Claremont Colleges

Scholarship @ Claremont

CMC Senior Theses CMC Student Scholarship

2015

Exploring Algorithmic Musical Key Recognition

Nathan J. Levine
Claremont McKenna College

Recommended Citation

Levine, Nathan J., "Exploring Algorithmic Musical Key Recognition" (2015). CMC Senior Theses. Paper 1101.
http://scholarship.claremont.edu/cmc_theses/1101

This Open Access Senior Thesis is brought to you by Scholarship@Claremont. It has been accepted for inclusion in this collection by an authorized

administrator. For more information, please contact scholarship@cuc.claremont.edu.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/cmc_theses
http://scholarship.claremont.edu/cmc_student
mailto:scholarship@cuc.claremont.edu

CLAREMONT MCKENNA COLLEGE

EXPLORING ALGORITHMIC MUSICAL KEY RECOGNITION

SUBMITTED TO
PROFESSOR EVERETT BULL
BY

NATHAN LEVINE

FOR SENIOR THESIS
SPRING 2015

APRIL 27, 2015

VI.

VII.

VIII.

XI.

Table of Contents

04 oo 11 Tod £ o] o PP
Understanding Musical Key..........cuveiiiiiiii i e

Applications of Musical Key Analysis.

Overview of Algorithmic Key Detection............coooviiiiiiiiiiiiiiie e,

201 o] g B 2] (=11 A (o] o T

The Krumhansl-Shmuckler Key-Finding Algorithm............................

My Implementation.......................

RESUILS... o

DS CUSSION .. et ettt e e e e e e e

Further Development and Conclusion

RTINS, ..ot

13

19

22

25

28

.31

Acknowledgments
I would like to acknowledge my thesis reader Professor Bull, as his guidance and
unwavering patience are what ultimately made this possible. My family and my loving
friends deserve acknowledgement for helping me get to this point, and for their much-

needed support through the thesis writing process.

Abstract

The following thesis outlines the goal and process of algorithmic musical key
detection as well as the underlying music theory. This includes a discussion of signal-
processing techniques intended to most accurately detect musical pitch, as well as a
detailed description of the Krumhansl-Shmuckler (KS) key-finding algorithm. It also
describes the Java based implementation and testing process of a musical key-finding
program based on the KS algorithm. This thesis provides an analysis of the results and a
comparison with the original algorithm, ending with a discussion of the recommended

direction of further development.

l. Introduction

Music that we hear, composed fundamentally of physical vibrations, or sound
waves, has many underlying mathematical concepts. For instance, any note coming from
a musical instrument is a wave composed of many different frequencies that are often
multiples of each other (Muller et al. 2011). Furthermore, sound waves stacked in this
way that are exact integer multiples of each other, or harmonic frequencies, tend to sound
most pleasing to the human ear (Parker, 2009). Because it is possible to mathematically
characterize sound waves and derivatively musical notes, it is possible to computationally
analyze music in terms of concepts in music theory. This can take many forms, but the
particular concepts in Western music theory that we are interested in for the scope of this
thesis are those concerning musical key. Since music theory already relates keys to each
other in logical and algorithmic ways, the prospect of using computers to analyze music
for its key is appealing. To this end, much investigation has been made into methods of
pitch detection and various bases for key detection (Krumhansl 1990, Temperley 1999,
Shmulevich et. al 2000, Gerhard 2003, Sapp 2011).

The theoretical concepts underneath music’s tonal surface inform the
mathematical formulas that allow for pitch recognition, which in turn enables the key
selection process. The rest of this thesis is laid out following this process, starting with
the relevant music theory, moving to a discussion of pitch detection methods, followed
by a detailed account of the Krumhansl-Shmuckler key-finding algorithm, and finishing

with the description and analysis of my own creation of a key-finding program.

I1. Understanding Musical Key

Most people, if not musically trained, would have a difficult time identifying the
key of a given piece of music upon listening to it (Pauws 2004). Despite this, musical key
is a fundamental concept in Western music theory that applies to most, if not all pieces of
music. It is such a core feature of a piece of music that it is written on the first line of the
musical staff, though the same key may not hold for the entirety of the piece (Sapp 2011).

Represented by a base musical note called the tonic, a key provides a reference by
which different notes are perceived to relate throughout a piece of music. Each key is
associated with a scale starting with the tonic, or note for which that key is named
(Harrison 2009). Each position in the scale for a given key is perceived to have a
different effect in terms of harmony or melodic motion. For instance, the fifth note in a
given scale is called the dominant note, which when played, gives a sense of harmony
with the tonic note. However, if a chord progression ends on the dominant note, it sounds
incomplete and leads the ear to expect a continuation of the melody (Temperley, 1999).
Each such scale position has its own relationship and thus tonal effects on the other notes
in the key. The note that sits in each place in the given scale for a key is determined by
that key’s tonic note. Thus, the dominant (or any other position) is a different note in each
key. Certain keys have more sharps or more flats, which gives a certain tonal quality to a
piece of music as well. It is the key signature that denotes which notes are played as sharp
(a half step higher) or flat (a half step lower) in that key (Harrison 2009).

In Western music theory, there are twenty-four keys in total- twelve major and

twelve minor. Since there are only twelve distinct pitches, each pitch has one associated

major and one associated minor key. Two major and minor keys sharing the same tonic,
or first scale note, are differentiated by the intervals between each following note in the
scale. These intervals simply represent how many distinct pitches, if any, are skipped to
find the next note in the scale. The scale intervals for all major keys (though not the
specific notes themselves) are the same. Additionally, the same relationship holds for all
minor keys as well, but with a different set of intervals than the majors. This is what
gives major and minor keys their distinct tonal qualities (Krumhansl 1990). These
underlying conceptual relationships- both among the scale positions of a key and the keys
themselves - are what many key-finding algorithms use to accurately compute key

correlation (Krumhansl 1990, Rowe 2001, Zhu et al. 2006).

I11. Applications of Musical Key Analysis

Though a musical key just denotes a certain set progression of notes, including
sharps and flats, musical key analysis is the basis for many other concepts in music
theory by which music can be understood. As briefly mentioned earlier, the key of a
piece of music is often associated with its tone, or the mood the piece evokes. A piece of
music, especially in the classical genre, may change keys many times throughout its
duration, each time evoking a new atmosphere and possibly tension, or bringing back an
old context for completeness. Furthermore, the context set by a certain key can be
intentionally broken by notes outside of the key, for the purpose of creating tension,
providing novelty, or hinting at an upcoming key change (Rowe 2001). On a macro scale,

analyzing these key changes provides essential insight into the flow of a piece of music

and helps the categorization of certain types of music into different styles (Krumhansl,
1999). This doesn’t only apply to classical music. A DJ (disc-jockey) who mixes
different songs together for performance purposes pays close attention to the key of each
track in order to smoothly transition from song to song- since certain keys are highly
incompatible and sound jarring if played in unison. Since almost all modern DJs use
digital music files and software packages to accomplish this mixing, the problem of key
determination has become a computational problem. Multiple programs exist with the
sole purpose of musical key determination, and they perform this task with varying
degrees of accuracy (White, 2014). In addition to DJ specific software, | believe there is
potential application of computational key determination in music recommendation
software such as Spotify or Pandora. Since key is so fundamental to the overall feel of a
musical track, when considering the next song to recommend, the same or a compatible

key should be considered as a major factor.

V. Overview of Algorithmic Key Detection

To computationally determine musical key from an audio sample, there are two
general problems to be solved. First is the process of pitch detection. Since the type of
audio input we are concerned with is in some encoded form composed of bits digitally
representing a sound wave, there are no implicit pitch characteristics easily recognizable
by a computer, only data points (Zhu et al. 2006). This is in contrast with an input format
such as MIDI, which transmits discrete pitch data as part of its encoding (Rowe 2001).

The problem of pitch detection, then, is to somehow analyze this digital representation of

a sound wave to determine as accurately as possible which individual notes or chords it
represents.

Assuming this is satisfactorily accomplished, the second part of the key detection
process is to formulate a method by which a key is chosen given the individual tones or
chords identified in the pitch detection step (Zhu et al. 2006). This is also a complex
endeavor since, as mentioned earlier, the key of a piece of music can shift rapidly, or be
contradicted for dramatic effect. Furthermore, certain keys share a similar tone and
consequently contain many of the same notes and chords in sequence. This is most likely
to happen with relative keys, i.e. a major and a minor key pair that share the same key
signature but each has a different tonic note. These keys are most prone to be transitioned
between in compositions, and therefore also likely to be conflated by key-finding
algorithms (Krumhansl, 1990). Because of this, many algorithms provide a ranking of the
likely keys by how well correlated they are to the input (Temperley 1999, Sapp 2011).
The relative success of this key determination step is also highly dependent on the

accuracy of the pitch detection method used.

V. Pitch Detection

Because pitch is a purely a human perceptual feature of music, i.e. it represents
the way that music sounds once it has been converted by our sensory organs into neuro-
electrical signals and processed by a section of our brain, it is a very difficult problem to
try and pinpoint pitch using a computer (Mller et al. 2011). Putting it another way, the

goal of pitch detection is to process a signal in whatever way most accurately determines

10

what it would sound like if that signal were to be physically produced and then
experienced by a human.

Though each note is composed of many different frequencies, the perceived pitch
of the note is commonly equated with the fundamental frequency of the note, since this is
usually the basis from which the other harmonic frequencies are derived. Given this,
many pitch detection methods focus on identifying the fundamental frequency or
frequencies of a sample (Salamon 2014). This is not an entirely accurate model of pitch,
since real instruments produce complex sound waves with many overlapping frequencies,
especially in the upper ranges. However, in most cases this is a necessary simplification
that makes the problem of pitch detection much more manageable. Given this, the goal of
a large number of pitch detection algorithms is to make this simplification from a rich
waveform with many harmonic components to one fundamental sinusoid with a set
frequency as clean and accurate as possible (Mdller et al. 2011). Obviously, the more
harmonics contained in the waveform, the more difficult this becomes.

A common general approach to this problem of fundamental frequency detection
is to simply use the sound wave in the time-domain as the input. In particular, looking for
periodically repeating events, or shapes in the sound wave, which can then be related
inversely to the frequency of the sample. One extremely basic method used for this
purpose is to measure the zero-crossing rate, i.e. the number of times that the wave
function crosses zero on the y-axis. If the sound wave is clean and very sinusoidal, this
may give a useful correlation with frequency since a sine wave will cross the y-axis twice
each period. However, this is quite simplistic since if the waveform contains many other

partial components, it may vibrate around the y-axis and cross many times, yielding an

11

inaccurate measure. Another similar time-domain based approach for finding
fundamental frequency is to measure the periodicity of either absolute maximum or
absolute minimum values in the wave instead of zero-crossing points. Yet a third method
uses the same reasoning, but looks at the function’s slope instead, which should be
periodic if the function itself is periodic. All three of these share the same weaknesses.
They are prone to inaccuracy given a complex input, since there is no guarantee of a
smooth, constant wave around the zero-point, the peaks, or with regard to slope. Despite
this, they are useful methods due to their relative simplicity, which translates to ease of
implementation and efficiency with respect to memory and processing power.
Furthermore, they can be improved using simple filtering techniques aimed at cleaning
up a waveform, such as filtering out the confounding higher frequencies (low-pass
filtering) (Gerhard 2003). These time-domain based techniques are the most simplistic
approaches to the problem of pitch detection and seem insufficient in any case with input
samples of high musical complexity. They could potentially be used in conjunction with
some of the other methods or as a preliminary test, but in my own application I chose not
to implement any of them.

Another time-domain based method of detecting the fundamental frequency,
dissimilar from the previous three, is that of auto-correlation. This is the mathematical
process of computing the correlation of a waveform with itself, as a function of an
increasing time-lag between the start of one copy of the function and the other. If a
waveform is periodic, this auto-correlation function will also be periodic, since as the
time-lag of the function copy approaches half the period of the original function, the two

will be maximally out of sync, and therefore least correlated. Then as it approaches the

12

full period, the two will again be in sync and therefore most correlated- repeating so on
and so forth. The peak in this auto-correlation function would therefore represent the
period of the original function, from which the frequency could be derived (McLeod
2014). This seems to be useful in many cases, but may be inaccurate if the function has
the appearance of periodicity early on due to its overlapping harmonics, but is not truly
repeating until much later. Similar to the time-domain methods, the auto-correlation
function appears to be usably accurate only in simple cases, and would need to be further
refined or combined in some way with another technique.

Other methods of pitch detection take place in what’s called phase space. Rather
than the time-domain, this is the domain created by plotting the value of a waveform at a
certain time with its slope at the same time. If the waveform is periodic, the phase space
representation will have a periodic cycle as well. Using higher order derivatives of a
function’s value as the y-coordinate creates higher order phase space representations of
the function. If a waveform plotted in phase space has a closed cycle, the problem is to
find the point at which the cycle starts to retrace itself, which gives the period of the
function. This is difficult since a phase space function may cross itself without
completing a cycle, or follow itself inexactly (Gerhard 2003). These problems are similar
to those faced by the zero-crossing rate method of determining period, and there is no one
clear-cut solution.

The major category of pitch detection algorithms that have been the subject of the
most recent development are those that seek to analyze waveforms in the frequency
domain. These generally follow the structure of first filtering the input in some way,

breaking it into many discrete parts, and then transforming it into frequency data through

13

some mathematical process (Salamon 2014). A common way of performing this
transformation is a fast Fourier transform — a process using matrix multiplication that
takes in an array of data representing the sound wave and returns an array in which each
bin represents a certain frequency range, where the value contained in it represents the
magnitude of those frequencies in the original sample (Roche, 2012). This encapsulates
the basic idea, but there are many algorithms building off of this idea with refinements
and tuning either aimed at cleaning the signal before processing it, or transforming it
more accurately into frequency values (Pauws 2004, Zhu 2006, Salamon 2014). One
specific such algorithm is called a Cepstrum analysis. Besides some preliminary filtering,
the Cepstrum analysis also takes the log of the magnitudes before transforming it, so as to
more accurately follow natural harmonics (Gerhard 2003). These frequency-based
methods of pitch detection seem the most effective in general and the most rich for

further development, which is the reason | chose one for my own program.

VI. The Krumhansl-Shmuckler Key-Finding Algorithm

This key-finding algorithm, developed by Carol Krumhansl and Mark Shmuckler
is heavily referenced in its field (Temperley 1999, Shmulevich 2000, Zhu 2006, Sapp
2011). It is relatively simple to implement in terms of code, yet it takes into account
many complex concepts of music theory. The algorithm takes its inspiration largely from
ideas in cognitive psychological analyses of musical perception. It features twenty-four
key-profiles of twelve values each, where each value represents the degree to which each

pitch class in Western music theory is perceived to relate to that key. The basis of these

14

twelve values is a set of psychological studies conducted by Krumhansl along with
several other researchers, to attempt to put a numerical value on this idea of how well a
tone fits into a certain key. The methodology for these studies is based on the concepts
outlined earlier regarding the way certain scale degrees within a key sound with respect
to each other (Shmulevich et al. 2000). For instance, sounding seven tones of an A major
scale, from A to G# leads the ear to expect the completion of the scale on the tonic note,
A. This is the most pleasing progression to hear, even with an untrained ear. However,
sounding the dominant note in A major, an E, would certainly sound somewhat more
fitting than a Bb for instance. Thus, we see that there are certainly degrees to which
different tones might be perceived to fit into a key just based on the perceptual qualities
they evoke, even in those without formal musical training (Temperley 1999, Pauws
2004).

Using this exact principle, Krumhansl and her associates carried out their
experiments on groups of volunteers from diverse musical backgrounds. They played an
incomplete major scale as described above, and completed it with each of thirteen
different “probe tones,” one for each pitch class, and one of the tonic but in a different
octave. This was done with different instruments, some digital and some analog, to
control for the instrument type. They then asked each participant to numerically rate each
of these for how well they perceived them to complete the scale. They found that as an
overall trend, the tonic note was most preferred, followed by the other tones that appear
in the scale, followed by the tones that do not occur in the scale. This result was the most
clear cut in the group they tested with the most musical experience, and started to break

down more and more in the groups with less and less experience. However, overall, tones

15

closer in pitch to the musical context being presented were preferred to those further
away (Krumhansl 1990, Shmulevich et al. 2000).

To extend and confirm these findings, as well as to finalize the key-profile values
used in the final key-finding algorithm, Krumhansl carried out a second set of studies. In
these trials, different contexts were used instead of simply an incomplete major key scale.
They included longer scales and different types of chord progressions in both major and
minor keys. Instead of asking participants how well they thought the final tone completed
the scale, they asked how well they thought that it fit into the overall musical context (the
key) that was established. In this second run of trials they also specifically selected
participants with at least a moderate level of musical experience, so they could easily
distinguish tonal differences, but not too advanced, so the results would be influenced
most by perceptual qualities rather than higher theoretical concepts. The results of these
newer studies served to confirm the tonal hierarchies established initially, and helped to
remove any confounding factors. Ultimately, the final twelve key-profile values were
taken as averages of the participants’ numerical ratings for each pitch class’s perceived fit
(Krumhansl 1990). Since the scale degrees in a given major key and the following major
key are simply transposed by one degree, with the second note becoming the first, and the
first wrapping around to become the last, the same relationship can be followed with the
twelve key-profile values. Therefore, with just one set of values for a key-profile, the rest
of the profiles can easily be inferred. The same relationship holds for all twelve minor
keys.

The idea behind the key correlation part of the algorithm was based on the

notion that these key-profile values could give a sense of interkey distance. In other

16

words, that the values could numerically quantify how different keys relate to one
another, how similar each key is to the others, and how each pitch fits into these
interrelated hierarchies (Krumhansl 1990). Along the same lines, if two keys can be
related in this way, a given key-profile could also be correlated with an input of similar
form representing the tones in a musical sample. The resulting correlation value would
then quantify the degree to which the musical input is similar to or fits into the context of
the key being used. A high correlation value with the values from a certain key would
imply high likelihood that the musical piece was written in that key. This correlation
process can be done for the pairing of the input values to each of twenty-four key-
profiles, resulting in a ranking of how well each key matches the sample. These twenty-
four ranked correlation values is the output of the algorithm (Temperley 1999). To
properly compute correlation, the input for this process also must be a vector with twelve
values, each corresponding to a pitch class. In Krumhansl and Shmuckler’s original
formulation of the algorithm, these twelve values are meant to be a measure of the exact
duration of each of the twelve pitches in the musical piece. These could be manually
entered based on reading the actual sheet music, taken from MIDI data (as with an
electronic keyboard), or based on processing of the audio signal. The twelve values
represent the duration of each pitch irrespective of the octave they are played in, e.g. any
C note in any octave will increase the value representing C by the duration of the note.
This input vector can be taken from any musical segment of any length, although the
number of notes included in the sample used to formulate the input may affect the
accuracy of the algorithm. Krumhansl and Shmuckler suggest that in-depth analysis of

longer, more complex pieces of music can be accomplished by running the algorithm on

17

multiple input vectors taken from different sections of the piece. In this way, macro level
music theory concepts such as shifts in key and changes in tonal hierarchies throughout
the piece can be detected and analyzed (Krumhansl 1990).

Krumhansl and Shmuckler tested their completed key-finding algorithm first on
the fourty-eight preludes of J.S. Bach’s Well-Tempered Clavier. These pieces all begin in
the key of the key signature they are written in, and they cover all twenty-four major and
minor keys, making them an ideal choice for initial testing. There was a study done by
another psychologist, Annabel Cohen, where participants were played only the first four
notes of twelve of the preludes and asked to sing the scale of the key that they thought it
was in. They were accurate a majority of the time, implying that accurate key identifying
information could be parsed from very short segments of music (Cohen, 1977). For this
reason, Krumhansl and Shmuckler chose to test their algorithm using just the first four
notes of the preludes as well. They ran the algorithm and analyzed the resulting
correlation coefficients (r-values) based on whether they were statistically significant or
not, whether the key of the piece being analyzed came up first in the ranking, and if not
how far off it was from the top. In this first trial, they found that for each of the forty-
eight preludes, the r-value for the key it was written in was statistically significant.
Additionally, in all but four cases, the key of the piece was correctly identified as having
the highest r-value- a 91.7% success rate. In the four cases where the key was misplaced,
it was only off by an average of 1.40 places. Shmuckler also compared the algorithm she
helped create with Cohen’s earlier study that helped inspire it. In the twelve cases used in

the psychological study, participants were only on average 75% accurate in identifying

18

the key in which the piece was written, making the algorithm over 15% more accurate
than human perception in that case (Krumhansl 1990).

Krumhansl and Shmuckler tested their algorithm further with other collections of
classical music written by Shostokavich and Chopin. With input vectors created from the
first four notes of twenty-four Shostokavich preludes, the algorithm chose the correct key
all but seven times, a 71% success rate. In the majority of those seven cases, however, the
algorithm chose either a parallel or tonally related key. The Shostokavich pieces, like the
Bach preludes, were chosen because of their clear tonal quality and relative adherence to
the keys they are written in. Though not quite as accurate as the results from the Bach
preludes, the results in both cases were most likely influenced by these qualities. In
contrast, the twenty-four Chopin preludes used in testing are far more tonally ambiguous,
often straying from the written key, as well as using dissonance and more chromatic
tones (sharps and flats). This was a purposeful decision, to see the algorithm’s
effectiveness given a different, more complex style of music. Overall, on the Chopin
preludes, the algorithm identified the correct key with a 45.8% success rate, a marked
decrease from the earlier results. Additionally, in the cases where the correct key was not
ranked first by the algorithm, it was on average further away from the top than in the
incorrect cases of the Bach and Shostokavich preludes. Krumhansl and Shmuckler
attempt to explain this drop in performance in several different ways, dividing the Chopin
preludes into three categories based on the tonal qualities of the first four notes
(Krumhansl 1990). Their reasoning for the algorithm’s misidentifications in each case, as

well as my own is discussed in the results section below.

19

VIl. My Implementation

For the implementation of my own program based on the original Krumhansl-
Shmuckler key-finding algorithm, I decided to code in Java since it is the high-level
language that | am most comfortable with. It also has built in libraries for reading in and
processing audio data, and third party math libraries for fast Fourier transforms. This
made it an ideal choice for my purposes, though probably not the most efficient language
I could have used. To start off, | decided to focus on reading in WAV files as inputs,
since these are uncompressed audio and are easily converted to byte data for further
processing. The code | wrote uses an AudiolnputStream object from Java’s sound
libraries to read in the file, the name of which is taken as an argument when the program
is run. Next | create and initialize a byte array with a default size of 1024 frames worth of
bytes from the input file. This is then used as a buffer to store the audio data as it is read
from the AudiolnputStream. Next, | convert the byte array iteratively into an array of
doubles, simply because the fast Fourier transform library I used utilizes doubles as
inputs rather than bytes.

For the fast Fourier transform step, | downloaded and imported the Apache
Commons Mathematics Library. This provided me with a relatively easy to use
FastFourierTransformer object as well as a Complex data type to store the complex
numbers coming out of the transform. The output of the fast Fourier transform run with
the double array as an input is an array of complex numbers. | take the magnitude of each
value with a basic absolute value formula for a complex number, which is the square root

of the sum of the squares of the real and the imaginary parts respectively. The result of

20

this is an array with magnitude values stored in order by frequency. Each bin of the array
represents a frequency range, which can be computed by multiplying the bin number by
the Nyquist frequency (half the sampling rate of the file), divided by the number of bins
(Burk et al. 2011). In this case, the number of relevant bins is only half the size of the
array, so we can ignore the second half. This is because calculating the magnitude yields
a complex conjugate symmetric array, but since the input was entirely real numbers, the
complex parts can be ignored (Roche 2012).

Based on this, my first parsing of the output was to duplicate the array of
magnitudes and sort it in descending order. Then I took the top ten highest magnitudes
and searched the original, unsorted array with these to find their original bin number.
Next | converted these ten magnitudes to their frequencies using the above method
involving the Nyquist frequency, and listed the ten frequencies in descending order. This
gave a rough idea of which frequencies were prominent in the music file, and by
comparing these to the actual frequencies of musical notes; | was able to see which ten
notes were most prominent in the sample, based on my analysis. This does not yield a
musical key recommendation, however, but was merely an intermediary step to test if my
array transformations were working as intended. Since they were, | then moved on to the
next step, which was the key correlation step using the KS key-profiles.

My first move was to create an array holding the frequency values of eighty-eight
piano notes spanning slightly more than eight octaves — from a double pedal A on the low
end, up to an eighth octave C on the top. The eight octaves covered by this span is
enough of a range to cover most if not all the notes used in any given musical piece

(Krumhansl 1990). The creation of this array was necessary for the purpose of sorting the

21

frequency values taken from the FFT into a meaningful form with respect to actual
musical notes. | accomplished this by creating set intervals within which a certain
frequency would be considered to be a specific note. | used the midpoint between one
note’s frequency and the next note’s as the breaking point for this sorting process-
essentially rounding in whichever direction the value in question fell closest to. For
example, an Al (first octave A) has a frequency of 55Hz, and the next note, a Bb has a
frequency of 58.2705. So | would find the midpoint between the two, and a given
frequency value from the audio input that falls between 55Hz and 58.2705Hz would
count for whichever side of the midpoint it falls on. | decided that an exact match with
the midpoint would go to the lower note since notes at lower frequencies are less spaced
out, but I doubt this consideration made any significant difference in the outcomes. Since
there are only twelve distinct notes, the array of eighty-eight values represents eight
octaves and four extra notes, one each of A, Bb, B, and C. Though this has potential to
skew the results since those notes are slightly more represented in the sorting algorithm-
eight distinct versions of a note are enough representation, and this should not make a
significant difference. Once the sorting is complete, the result is an array of twelve
values, each representing the prominence of each of the twelve pitches in the input file.
This array is the ideal input vector for the KS algorithm.

To run Krumhansl and Shmuckler’s algorithm, in addition to the input vector, |
needed the key-profiles to be hard-coded into objects as well so that they could each be
used for comparison. To this end, in a separate file | created a data structure, called a
KSVector, which holds the name of the musical key it represents, an array of the twelve

pitch values associated with that profile, and a correlation value with the song’s input

22

vector. | initialized and created twenty-four of these objects, one for each musical key,
using an iterative process to set the twelve pitch values, and initially setting the
correlation value to zero. As described in the previous section on the KS algorithm, all
the major key-profiles are simply different orderings of the same twelve pitch values, and
the same is true for the minor key-profiles. Using this property, | was able to automate
the creation of the twenty-four key-profiles by inputting the pitch values just one time
each for the major and minor keys (starting with A) and then moving them by one place
within the array (wrapping around), to get the ordering for the next consecutive key.
Once these twenty-four key-profiles are created, | put them into an array, and
iterate through, setting the correlation value of each to the correlation with the song’s
input vector. This is found using the basic statistical correlation (or distance) formula.
The array is then sorted in descending order by correlation value, and the results are
printed with each key’s name beside its value. | used a NumberFormat object to truncate
the run-on digits past four for aesthetic value. The top key displayed being the
algorithm’s most preferred recommendation, the second being the second most preferred,

and so on down the list.

VIIl. Results

As test input to my algorithm, | tried to find high-quality samples from various
genres of music- focusing on classical since the notion of key is most prominent there,
and also because that is what Krumhansl and Shmuckler used to test their original

algorithm. Since the inputs must be high-sampling rate and bit rate WAV files, clipped to

23

include only the relevant parts of the song, my selection pool was limited. Also, the
process of removing a channel (since stereo has twice the relevant information), clipping
the track to the proper size, and removing metadata proved to be time-consuming. For
these reasons, | settled on using twenty, ten second clips of music ranging from rock, to
funk, to electronica. I tried to select samples that well exemplified the key the music was
written in, and also were in sections with low note density since | knew that overlapping
notes would make the pitch detection far less accurate. Ten of the samples were the
beginnings of selected preludes and fugues from the Well Tempered Clavier, the same
collection of pieces that Krumhansl and Shmuckler used. The other ten were a mixture of
clips taken from different parts of songs from my own music library. The results were by
and large not statistically significant whatsoever, and in most cases the key was not
correctly identified by my code. With the ten Bach pieces as input, the algorithm
identified the correct key one out of ten times, and in three cases, the correct key was
found in the top five suggested keys. However, in all of these cases, the R-value was so
low that it would be considered a not statistically significant correlation. Table 1 shows
the results by musical piece, R-value, and the placing of the actual key in the ranked list
of twenty-four keys returned by the program.

Table 1: Results of ten samples from Bach’s Well Tempered Clavier

Fugue (f) R-Value Correct Key
or Prelude (p) Placement
Bb Major (f) 0.0156 5
C Major (f) -0.0095 16

C Minor (f) -0.0037 13

D Major (f) -0.0913 22
D Minor (f) 0.0184 7
Bb Major (p) 0.0237 10
C Major (p) 0.0384 2
C Minor (p) 0.0398 1
D Major (p) -0.0444 23
D Minor (p) 0.0167 8

With the song clips taken from other genres as input, the algorithm performed
similarly. Out of the ten songs, none of them had the key perfectly identified; however

two out of the ten had the correct key in the second spot on the list. Four out of the ten

24

had their correct keys placed in the top five most correlated keys. Even so, the R-values

were again outside any statistically significant range. It is worth noting that in one case

where the correct key was off by one spot (Sick Muse), the correlation was quite high at

0.1329 and hovering around what could be considered a statistically significant positive

correlation (Pearson’s r Correlation 1999). Table 2 presents the results from those ten

songs along with the song name and artist.

Table 2: Results of ten samples from various musical genres

Song Name (Artist) Key R-Value Correct Key
Placement
Sick Muse (Metric) A Major 0.1329 2
Intro (Alt-J) B Minor 0.0031 10

25

Breaking Ties G Minor -0.0006 15
(OceanLab)
Annie Waits (Ben Folds) C Major 0.0690 3
King of Carrot Flowers C Major 0.0375 2
Pt. 1 (Neutral Milk Hotel)
Maggot Brain E Minor -0.0004 11
(Funkadelic)
Filmic (Above and C# Minor 0.0104 5
Beyond)
Piano Sonata No. 3 in B B Minor 0.0160 12
Minor (Chopin)
Guitar Flute & String G Major -0.0123 13
(Moby)
Strobe (Deadmaub) B Major -0.1557 23

Despite the one positive and borderline significant R-value in this data set, the

overall trend of inaccuracy is the same as with the classical pieces.

XI. Discussion

It is clear that in its current form, my key-finding algorithm falls rather short of its
goal in terms of pure accuracy. It is nowhere near the accuracy that Krumhansl and
Shmuckler’s original tests demonstrated for their algorithm, even with the tonally
ambiguous Chopin preludes as input. I believe the reasons for this lie mainly in the pitch
recognition stage, i.e. computing the input vector before the algorithm is applied. On top
of that my algorithm is also subject to the same pitfalls that the original is subject to, and
the combination of these factors result in a largely inaccurate output.

In terms of pitch-recognition, | opted for a fairly simplistic method because
anything more complex would involve highly math-based manipulations of audio data of

which I am not well versed. One problem with the method I used is that simply running a

26

fast Fourier transform gives frequency values in the linear domain, but human pitch
perception depends on pitches related logarithmically (Pauws 2004). Furthermore, the
transform is not intelligent in terms of which frequencies are musical- it processes every
sound equally. This is significant because there is a lot of very high frequency, inaudible
spectral content in music that should not be part of the key-identification process.
Additionally, the input vector to Krumhansl and Shmuckler’s original algorithm is meant
to be twelve values representing the exact note duration of each pitch class in the sample.
In my case, | am computing the magnitude of certain frequencies over the sample and
first correlating these frequencies to the frequencies of musical notes and then performing
the key correlation. Since the magnitude values computed by my code are not equivalent
to note duration, there is certainly an impact in the degree of correlation I found with the
KS key profiles. I also used piano notes as a reasonable standard by which to associate
frequencies with musical notes, but not all the samples | used were piano music. This is
significant because different instruments produce sound waves with different timbre, or
tonal coloring, and spectral quality (Mdller et al. 2011). Finally, while I tried to choose
music that was relatively simple and monophonic as input, this wasn’t always possible or
desirable since | wanted to have an idea of the algorithm’s performance on a wide range
of genres. Pitch detection on anything other than monophonic input becomes quite
complicated since overlapping notes means frequencies that overlap and clash with each
other. This, along with the other factors mentioned, certainly contributed to the
inaccuracy of the pitch-detection stage, and consequently the formulation of the input

vector to the key-correlation algorithm.

27

Outside the pitch-detection portion, even the original algorithm had its
weaknesses, especially highlighted with complex inputs such as Chopin’s preludes. For
one, the algorithm is based on tonal hierarchies within a given key, and many keys are
similar in this way. Therefore it is likely that the algorithm could misidentify the key by
recognizing a tonally similar one, such as the parallel or relative major or minor. This
was the case in many of the misidentifications Krumhansl and Shmuckler found with the
Chopin pieces. In other cases, their input, the first four notes of the song, did not contain
the tonic note of that key’s scale, and therefore would not have indicated that key very
strongly even to human perception. And in the two cases of the least accurately identified
Chopin preludes, the first four notes contained notes not in the key at all (Krumhansl
1990). Though this is largely an issue with the selection of the input and could most
likely be avoided by using more notes of the song, it still highlights a weakness of the
algorithm. It is strongly dependent on one set context for a key, and does not cope well
with pretention to other keys or modes, something that is fairly common in some styles of
classical music.

There has also been suggestion by critics of the KS algorithm that the key profile
values themselves are flawed and don’t reflect the significance of each pitch within a key
in a satisfactory way. Most of this is based on music theory concepts such as the
prevalence of certain scale degrees in the major vs. the minor keys. An alternative set of
key profile values, tweaked based on scale degrees has been suggested by David
Temperley. He has tested it and found noticeably improvement over the old values
(1999). Other suggestions for alternative key profile values have been made based mainly

on the analysis of the tonal content in representative collections of music. For instance,

28

the prominence of chords in 100 works of classical music, or note counts from a
collection of folk music (Sapp 2011). This may result in highly effective values for
identifying key when given an input similar in style to the body of music used to create
the key profiles in the first place. However, the original KS algorithm values or some
variation thereof based on music theory, such as Temperley’s suggestions, seem to be the

best option for generalized key identification across multiple genres.

X. Further Development and Conclusion

As mentioned in the discussion section, | attribute most of the inaccuracy of my
algorithm to my implementation of pitch recognition. Consequently, most of the
developments | have the option of making are to this section of the code. In particular, 1
would implement a filtering process even before the data is transformed. This would help
immensely with the issue of spectral noise in the form of high-level harmonics interfering
with the Fourier transform. A low pass filter that simultaneously removes the unwanted
upper frequencies and marginally downsamples the signal to improve computation time
would be ideal (Pauws 2004). Along similar lines, there are methods of controlling for
the different timbres produced by different instruments. This involves normalizing the
input by essentially boosting up quieter frequencies, allowing the analysis to focus more
on pitch and not the spectral signature created by the instrument (Mdller et al. 2011).
Additionally, I could operate on the data set prior to the Fourier transform to transform it
into a logarithmic scale, similar to the process used by the Cepstrum analysis mentioned

earlier. Since a large part of the accuracy of the algorithm, both in my experience, and in

29

Krumhansl’s analysis, depends on the length and form of input, I could certainly improve
my own results by changing the audio samples used for testing. Primarily, | would search
for monophonic samples that stay solidly within a certain key, with useful musical
passages as long as possible. The more data points given, the more accurate the algorithm
seems to be. Additionally, | would explore the idea of using electronic music for testing
since it utilizes sound generated directly by a computer, and therefore is not subject to the
concerns involved with analog instrument’s timbre or with recording noise. For simple
testing on the lowest level of the pitch detection stage, inputting a pure sine wave
generated by a synthesizer would be ideal. Improvements to the key correlation stage of
the algorithm are also possible. For one, the implementation of alternate key-profile
values as suggested by other researchers is a relatively simple tweak that I could explore.
With some more music theory background I could formulate my own key-profiles for
testing on different genres, which could have the concurrent effect of identifying patterns
of key usage within a certain genre.

Overall, my foray into the field of algorithmic musical key recognition
illuminated many of the complexities of audio signal processing, as well as the difficulty
of computing something that is largely defined in terms of human perceptions. It allowed
me to understand the complications involved with processing audio to detect musical
pitch, and some of the solutions to these complications as well - though in terms of
mathematical analysis, | have only scratched the surface. | was able to survey these
precise methods of pitch detection and the specific music theory concepts behind
different key-finding algorithms even though I couldn’t implement them all. In terms of

implementation, | created a complete musical key-finding program that takes an audio

30

sample as input and returns a ranked list of key suggestions. Even though the results from
the limited tests that | was able to perform are highly inaccurate, I now have a full
platform from which to explore further. My key-finding program has all the necessary
components, input, signal processing for pitches, key correlation, and output, and is now

open to be improved by specific changes to each part.

31

XIl. References

Burk, Phil, Larry Polanski, Douglas Repetto, Mary Roberts, and Dan Rockmore. "Music
and Computers: A Theoretical and Historical Approach.” 1 Jan. 2011. Web.

Cohen, Annabel J.. "Tonality and Perception: Musical Scales Prompted by Excerpts
From Das Wohl Temperierte Clavier of J. S. Bach." Second Workshop on
Physical and Neuropsychological Foundations of Music. , Ossiach, Austria.
Lecture.

Gerhard, David. "Pitch Extraction and Fundamental Frequency: History and Current
Techniques." (2003). University of Regina. Web.
<http://www.cs.uregina.ca/Research/Techreports/2003-06.pdf.>.

Harrison, Mark. All About Music Theory: A Fun and Simple Guide to Understanding
Music. Milwaukee: Hal Leonard Corporation, 2009. Print.

Krumhansl, Carol L. Cognitive Foundations of Musical Pitch. New York: Oxford UP,
1990. Print.

McLeod, Philip, and Geoff Wyvill. "A Smarter Way to Find Pitch.” (2005). University of
Otago. Web.
<http://www.cs.otago.ac.nz/tartini/papers/A_Smarter_Way to_Find_Pitch.pdf>.

Miller, Meinard, Daniel P.W. Lewis, Anssi Klapuri, and Gael Richard. "Signal
Processing for Music Analysis." IEEE Journal of Selected Topics in Signal
Processing (2011): 1-23. Web.
<http://www.ee.columbia.edu/~dpwe/pubs/MUEKR11-spmus.pdf>.

Parker, Barry R. Good Vibrations: The Physics of Music. Baltimore: Johns Hopkins UP,
2009. Print.

Pauws, Steffen. "Musical Key Extraction from Audio.” (2004). Philips Research
Laboratories Eindhoven. Web.
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.9184&rep=repl&t
ype=pdf>.

"Pearson's R Correlation.” Quinnipiac University. Web.
<http://faculty.quinnipiac.edu/libarts/polsci/Statistics.html>.

32

Roche, Bjorn. "Frequency Detection Using the FFT (aka Pitch Tracking) With Source
Code." 22 July 2012. Web.

Rowe, Robert. Machine Musicianship. Cambridge: MIT, 2001. Print.

Salamon, J., and E. Gomez. "Melody Extraction from Polyphonic Music Signals Using
Pitch Contour Characteristics.” IEEE Transactions on Audio, Speech, and
Language Processing 20.6 (2012): 1759-1770. Web.
<http://www.mtg.upf.edu/system/files/publications/SalamonGomezMelodyTASL
P2012.pdf>.

Sapp, Craig Stuart. “Computational Methods For The Analysis Of Musical Structure.”
(2011). Stanford University. Web. <http://purl.stanford.edu/br237mp4161>.

Shmulevich, llya, and Olli Yli-Harja. "Localized Key Finding: Algorithms and
Applications.” Music Perception: An Interdisciplinary Journal 17.4 (2000): 531-
44. Web. <http://www.jstor.org/stable/40285832>.

Temperley, David. "What's Key for Key? The Krumhansl-Schmuckler Key-Finding
Algorithm Reconsidered.” Music Perception: An Interdisciplinary Journal 17.1
(1999): 65-100. Web.
<http://theory.esm.rochester.edu/temperley/papers/temperley-mp99.pdf>.

White, Dan. "Key Detection Software Comparison: 2014 Edition." DJ Techtools. 14 Jan.
2014. Web.

Zhu, Yongwei, and M.s. Kankanhalli. "Precise Pitch Profile Feature Extraction From
Musical Audio for Key Detection.” IEEE Transactions on Multimedia 8.3 (2006):
575-84. Web. <http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1632042>.

	Claremont Colleges
	Scholarship @ Claremont
	2015

	Exploring Algorithmic Musical Key Recognition
	Nathan J. Levine
	Recommended Citation

	tmp.1430331649.pdf.R3INC

