
Claremont Colleges
Scholarship @ Claremont

Scripps Senior Theses Scripps Student Scholarship

2019

Spectre: Attack and Defense
Rae Harris

This Open Access Senior Thesis is brought to you for free and open access by the Scripps Student Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in Scripps Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Harris, Rae, "Spectre: Attack and Defense" (2019). Scripps Senior Theses. 1384.
https://scholarship.claremont.edu/scripps_theses/1384

https://scholarship.claremont.edu
https://scholarship.claremont.edu/scripps_theses
https://scholarship.claremont.edu/scripps_student
mailto:scholarship@cuc.claremont.edu

SPECTRE: ATTACKS AND DEFENSES

by

RAE YAN YAN HARRIS

SUBMITTED TO SCRIPPS COLLEGE IN PARTIAL FULFILLMENT
OF THE DEGREE OF BACHELOR OF ARTS

PROFESSOR ELEANOR BIRRELL

PROFESSOR CHRISTOPHER TOWSE

APRIL 25, 2019

Copyright c© 2018 Yan Yan Harris

The author grants Pomona College the nonexclusive right to make
this work available for noncommercial, educational purposes, pro-
vided that this copyright statement appears on the reproduced
materials and notice is given that the copying is by permission
of the author. To disseminate otherwise or to republish requires
written permission from the author.

Abstract

Modern processors use architecture like caches, branch pre-
dictors, and speculative execution in order to maximize com-
putation throughput. For instance, recently accessed mem-
ory can be stored in a cache so that subsequent accesses take
less time. Unfortunately microarchitecture-based side chan-
nel attacks can utilize this cache property to enable unau-
thorized memory accesses. The Spectre attack is a recent
example of this attack.

The Spectre attack is particularly dangerous because the vul-
nerabilities that it exploits are found in microprocessors used
in billions of current systems. It involves the attacker induc-
ing a victim’s process to speculatively execute code with a
malicious input and store the recently accessed memory into
the cache.

This paper describes the previous microarchitecture side
channel attacks. It then describes the three variants of the
Spectre attack. It describes and evaluates proposed defenses
against Spectre.

i

ii

Acknowledgments

I would like to thank Professor Birrell for her support as I
explored a part of computer science that I had little back-
ground in. I would also like to thank my family for supporting
me as I moved between majors and for listening as I worked
through my thesis.

iii

iv

Contents

Abstract . i
Acknowledgments . iii

1 Introduction 1

2 Background 3

3 Cache-Based Side Channel Attacks 5
3.1 Prime+Probe . 5
3.2 Flush+Reload . 6
3.3 Evict+Time . 8

4 Spectre Attack 9
4.1 Spectre Variant 1 . 9
4.2 Spectre Variant 2 . 11
4.3 Spectre Variant 3: Meltdown . 12

5 Spectre Attack Defenses 15
5.1 Emergency Patches . 15
5.2 Microsoft BIOS Update . 16
5.3 Independent Benchmarking . 18

6 Conclusion 23

Appendix A 23

Bibliography 29

v

vi

Chapter 1

Introduction

A system is secure if it does what is supposed to do and nothing else. For example, when
a secure program is run, there should be no hidden side effects in the output or the state
of the machine it ran on. Current hardware and software development focus primarily
on optimizing performance. Standard optimizations include various microarchitecture
components like caches and branch predictors. For example, when a process accesses
memory during execution, it will store it within the cache. If the executed code was in
a conditional branch, then the record of the branch is stored in the branch predictor.
This memory storing can have unintended but measurable side effects, depending on
how processes execute. These side effects, introduced by the optimizations, introduce
vulnerabilities that can be exploited by attackers.

One way for information to be accessed is through what is known as a side channel
attack. A side channel attack is an attack that exploits the implementation of a com-
puter system to access unprivileged information. When performing side channel attacks,
it is often assumed that the attacker has physical access to the user hardware. However,
in some cases [Kocher et al. [2018]] attacks can be successfully executed remotely.

In January, 2018, a series of side channel attacks that exploit speculative execution
were documented and reported. These attacks were named Spectre Variant 1 [Horn
[January 3, 2018]], Spectre Variant 2 [Kocher et al. [2018]], and Meltdown (or Spectre
Variant 3) [Lipp et al. [2018]]. In this paper, Variant 1 and Variant 2 will be collectively
referred to as the Spectre attack unless specified otherwise.

This paper will proved a general background of cache based side channel attacks
and how the Spectre attacks work. Then it will detail how, in response to three Spectre
Variants, companies like Intel and Microsoft developed various defense patches. The
patches, while efficient, were unrefined in the beginning and caused a decrease in system
performance. Later patches were more robust but are also limited in their application
to later generations of CPU [Miller [March 15 2018], Hruska [October 22 2018], int
[January 9 2018]].

1

2

Chapter 2

Background

Computer processor designers aim to optimize the computational performance and out-
put while minimizing the power drain, the time for an operation to fully execute, and
the memory footprint. The developers achieve these goals by the creation of various
microprocessor components, such as data and instruction caches, branch prediction
units [Acıiçmez and Koç [2009]], and branch prediction buffers [Acıiçmez et al. [2007]].
Developers also utilize strategies such as parallel execution, speculative execution, and
multithreading. These tactics allow the machine to minimize wasted or idle clock cycles.
For instance, most modern Intel CPUs save memory space by sharing memory pages
between cores. The Intel CPU processes in each processor also share the last level cache
(LLC) (i.e. the L4 if there are four cache levels or L2 if there are two).

Caches help reduce CPU latency because their stored data can be accessed by the
processor at a faster rate than the same data from main memory. The cache is split into
multiple levels where the deeper levels have more memory space, but require more clock
cycles to be accessed. Each level is comprised by cache sets which are in turn made up
of cache lines. Addresses are mapped to these sets, and the index that determines which
set the address is mapped to is dependent upon the physical and virtual addresses. The
last cache level is typically shared across all cores. Therefore, any changes made to that
cache level can affect processes running on other cores [Gruss et al. [2016]]. The number
of cache levels available is determined by the CPU manufacturer [Falkner and Yarom
[2014]].

The amount of time a memory access takes to complete depends on whether it is a
cache hit or a cache miss. A cache hit occurs when a process is able to find the memory
it needs using what is stored in a cache, and thus data access time is faster. If the
memory it wants is not stored in the cache, a cache miss has occurred and the process
needs to fetch the data from main memory and load it into the cache for future use.
Since accessing main memory is slower than accessing a cache, the execution time is
slower when a cache miss occurs.

Out of order execution is where instructions are executed out of the order that they
are written; once all instructions have been fully executed, they are committed in the
program’s execution order. Out of order execution introduces a vulnerability due to any
side effects caused by the execution of code that follows code that causes a program to
halt or crash.

3

Branch prediction units are used to make an educated guess of which instruction
should be executed next. They are used by speculation units to determine which con-
ditional branch will be taken after the condition is computed. This guess is made by
using the Branch Target Buffer (BTB) which keeps a record of recently executed branch
instructions and their destination addresses [Kocher et al. [2018]]. From this record, the
processor analyzes the BTB’s structure history in order to predict the future code ad-
dresses before the branch instructions are decoded.

Execution time can be reduced by using idle clock cycles, which occur when a con-
dition for a conditional loop is being evaluated and the data required must be retrieved
from main memory instead of a cache, to execute other code. A process will use specu-
lative execution to make use of these idle cycles. Speculative execution uses the branch
predictor to speculate which branch is most likely to be taken, records the state of the
registers, and preemptively executes the code within as the condition is being evaluated,
storing any data accessed within the cache. If the guess was correct, then more work
was finished, the idle cycles utilized, and the changes are committed. Otherwise the
processor will revert back to the recorded state, and there was minimal performance
loss since the speculation used previously idle cycles. In both cases, the changes to the
cache state are not reversed, creating a data vulnerability.

An attacker accesses protected data by launching a side channel attack, which is
an attack that allows unprivileged processes to attack other parallel processes [Gruss
et al. [2016]]. According to researchers, the earliest side channel attacks were reported
in 1965 [Zhou and Feng [2005]]. Traditional side channel attacks include cryptoanalysis,
algorithm, and cache timing attacks [Acıiçmez and Koç [2009]].

Timing attacks are where the attacker is measuring the time that a user process
takes to execute a specific task. Any significant deviation in the time can be used by
the attacker to obtain the protected information. These are one of the easier ways to
remotely attack because timing attacks do not require any extra hardware or physical
access to the machine [Brumley and Boneh [2005]].

Attackers who monitor the time of an instruction execution are able to measure the
increased time from a cache miss, a time spike, which helps enable the attackers to find
out which data was not previously cached. An example of the time spikes can be seen
in Figure 2.1, where prefetched data stored in the cache had a lower latency than the
data not prefetched.

Figure 2.1: A visual example from [Gruss et al. [2016]] that shows the access latency
when prefetched or not through the kernel memory.

4

Chapter 3

Cache-Based Side Channel
Attacks

When performing a microarchitectural attack, there are two main steps that the attacker
must take. First, the attacker must configure the cache so that they know what the
cache’s state is before the victim interacts with it. Second, the attacker will collect tim-
ing data and use it to gain information about the victim’s operation. Many of the attacks
will either be a direct attack to obtain a secret key, or they will try to obtain infor-
mation about the virtual address and physical address that map to processor-reserved
memory in order to allow other types of attacks to be used. For instance, defenses
like address space layout randomization (ASLR), supervisor mode execution prevention
(SMEP), and supervisor mode access prevention (SMAP) have been implemented to
prevent virtual address and physical address based attacks [Gruss et al. [2016]].

3.1 Prime+Probe

There are two steps an attacker takes when doing a Prime+Probe attack. First the
attacker primes the cache by occupying a specific cache set. This attack does not
require the attacker to have a set knowledge of the cache’s state. Once the attacker
is occupying the cache set, continuous calls are made that access memory which maps
to the occupied set. The attacker also keeps track of the time it took for the victim’s
operation to finish executing.

In an experiment, the authors discuss how Prime+Probe measurements are made
to attack Advanced Encryption Standard (AES) cryptosystems. In the example, the
attacker tries to discover which set of memory blocks were read during the encryption
process. This is done by first allocating an array named A and then priming the cache
by reading a value from every block within array A, thus filling up all the cache sets
with the attacker’s data. The attacker then forces an encryption of a plain text P. If the
encryption accesses memory that is mapped to one of the cache sets that the attacker
has filled, then the data in the set is evicted and replaced with the encryption-accessed
data. Once the encryption has occurred, the attacker may then go and probe the cache
sets to discover which ones were evicted, and the evicted ones would have had a longer

5

access time. The key difference between this timing and the Evict+Time attack is that
Prime+Probe is timing a simple operation and is lass sensitive to time variations. By
the end of the experiment, the attacker is able to recover the full 128-bit AES key
[Tromer [2010]].

When a time spike is detected, a cache miss has occurred. Because the attacker is
continually accessing the cache set with their own data, any time that the user needs
to access memory that would map to the cache set, the user will have a cache miss.

This attack has been successfully launched against sandboxing, across virtual mem-
ory boarders, across cores [Gruss et al. [2016], Gruss et al. [2017]], and within cloud
environments where the processor, OS, and hypervisor are trusted but other cloud ten-
ants are not [Gruss et al. [2017]].

3.2 Flush+Reload

The Flush+Reload technique, which is a variant of the Prime+Probe attack, requires
that both cache hierarchy and memory pages are shared between the attacking and
victim processes [Falkner and Yarom [2014]] as well as libraries. Otherwise the attack
is rendered ineffective [Gruss et al. [2017]]. Flush+Reload utilizes the fact that the last
level cache (LLC) is shared across processes. The feature of the LLC that Flush+Reload
exploits is the fact that, in modern Intel processors, the LLC is an inclusive cache. This
inclusively means that when data is evicted from the LLC, it is also evicted in all other
cache levels.

When attempting this attack, the attacker will first set the cache to a known state
by calling the clflush command in order to flush the memory out of a particular cache
line that the attacker is occupying. Since this memory is flushed from all cache levels,
any attempt to access memory which is mapped to that cache line will result in a cache
miss (see Figure 3.1). Afterwards, the attacker will use one of the two methods of
timing that was described earlier. Figure 3.2 gives a visual representation of when the
attacker chooses the second method of timing. This figure depicts how the attacker
needs to stagger the time between a clflush and when the attacker checks the cache line
for a cache miss. If the attacker checks too soon, then line (A) occurs where the victim
may have not had time to access the cache line. But if the attacker waits too long, then
line (E) can occur, where the victim access the line multiple times and the granularity
of the information the attacker can extract is less fine.

6

Figure 3.1: “Cache hits observed by a Flush+Reload attacker with the ability to overlap
the attack with different segments of the victim’s transaction” Gruss et al. [2017]

Figure 3.2: “Timing of FLUSH+RELOAD. (A) No Victim Access (B) With Victim
Access (C) Victim Access Over- lap (D) Partial Overlap (E) Multiple Victim Accesses”
Falkner and Yarom [2014]

A unique dangers of this attack is that it allows the attacker to identify specific cache
lines that are being accessed thanks to the fact that memory pages are shared between
the attacker and victim processes. Another unique danger is that the attack uses the
LLC, which enables the attack to be launched across cores [Falkner and Yarom [2014]],
as proven by [Gruss et al. [2017]], who also detail how this attack can be launched across
the cloud. One weakness of this attack is that most of the memory activity occurs at
the L1 cache level, thus less information will be available for extraction from the LLC
activity [Falkner and Yarom [2014]].

An example of this attack is where researchers created the Address Translation
Oracle, which flushes one virtual address that maps to a physical address, prefetches
another virtual address that potentially maps to the same physical address, and then

7

reloads the first virtual address. This oracle allows the attacker to check whether two
virtual addresses map to the same physical address, which can then be used to bypass
stack protections like SMAP [Gruss et al. [2016]].

3.3 Evict+Time

There are three steps an attacker will take for an Evict+Time attack, also referred to as
the Evict+Reload attack. First, the attacker measures the time it takes for a victim’s
process to execute an operation. Then the attacker will make an access call to data that
is mapped to a specific cache set or line, ensuring that whatever data was previously
stored within is evicted and replaced with the attacker’s data. Afterwards, they use the
first method of timing where they measure the execution time of the victim’s process.
By comparing this time to the previously measured time, the attacker is able to tell
through time spikes whether the evicted cache was accessed by the victim or not.

For instance, researchers created a Translation Level Oracle (TLO) to bypass pro-
tections like ASLR. The oracle enables the attacker to determine the translation table a
cache page is from and whether a specific virtual address maps to a specific PA [Gruss
et al. [2016]]. In the Translation Level Recovery Attack (TLRA), the attacker performs
the Evict+Time attack, and after the eviction occurs and the timing spike has shown
that the user had a cache miss, the TLRA is able to use the ATO to learn the precise
addresses of the memory from the cache miss. This allows the attacker to circumvent
the ASLR protection. The second attack is a Address Translation Attack (ATA) which
brute force searches for kernel addresses using ATO. The third attack is the Kernel
ASLR Exploit that utilizes the fact that the offset randomization protection for cache
pages does not occur on a sub page level. The attack uses TLRA to find the start of
the virtual address, bypassing KASLR protection.

Evict+Time has also been successfully executed to access the bits of a secret cipher
key instead of the addresses. The attack is able to recover bytes of the plain text
and of the cipher key, Pi and Ki, because the lookup table’s indices of the accesses is
dependent upon the different bytes Pi and Ki. When the two indices are equal for the
plaintext, then the second access will result in a cache hit. The indices are equal when
P1 ⊕K1 = P2 ⊕K2 [Acıiçmez and Koç [2009]].

The attacker goes through rounds of table lookups of Pi ⊕Ki, i ∈ {0...n} and times
their execution. When either P1 ⊕K1 = P2 ⊕K2 or P1 ⊕ P2 = K1 ⊕K2, a cache hit
occurs. The number of bits recovered depends on the number of elements in a cache line.
This type of attack has also been successfully launched against the kernel ASLR [Gruss
et al. [2016]] and bypassing supervisor mode execution protection (SMEP) [Acıiçmez
et al. [2007]].

8

Chapter 4

Spectre Attack

At the beginning of 2018, two independent parties discovered and reported three new
speculative-execution based side channel attacks. The attack names were Spectre Vari-
ant 1 [Kocher et al. [2018]], Spectre Variant 2 [Horn [January 3, 2018]], and Meltdown
(or Spectre Variant 3)[Lipp et al. [2018]]. The attacks have been shown to bypass many
of the previous side channel attack defenses [Kocher et al. [2018]]. Spectre Variants 1
and 2 are especially dangerous because they are able to be executed with user privileges
and have the capacity to go deep into arbitrary memory and leak it to the attacker.
While there has been a proven patch for Meltdown, the Spectre attacks, especially the
Variant 1, have been reported to be much more difficult in patching [Lipp et al. [2018],
Kocher et al. [2018]].

4.1 Spectre Variant 1

Spectre Variant 1 is a bounds check bypass attack, which is an attack that exploit how
branch predictors perform speculation in order to access protected memory. A branch
predictor is exploitable through the asynchronous timing between when the condition
from a conditional statement is evaluated and when the speculation is evaluating the
array access within the loop. The attacker sets up this exploitation by first executing
the code multiple times with valid inputs, training the branch predictor to think that
the next input will also be valid. Once the branch predictor has been trained, the
attacker is then able to make a call with a malicious input that would be rejected by
the conditional. If the timing is right, then the speculation will have executed the code
within the loop before the conditional has fully evaluated.

An example code of this is given in Figure 4.1, where the if statement condition
checks if the input x from the user is safe. With speculation, the code exploited

&= array2[array1[x]*10] is executed prematurely and may accidentally access the
memory where key is stored instead of the memory where array2 is stored [Kocher
et al. [2018]]. An attacker, with user permissions, can use speculation with a malicious
input that, through speculation, will access the key.

9

#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

/********************

Spectre Variant 1 Exploitable Code

********************/

int exploited = 0;

int array1Size = 8;

int array1[64]={1,2,3,4,5,6,7,8};

int array2[300];

char *key = ‘‘Top secret info";

void exploitableFunction(int x){

if(x < array1Size){

exploited &= array2[array1[x]*10];

}

}

Figure 4.1: An example of C code that is vulnerable to the Spectre Variant 1 attack.
In the code array2 is accessed within the conditional if statement. This condition and
array access are vulnerable to the speculative execution.

Figure 4.2: A visual representation of the possible paths that can be taken in an if
statement.

Figure 4.2 demonstrates the four cases that can occur as the bounds check and
speculation are both executed using the code listed in Figure 4.1. In the first, second,
and fourth cases, either the input was correct when the speculation was faster, or the
speculation occurred after the conditional was evaluated, and all had no unexpected
side effects. It is in the third case that demonstrates how a faster speculation will be
able to obtain and cache the information before the conditional evaluated false and the
process rolled back its states to pre-speculation.

10

exploited

array1Size

array1 Memory

array2 Memory

key

exploitableFunction Param 1

Ret Addr Ptr EF

Stack Ptr EF

exploitableFunction (EF)
. . .

if(param 1)
. . .

malicious param

correct param

Figure 4.3: Memory stack configuration of C code vulnerable to Spectre Variant 1. The
two colored arrows depict where in the memory a correct and an incorrect user input
will try and access.

Figure 4.3 shows the memory layout for the example C code in Figure 4.1. At the
middle is the memory allocated for array2’s data. The green arrow shows where in
memory a valid user input will access. The red arrow shows how a launched timing
attack with an invalid user input, which fails the bounds check at if(x < array1Size)

in Figure 4.1, would try an access memory outside of array2’s memory. In the Figure 4.3
example, if speculation occurred with the red arrow’s attacking input, then data from
key would have been read and loaded into the cache.

Once the data has been loaded into the cache, the attacker is able to use all three of
the previously described microarchitecture attacks to leak the data. For instance, the
attacker might use Flush+Reload or Prime+Probe to find the location in array2 the
data came from, and then can use array2[k*10] to find the key. The attacker might
also use Evict+Time by calling the function again with an in bounds input to find the
location in array2.

A proof of concept for Variant 1 utilized two extended Berkeley Packet Filters
(eBPF) to make the attack [Horn [January 3, 2018]]. An eBPF captures and filters
network packages that match specified parameters set by the user. eBPF are able to
be attached to a code path in the kernel, and when the code is run, the eBPF is exe-
cuted [Fleming [2017]]. The eBPF were chosen instead of Berkeley Packet Filters (BPF)
because eBPF has arrays and array pointers that allow the branch prediction exploit
to occur in the kernel. One eBPF is used to conduct the attack by checking different
offsets from an array to the userspace address. The other utilizes the Flush+Reload
technique to leak the information by being repeatedly called by the program to point
to the userspace memory area [Horn [January 3, 2018]].

4.2 Spectre Variant 2

Variant 2 is also known as Branch Target Injection [Horn [January 3, 2018]], Exploiting
Indirect Branches, or Poisoning Indirect Branches. The attack method uses the fact

11

adc edi, dword ptr [ebx+edx+13BE13BDh]

adc dl,byte ptr [edi]

Figure 4.4: Example of a disassembly code that acts as the Spectre gadget

that the execution of indirect branches of one process will result in the process making
many calls to the cache and main memory. The state of the cache shared between
processes means that if these indirect branches fill cache lines with their data, then the
user branch will be forced to have cache misses when it accesses data that maps to the
same cache lines [Kocher et al. [2018]].

Variant 2’s proof of concept utilized Flush+Reload as the means to create the covert
channel, but the authors state that the Prime+Probe method is theoretically also able
to work. The Prime+Probe method was discussed as being easier to use because it does
not require the attacker to know the user-kernel virtual address of a guest page [Horn
[January 3, 2018]].

To perform this attack, the attacker’s first step is to train the target’s branch pre-
dictor into speculating incorrectly. This is done by taking advantage of the fact that
the branch predictor utilizes the branch history buffer (BHB) in order to better predict
indirect calls that can have multiple targets. The BHB keeps track of a set number
of last taken branches. By continually executing the code with malicious inputs, the
attacker fills the BHB with erroneous branches and thus change the predictions made
by the target’s branch predictor [Horn [January 3, 2018]].

Once the target’s branch predictor has been trained, the attacker then utilizes a
Spectre gadget that will act as its covert channel in leaking the information found by
the incorrect branch predictor’s speculation. A Spectre gadget is a fragment of code
that, when speculatively executed, will transfer the user’s data to the covert channel.
Figure 4.4 gives an example of a speculative gadget. When speculatively executed, this
gadget will read a 32-bit value from the address m, where m=ebx+edx+13BE13BDh, into
the register edi. The second instruction then fetches the m into the cache. The attacker
may then use Flush+Reload to infer the values obtained from the victim process. In
this example, the attacker must have control over the ebx and edi registers in order to
create the covert channel.

4.3 Spectre Variant 3: Meltdown

Spectre Variants 1 and 2 were discovered and reported together while Variant 3 was
discovered and reported separately. However, all three variants are often discussed and
analyzed together due to their similar natures and because they were found around
the same time frame. They all take advantage of microarchitecture vulnerabilities.
Meltdown is further reaching than the first two variants because it is able to attack
with escalated user privileges. The attack circumvents the hardware encoded isolation
protection that CPUs uses by taking advantage of asynchronous instruction execution
that is used to optimize performance. The attack is able to execute code on a victim’s

12

process with escalated privileges when the attacker has escalated privileges on their
own process. This is achieved due to the fact that manipulating one indirect branch
will affect another.

When Meltdown is executed, the attacker has access to the kernel memory from user
space. Once the memory has been accessed, the attacker will use the Flush+Reload
technique to create a covert channel. This covert channel is capable of recovering a full
byte at a time, and by the end of the attack the entire kernel memory can be dumped.

Meltdown is more limited than Spectre Variant 1 and Spectre Variant 2 because it
is specific to many Intel and some ARM processors and the KAISER patch has been
proven to stop Meltdown[Lipp et al. [2018]].

13

14

Chapter 5

Spectre Attack Defenses

Of the three Spectre Variants, the mitigations available for the Variant 1 and Variant 3
have a minimal impact upon the system performance while the impact of the mitigation
for Variant 2 is more noticeable [Myerson [January 9 2018]].

5.1 Emergency Patches

Soon after the Spectre Variants were reported, major computer and CPU developers,
including Microsoft and Intel, released a series of emergency patches. The emergency
patches prevented attacks by untrusted code, such as downloaded apps or web browsing,
and were released through Windows Updates and silicon microcode updates. These
updates isolated an applications binary or code, ensuring that the application cannot
access unauthorized memory within the users Windows Server [Myerson [January 9
2018]]. The emergency patch worked by running all of kernel mode code with branch
speculation restricted [Lyigun [March 1 2019]]. These patches can be applied to physical
servers and virtual machines (VM)[Myerson [January 9 2018]].

It was noted by Microsoft that Windows systems manufactured 2015 or earlier would
have a more noticeable decrease in system performance after the emergency patch was
installed [Wycislik-Wilson [2018]]. Benchmarking by both Microsoft and Intel on the
performance impact caused by the incorporation of their emergency patches has shown
that while the Windows 10 computer with the latest Intel CPUs (2016-era PCs with
Skylake, Kabylake, or newer CPUs) are minimally affected, older models (Windows
8 or older with silicon 2015-era PCs or older) have a noticeable decrease in system
performance [Myerson [January 9 2018]]. Intel used the SYSmark 2014 SE benchmark
on 8th Generation Core processors and solid state storage. The benchmark scores
showed an average performance impact of 6% with the individual tests ranging from 2%
to 14% impact [int [January 9 2018]]. Developers at Intel state that average computer
users who perform common tasks like accessing photos or writing documents should not
face any significant performance impact [int [January 9 2018]].

15

5.2 Microsoft BIOS Update

Microsoft later released an updated Spectre Variant 2 patch using Googles retpoline and
this patch is said to reduce the performance impact of Spectre Variant 2 significantly
[Hruska [October 22 2018]]. Googles Retpoline prevents unsafe speculation by replacing
all indirect call or jumps in kernel-mode binaries with an indirect branch sequence that
has safe speculation behavior. However, the use of retpoline requires that the hardware
and OS support for branch target injection is both present and enabled, so Skylake
and any later generations of Intel processors are unable to utilize this defense and must
use the emergency patches to defend against Spectre Variant 2 [Lyigun [March 1 2019]].
Retpoline is able to be used on any processor where the speculation is not on the contents
of the indirect branch predictor. Any processor with that property as well as all AMD
processors and any Intel processor with the codename Broadwell and earlier are able to
use the retpoline defense.

Microsoft and third parties, such as Phoronix and Techspot, used multiple bench-
marks in order to determine whether or not the new retpoline-based defense has a
lower performance impact than the first patch. Microsoft ran the Diskspd (storage) and
the NTttcp (networking) benchmarks upon Broadwell CPUs. The benchmarks showed
about a 25% speedup with Office app launch times and between a 1.5-2x improved
throughput [Lyigun [March 1 2019]].

The Techspot team benchmarked the retpoline defense at the start of January, 2018.
When they began testing, the Asus Z370 series motherboards were the only motherboard
manufacturers to have released an update incorporating the Windows BIOS update for
Spectre Variant 2 defense. The Techspot team benchmarked the Core i3-8100 on a Asus
TUF Z370-Plus Gaming motherboard. The Techspot benchmarks run are Cinebench
R15, measuring the performance of single thread and multi threads; Corona 1.3, mea-
suring image rendering time; Excel 2016 workload; Blender [Ryzen Graphic], another
graphic rendering test; and VeraCrypt 1.2.1, an AES Encryption and Decryption test.
In the Cinebench R15, and Corona 1.3 Benchmark, there was a slight reduction of per-
formance with -1% for the single thread test, -2% for the multi thread test, and a -3%
for the render test (See Figure 5.1 for the render test bar graph). All of these perfor-
mance reductions are well within the margin of error, and all of the other benchmark
tests resulted in almost the exact same score for pre and post update [Walton [January
7 2018]].

16

Figure 5.1: One of the benchmarks run by Techspot to test the performance of the
retpoline Microsoft patch

Figure 5.2: A benchmark run by Phoronix when testing the retpoline Microsoft patch

Phoronix, a company centered around enriching the Linux hardware experiment,
ran a series of benchmarks on a variety of AMD and Intel processors to see the per-
formance change. The benchmarks used were all part of the Phoronix test suite 7.4.0.
The benchmark Flexible IO Tester v2.1.13 tests the random read, random write, and
sequential write performance while the benchmark Compile Bench v0.6 tests the initial
create (See Figure 5.2 for the initial create benchmark’s bar graph). These four tests
were performed upon the CPUs Core i3 7100, Core i7 8700k, Core i9 7980XE, 2 x Xeon
Gold 6138, Ryzen 7 1800x, and EPYC 7601. Of the CPUs tested, the core i7 8700k

17

and 2 x Xeon Gold 6138 had a negative performance impact on all of the tests, ranging
from a -1% change (random writes with 2 x Xeon Gold 6138) to a -10% change (random
writes with core i7 8700k). The other CPUs had an almost or completely zero percent
impact [Larabel [January 8 2018]].

5.3 Independent Benchmarking

I conducted a series of benchmarking experiments to observe how the Microsoft BIOS
Spectre Variant 2 defense impacts the computational speed of the computer. The three
benchmarks chosen were NovaBench, PCMark10, and Geekbench 4. All three of these
benchmarks were chosen because they are free, thus easily used by the average Windows
computer user, and are a representation of the different sized benchmark suites. All
three benchmarks are able to run on Windows 7 or later generations.

The PCMark10 benchmark, as of March 2019, is the latest version of the UL industry
standard PC benchmarks. The tests that it comprises are divided into three sections:
essentials, covering web browsing and app startup time; productivity, testing read and
write speeds of office applications like spreadsheets; and digital content creation, cover-
ing image and video editing and rendering [pcm [April 1 2019]]. This benchmark was
chosen because it is a a large benchmark suite that tailored towards testing Windows
computers. It is a fully documented and has continual maintenance.

NovaBench is a small, quick benchmark that tests the machine’s disk read and write
speeds, memory transfer speeds, and the machine’s CPU and GPU. It is useful because
it gives the tester a quick look at the general performance of the computer while not
taking up a large amount of memory or taking a long time to run.

Geekbench 4 is a simple and straightforward benchmark suite of tests that performs
direct memory accessing, testing the machines performance when using a single core
and when using multiple cores. The four tests performed are in encryption/decryption,
memory accessing, and computational speed with both integers and floating points.
Geekbench 4 is a good benchmark that is a balance between the other two benchmarks
in terms of size, execution time, and performance analysis. Geekbench is also a good
choice as a medium because it overlaps in some tests with PCMark10: web browsing,
image editors, and developer tools.

18

Figure 5.3: The instructions that a user may run on the Windows Powershell in order
to turn the Microsoft BIOS Spectre Variant 2 Defense on or off

Figure 5.4: Bar graph showing the PC Mark 10 benchmark results.

For the experimental setup, the benchmarks were performed on a 64-bit Windows
10 PC that had a x86 Intel Core i7-6820HQ CPU at 2.70GHz. The machine had
8GB of RAM, 4 cores, and a Dell Int. 06YF8N motherboard. To ensure that the
experimentation environment was as static as possible, the following steps were taken.
All applications except the benchmarks were completely shut off, the computer was
continually plugged in an at max battery, and all of the software necessary to run
the benchmarks was downloaded and compiled in order to prevent any memory shifts
between testing (See Figure 5.3 for the instructions used to turn the Spectre Variant 2
on and off). Refer to Appendix A for the full data set of the three benchmarks.

Figure 5.4 depicts a bar chart that shows the aggregate scores of the three main test
sections of the PCMark10 benchmark suite, the scores of the smaller tests that comprise

19

Figure 5.5: Bar graph showing the Geekbench4 benchmark results.

Figure 5.6: Bar graph showing the NovaBench benchmark results.

each section, and the final averaged score of all the scores, labeled PCMark10.
The PCMark10 benchmark program was run eight times when the Microsoft BIOS

defense was enabled and eight times when it was disabled. Averaged out, there was a
-1.39% decrease in performance with the individual scores, once averaged, ranging from
-8.06% to 0.85% Both the essentials and the productivity tests had a slight decrease in
performance while the digital content creation section had a slight increase.

In the benchmark testing, Geekbench 4 was run twelve times with the defense en-
abled and eleven times when it was disabled. On average, there was a -0.58% impact
for the single core tests and a -3.35% impact for the multiple cores tests, see Figure 5.5.
Between the single core and the multiple core tests, the individual tests have a slowdown
that ranges from a 1.93% down to a -9.74%. While the single core crypto results were
almost 2% better than before, the multi core crypto results were almost -10% worst.
The Geekbench 4 benchmark results indicate that programs run on multiple cores will

20

suffer more of a performance impact than those on single cores, which lines up with the
benchmarks from Phoronix.

For testing, NovaBench was run ten times when the defense was enabled and ten
when disabled. The averaged total score shows a slight decrease in performance at -
1.17%, with the individual scores ranging from a 5.58% increase to a -3.56% decrease
(see Figure 5.6). The disk read and write tests were the only ones to have an increase
in performance while the other tests decreased in performance.

21

22

Chapter 6

Conclusion

The Spectre attacks are a new series of side channel that pose a serious danger to
computer users since they target an integral component of modern CPUs. While differ-
ent microarchitectures, such as those of ARM and AMD CPUs, provide some defense
against the Spectre Variant 3, modern CPUs are still vulnerable to Spectre Variant 1
and Spectre Variant 2. While research has been done in protections against Spectre at-
tacks [Lipp et al. [2018], Kocher et al. [2018], Krzanich [2018], Sloss [January 11, 2018],
Miller [March 15 2018]], the current defenses available do not cover all CPUs and cause
a negative impact in performance. This impact is more easily seen in older computer
generations.

When the defenses were first released, there was a wave of preliminary benchmarks
that support Microsoft’s claim that their retpoline-based BIOS update has a low perfor-
mance impact, especially compared to their emergency patch [Walton [January 7 2018]].
Unfortunately the retpoline defense also has compatibility issues with some of the cur-
rent hardware security improvements, like Intel’s Control Flow Enforcement Technology,
and may have compatibility issues with future hardware and software [Miller [March 15
2018]]. The current benchmarks do not give the full picture of the impact caused by the
defenses. Many of the benchmarks were run in February and before Microsoft released
available Intel microcode updates [Miller [March 15 2018]].

I strongly recommend that a lot more research is devoted towards development of
defenses against the Spectre Variants and towards documenting how these defenses as
well as previous defenses fare in performance impacts. More benchmark testing with
a wider coverage in both tests and computer systems that can run them are needed,
especially in older generations of computers.

23

24

Geekbench4 GB/sec 1/sec1 1/sec2 GB/sec
and ns

GB/sec 1/sec1 1/sec2 GB/sec
and ns

pre Single-
core

Crypto Integer Floating
Point

Memory multi-
core

Crypto Integer Floating
Point

Memory

1 4001 3928 4215 4024 3502 12186 7214 15375 14029 3491

2 3993 3915 4246 4004 3428 12197 6996 15442 13998 3494

3 4003 3935 4212 4074 3442 12282 6805 15607 14026 3552

4 3977 3880 4181 4036 3456 12275 7432 15488 14104 3515

5 3986 3745 4208 4001 3523 12073 7503 15370 13636 3471

6 3996 3851 4207 4031 3506 12161 7332 15345 13957 3510

7 3986 3767 4245 3974 3479 12205 7309 15417 14001 3511

8 3978 3792 4178 4014 3521 12248 7419 15479 14025 3520

9 3877 3388 3820 3667 2944 11047 5649 14015 12868 2987

10 3573 3366 3830 3652 2926 11051 5321 14058 12856 3013

11 3530 3326 2792 3601 2886 11135 5602 14172 12941 2975

12 3957 3868 4189 3962 3405 12169 7107 15399 13951 3493

Average 3904.75 3730.08 4026.92 3920 3334.83 11919.08 6807.42 15097.25 13699.33 3377.67

1 3972 3891 4194 4002 3445 12365 7578 15711 14039 3526

2 3985 3783 4220 4017 3458 12370 7452 15768 13967 3558

3 4001 3828 4239 4035 3461 12322 7670 15562 14115 3508

4 3972 3848 4246 3953 3417 12353 7597 15674 14035 3547

5 4009 4053 4201 4050 3505 11995 7628 15553 13082 3453

6 4013 3914 4276 4020 3434 12429 7512 15578 14131 3522

7 3373 1439 3128 4055 3383 12398 7418 15789 14069 3058

8 4009 3955 4234 4046 3462 12424 7580 15766 14138 3545

9 3975 3834 4224 4003 3409 12364 7637 15740 13958 3558

10 4006 3934 4251 4030 3436 12359 7471 15657 14102 3547

11 3888 3774 4091 3907 3403 12279 7416 15492 14109 3522

Average 3927.55 3659.36 4118.55 4010.73 3437.55 12332.55 7541.73 15662.73 13976.82 3485.82

Disabled -
Enabled

22.79 -70.72 91.63 90.73 102.72 413.46 734.31 565.48 277.48 108.15

Productivity
Impact

-0.58% 1.93% -2.22% -2.26% -2.99% -3.35% -9.74% -3.61% -1.99% -3.10%

25

A
ppen

dix
A

Pre NovaBench
score

CPU
Score

GPU
Score

RAM
Score -
8GB

Disk
Score

Write
Speed
MB/s

Read
Speed
MB/s

RAM
Speed
MB/s

1 1136 727 155 173 81 439 449 10600

2 1284 878 155 181 70 261 471 12840

3 1152 758 147 168 79 421 446 9135

4 1246 832 155 178 81 437 454 12003

5 1271 856 155 179 81 439 464 12383

6 1253 837 155 179 82 440 469 12336

7 1245 830 155 178 82 446 465 12070

8 1265 849 155 179 82 446 466 12301

9 1252 837 155 178 82 445 463 12138

10 1261 845 155 179 82 447 462 12318

Average 1236.5 824.9 154.2 177.2 80.2 422.1 460.9 11812.4

Post NovaBench
score

CPU
Score

GPU
Score

RAM
Score -
8GB

Disk
Score

Write
Speed
MB/s

Read
Speed
MB/s

RAM
Speed
MB/s

1 1202 809 155 176 62 367 256 11645

2 1261 845 155 179 82 49 466 12485

3 1257 840 155 180 82 446 466 12558

4 1263 846 155 180 82 450 463 12608

5 1251 835 155 179 82 445 465 12485

6 1259 843 155 179 82 449 466 12437

7 1256 839 155 179 83 451 471 12413

8 1254 838 155 179 82 449 467 12479

9 1254 838 155 179 82 447 469 12336

10 1254 843 155 174 82 445 464 11041

Average 1251.1 837.6 155 178.4 80.1 399.8 445.3 12248.7

Disabled - En-
abled

14.6 12.7 0.8 1.2 -0.1 -22.3 -15.6 436.3

Productivity
Impact

-1.17% -1.52% -0.52% -0.67% 0.12% 5.58% 3.50% -3.56%

26

1.[MB, Mpixel, Krows, function]/sec
2. ns,FBS,Gflops, [Kpixels,Mpixels, Words, Mpairs,GB]/sec

FPS and 1/sec sec FPS sec

enabled PCMark10 Essentials App startup video conference web browsing

1 3626 7246 8914 6851 6230

2 3628 7108 8303 6828 6336

3 3592 7136 8599 6853 6168

4 3581 7175 8603 6886 6194

5 3595 7128 8523 6859 6196

6 3592 7136 8599 6853 6168

7 3581 7157 8603 6882 6194

8 3595 7128 8523 6859 6196

Average 3598.75 7151.75 8583.375 6858.875 6210.25

disabled

1 3650 7178 8696 6854 6207

2 3662 7169 8654 6854 6213

3 3648 7169 8649 6840 6230

4 3649 7163 8558 6873 6249

5 3659 7171 8656 6845 6225

6 3653 7197 8679 6887 6239

7 3668 7181 8635 6859 6254

8 3607 7151 8667 6859 6152

Average 3649.5 7172.375 8649.25 6858.875 6221.125

Disabled - Enabled 50.75 20.625 65.875 0 10.875

Productivity Impact -1.39% -0.29% -0.76% 0 -0.17%

27

1/sec 1/sec 1/sec FPS and
1/sec

1/sec FPS FPS and
1/sec

enabled Productivity Spreadsheet writing Digital
Content
Creation

Photo
editing

rendering
and visual

video
editing

1 5802 7656 4398 3079 5047 1876 3085

2 5982 7650 4679 3047 5019 1820 3097

3 5846 7476 4572 3015 4947 1828 3032

4 5781 7445 4489 3013 4968 1826 3017

5 5876 7469 4624 3012 4940 1829 3026

6 5846 7476 4572 3016 4947 1828 3032

7 5781 7445 4489 3013 4968 1826 3017

8 5876 7469 4624 3012 4940 1829 3026

Average 5848.75 7510.75 4555.875 3025.875 4972 1832.75 3041.5

disabled

1 6114 7617 4908 3008 4923 1827 3028

2 6184 7636 5009 3007 4950 1830 3004

3 6130 7563 4970 3000 4911 1827 3010

4 6152 7557 5009 2994 4929 1822 2989

5 6160 7670 4948 3011 4945 1827 3022

6 6115 7549 4955 3007 4949 1820 3019

7 6227 7629 5083 2998 4927 1826 2998

8 5973 7492 4762 2982 4906 1810 2988

Average 6131.875 7589.125 4955.5 3000.875 4930 1823.625 3007.25

Disabled -
Enabled

283.125 78.375 399.625 -25 -42 -9.125 -34.25

Productivity
Impact

-4.62% -1.03% -8.06% 0.83% 0.83% 0.50% 1.14%

28

Bibliography

PCMark10 Technical Guide. Futuremark Corporation, pages 1–83, April
1 2019. https://s3.amazonaws.com/download-aws.futuremark.com/

pcmark10-technical-guide.pdf.

Intel Offers Security Issue Update . Intel Newsroom, January 9 2018.

Onur Acıiçmez and Cetin Kaya Koç. Microarchitectural Attacks and Countermeasures.
In Cryptographic Engineering, pages 475–504. Springer, 2009.

Onur Acıiçmez, Cetin Kaya Koç, and Jean-Pierre Seifert. Predicting Secret Keys Via
Branch Prediction. Topics in Cryptology - CT-RSA, pages 225–242, 2007.

Daniel J. Bernstein. Cache-timing Attacks on AES. Prinston.

David Brumley and Dan Boneh. Remote Timing Attacks are Practical. Computer
Networks, 48(5):701–716, 2005.

Katrina Falkner and Yuval Yarom. Flush+reload: a high resolution, low noise, l3 cache
side-channel attack. In 23rd Security Symposium (Security 14), pages 719–732, 2014.

Matt Fleming. A Thorough Introduction to eBPF. Contegix, 2017.

Daniel Gruss, Clementine Maurice, and Anders Fogh. Prefetch Side-Channel Attacks:
Bypassing SMAP and Kernal ASLR. ACM SIGSAC Conference on Computer and
Communications Security, pages 368–379, 10 2016.

Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and
Manuel Costa. Strong and Efficient Cache Side-channel Protection Using Hardware
Transactional Memory. In USENIX Security Symposium, pages 217–233, 2017.

Jann Horn. Reading Privileged Memory with a Side-channel. Project Zero, 3, January
3, 2018.

Joel Hruska. New Google Patch Reduces Spectre Performance Impact to Noise. Ex-
tremeTech, October 22 2018.

29

https://s3.amazonaws.com/download-aws.futuremark.com/pcmark10-technical-guide.pdf
https://s3.amazonaws.com/download-aws.futuremark.com/pcmark10-technical-guide.pdf

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. 40th IEEE Symposium on Security and
Privacy (S&P’19), abs/1801.01203, 2018.

Paul C. Kocher. Timing Attacks on Implementations of Die-Hellman, RSA, DSS
and Other Systems. In Anual International Cryptology Conference, pages 104–113.
Springer, 1996.

Brian Krzanich. Advancing Security at the Silicon Level. Intel Newsroom, 2018.

Michael Larabel. Benchmarking Linux With the Retpoline Patches for Spectre. Phoronix
Media, January 8 2018.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al. Meltdown:
Reading Kernel Memory from User Space. In 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, 2018.

Mehmet Lyigun. Mitigating Spectre Variant 2 with Retpoline on Windows. Microsoft,
March 1 2019.

Christopher Vinckier Marko Aho. Computer System Performance Analysis and Bench-
marking.

Matt Miller. Mitigating Speculative Execution Side Channel Hardware Vulnerabilities.
Microsoft Security Response Center (MSRC), March 15 2018.

Terry Myerson. Understanding the Performance Impact of Spectre and Meltdown Mit-
igations on Windows Systems. Microsoft Security, January 9 2018.

Colin Percival. Cache Missing For Fun and Profit. BSDCan, 2005.

Treynor Sloss. Protecting our Google Cloud Customers from New Vulnerabilities With-
out Impacting Performance. Google Cloud, January 11, 2018.

Eran Tromer. Efficient Cache Attacks on AES, and Countermeasures. Journal of Cryp-
tology, 23(1):37–71, 2010. Springer.

Steven Walton. Patched Desktop PC: Meltdown & Spectre Benchmarked. Techspot,
January 7 2018.

Mark Wycislik-Wilson. Microsoft and Intel Reveal Just How Much Meltdown and
Spectre Patches Slow PCs. Betanews, 2018.

YongBin Zhou and DengGuo Feng. Side-Channel Attacks: Ten Years After Its Publica-
tion and the Impacts on Cryptographic Module Security Testing. IACR Cryptology
ePrint Archive, 2005:388, 2005.

30

	Claremont Colleges
	Scholarship @ Claremont
	2019

	Spectre: Attack and Defense
	Rae Harris
	Recommended Citation

	Abstract
	Acknowledgments
	Introduction
	Background
	Cache-Based Side Channel Attacks
	Prime+Probe
	Flush+Reload
	Evict+Time

	Spectre Attack
	Spectre Variant 1
	Spectre Variant 2
	Spectre Variant 3: Meltdown

	Spectre Attack Defenses
	Emergency Patches
	Microsoft BIOS Update
	Independent Benchmarking

	Conclusion
	Appendix A
	Bibliography

