM 3. – If for k = 1, ..., n  $g_k$  and  $p_k$  satisfy the hypotheses of Theorem 2 and in addition  $p_k$  satisfies (25) and (26) then there exist infinitely many 2T-periodic even solutions of (3).

#### REFERENCES

- [1] H. EHRMANN, Über die Existenz der Lösungen von Randwertaufgaben bei gewöhnlichen nichtlinearen Differentialgleichungen zweiter Ordnung, Math. Ann., 134 (1957), 167-194.
- [2] H. Ehrmann, Nachweis periodischer Lösungen bei gewissen nichtlinearen Schwingungsdifferentialgleichungen, Arch. Rational Mech. Anal., 1 (1957-58), 124-138.
- [3] S. Fučik V. Locicar, Periodic solutions of the equation x'(t) + g(x(t)) = p(t), Časopis Pést. Mat., 100 (1975), 160-175.

- [4] A. M. MICHELETTI, Le soluzioni periodiche dell'equazione differenziale  $x^*(t) + 2x^3(t) = f(t)$ , Ann. Univ. Ferrara Sez. VII, 12 (1967), 103-119.
- [5] C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Un. Mat. Ital., 3 (1941), 5-7.
- [6] G. R. Morris, A differential equation for undamped forced nonlinear oscillations, Proc. Cambridge Philos. Soc., 51 (1955), 297-312; 54 (1958), 426-438; 61 (1965), 133-155; An infinite class of periodic solutions  $x'' + 2x^3 = p(t)$ , Proc. Cambridge Philos. Soc., 61 (1965), 157-164.
- [7] N. ROUCHE J. MAWHIN, Equations différentielles ordinaires, tome 2, Masson, Paris, 1973.

Pervenuta alla Segreteria dell' U. M. I. il 3 gennaio 1980