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I. ABSTRACT 

 
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized 

by the progressive death of dopaminergic neurons present in the substantia nigra.  The 

clinical presentation of PD includes tremors, slowed movement (bradykinesia), 

muscle and limb rigidity, and difficulty with walking and balancing.  While many 

environmental factors can affect the onset and progression of the disease, genetic 

mutations have a large influence.  Of the identified PD-linked genetic mutations, 

mutations in the leucine-rich repeat kinase 2 (LRRK2) are one of the most common 

genetic causes of PD.  Located in endosomes, LRRK2 has been shown to play a role 

in the sorting and endocytosis of synaptic vesicles, a process that is largely mediated 

by the retromer complex. Mutations in Vps35, a core component of the retromer 

cargo-recognition complex, have also been identified as a significant cause of late-

onset autosomal dominant familial PD.  While the exact molecular mechanisms by 

which LRRK2 and Vps35 mutations induce PD remain largely unknown, their 

influence on several cellular processes, including vesicular trafficking and 

breakdown, and endosomal sorting and recycling, strongly implicate the retromer and 

autophagy in PD pathology.  Recent findings that transgenic expression of Vps35 is 

able to rescue the PD-related phenotypes caused by LRRK2 mutant forms provide 

further insight into the interplay of these genes in the context of PD and point to these 

-genes as potential therapeutic targets.  This review outlines the current studies 

involving these genetic mutations and their interactions with various cellular 

processes and pathways so as to gain a better understanding of the molecular 
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mechanisms underlying PD pathology for the ultimate purpose of developing safe and 

effective treatments for PD.  
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II. BACKGROUND 

 

a) The growing need for effective treatments for PD 

 
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, 

second only to Alzheimer’s disease.  Affecting almost 700,000 individuals over the 

age of 45 in the United States in 2010, PD is expected to continue to increase in 

prevalence to affect more than one million people in the U.S. by 2030 (Marras et al., 

2018). With an average onset around age 55, PD is a progressive disease and 

demonstrates markedly worse symptoms at its later stages.  Due to the loss of 

dopaminergic neurons in the substantia nigra and the subsequent decrease in 

dopamine signaling occurring in the basal ganglia, PD is most commonly recognized 

through an affected individual’s loss of motor function.  This deterioration of motor 

function clinically presents as bradykinesia, rigidity in gait and limb movement, 

postural instability, as well as tremors (Brazier, 2018).  Further symptoms can include 

hyposmia, constipation, mood disorders, sleep disorders, cognitive defects, and 

dementia which only serve to lower the quality of life for affected individuals 

(Ascherio & Swarzschild, 2016, Rahman & Morrison, 2019).  Because the symptoms 

and complications of PD are severe and its burden on society is expected to grow as 

the average lifespan has increased, a larger value has been placed on research 

focusing on understanding the cellular and molecular processes underlying PD 

neurodegeneration so as to identify biological targets and develop therapeutic 

treatments. 
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b) Drosophila melanogaster as an important animal model for studying PD 

 
Due to limitations of human genetic studies, animal models are important for 

studying the function of genes and proteins involved in cellular pathways implicated 

in neurodegenerative disorders.  While many model organisms, such as yeast, rats, C. 

elegans, and zebrafish, can provide great insight into the molecular mechanisms 

underlying PD, many fall short in meeting all of the necessary criteria to carry out a 

robust and effective study of human PD.  The criteria for transgenic models include 

observable behavioral and physiological defects, a clear pattern of inheritance, a well-

defined and easily-analyzed nervous system, and the conservation of cellular 

pathways (Hirth, 2010).  Drosophila melanogaster, also known as the common fruit 

fly, are an especially powerful animal model for studying Parkinson’s disease as they 

are not only easily available, rapidly reproducing, and have short life-spans but also 

stand alone in their fulfillment of these criteria for studying human 

neurodegeneration.  Transgenic Drosophila models with PD-linked genetic 

mutations, unlike rat models which fail to manifest the cardinal pathological features 

of PD seen in humans, consistently reproduce dopaminergic neuron death and 

demonstrate locomotor defects in complicated behaviors, such as climbing and 

walking (Linhart et al., 2014, Xiong & Yu, 2018).  Further, many of the fundamental 

cellular processes, genes, and signaling pathways are conserved in both Drosophila 

and humans, as many of the genes associated with familial PD have at least one fly 

homolog (Muñoz-Soriano & Paricio, 2011).  This stands in contrast to other proposed 

model organisms, such as C. elegans, which have far fewer gene homologs in 

mammals and lack many biologically and physiologically relevant systems seen in 
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both flies and humans.  Drosophila also possess a wide array of genetic tools 

including transgenic methods for gene manipulation, systems for controlled ectopic 

expression of certain genes, and balancer chromosomes.  As the Drosophila genome 

is encoded on only four chromosome pairs, balancer chromosomes allow not only 

allow for inclusion of visible molecular markers but also for the suppression of 

recombination to effectively follow mutations across many generations (Cauchi & 

van den Huevel, 2006).  One of the most interesting features of the fruit fly, however, 

is its compound eye.  Composed of nearly 800 ommatidia, each of which contain 8 

photoreceptor neurons, the Drosophila eye is extremely useful for studying 

neurodegenerative phenotypes as its organized and symmetrical layout of 

photoreceptors allows for easy quantification of neurodegeneration.  In analyzing the 

eye in flies expressing a PD-linked mutation, the level of pigmentation loss, bristle 

organization, and appearance of black lesions can provide information about the 

neurodegenerative phenotype (Mishra & Knust, 2013, Marcogliese et al., 2017).  The 

eye is also tolerant to genetic disruption of biological processes yet vital to fly 

survival (Sang & Jackson, 2005; Cauchi & van den Huevel, 2006). 

 In making a fly model to study PD, the most common approaches are to 

ectopically express a human disease gene (either in wild-type of mutant form) or to 

generate a loss-of-function mutation in the Drosophila homolog.  Expressing a human 

gene through the use of a UAS-Gal4 system can yield insight on its function 

properties and its interactions with other Drosophila genes and proteins.  Conversely, 

inducing a loss-of-function mutation through UAS-Gal4 mediated RNA interference 



 9 

can provide a better understanding of the role of the fly homolog, thereby allowing 

for predictions about pathogenic pathways underlying the disease.  
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c) Autophagy dysfunction is a hallmark of neurodegenerative disorders 

 
Autophagy is an essential cellular process by which cytosolic components in the cell, 

especially protein aggregates or damaged organelles, are degraded and recycled by 

lysosomes.  Initially discovered in yeast as a physiological response to starvation, 

autophagy is induced in response to conditions of cellular stress, including nutrient 

deprivation, oxidative stress, and the presence of abnormal cellular components.  New 

evidence further suggests a neuroprotective role for autophagy through its prevention 

of the accumulation of harmful products in the brain (Lynch-Day et al., 2012, 

Papinski et al., 2014).  As it is important for the maintenance of homeostatic 

conditions and is involved in a wide range of physiological functions, dysregulation 

of autophagy is strongly implicated in the pathophysiology of neurodegenerative 

disorders.  This is supported by evidence demonstrating that autophagy dysfunction 

leads to the accumulation of abnormal and potentially toxic proteins, a hallmark 

condition commonly observed in the brains of PD patients (Mizushima & Komatsu, 

2011).   

There are three forms of autophagy: macroautophagy, microautophagy, and 

chaperone-mediated autophagy.  The most common type of autophagy in the cell is 

macroautophagy, which will hereafter be solely referred to as autophagy.  The 

process of autophagy, as outlined in Figure 1, begins when an isolation membrane, or 

phagophore, sequesters a portion of the cytoplasm–which commonly includes 

organelles–to form a double-membrane autophagosome at a site close to the vacuolar 

membrane, known as the preautophagosomal structure (PAS) (Mizushima, 2007).  
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This structure then fuses with a lysosome to become an autophagolysosome and 

breaks down the materials it contains. 

 

 

Figure 1. A brief outline of the basic steps of macroautophagy, wherein a 

phagophore engulfs its cargo to become an autophagosome–whose maturation is 

mediated by multiple Atg proteins as well as vacuolar protein sorting (VPS) 

complexes in the PAS–until it fuses with a lysosome to form an autophagolysosome, 

which thereafter carries out cargo degradation (Figure courtesy of Mizushima, 2007) 

 

The process of autophagy is dependent on specialized autophagy-related (Atg) 

genes and the proteins they encode.  While each of these proteins are necessary for 

different aspects of autophagy, Atg9, the sole multipass transmembrane membrane, is 

especially important, as it travels between the site of phagophore nucleation and 

autophagosome formation and is thought to transport the membrane needed for 

autophagosome formation (Lynch-Day et al., 2012).  The trafficking of Atg9 through 

the process of endosomal recycling is therefore essential for autophagy.  It further 

colocalizes with the largest subunit, Vps35, of the retromer complex (Zavodszky et 

al., 2014).  The retromer, a protein complex, is crucial for the endosomal sorting 

machinery that transports and recycles transmembrane receptors from endosomes to 

the trans-Golgi network (TGN).  Atg9 also colocalizes with the WASH complex, an 

actin-regulatory network of proteins that, along with the retromer at the membrane, 
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plays a role in endosomal trafficking and recycling (Zavodszky et al., 2014).  These 

association between Atg9 and Vps35 of the retromer complex and the WASH 

complex demonstrates a functional relationship between the retromer and autophagy–

a connection important for understanding PD pathology. 
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d) The genetic association between the retromer and PD 

 

The retromer was first implicated in the pathology of PD with the discovery of a point 

mutation to the Vps35 subunit of the retromer.  This specific mutation of an aspartate 

to asparagine at residue 620 (D620N) was identified through exome sequencing in 

individuals with PD and remains one of the only confirmed pathogenic Vps35 

mutations (Vilariño-Güell et al., 2011, Williams et al., 2017).  While the exact 

mechanism by which this Vps35 (D620N) mutation induces neurodegeneration 

remains unknown, the identification of this mutation in a number of individuals with 

PD has demonstrated the retromer’s pathogenic role in PD development.  

The retromer complex, first discovered in yeast, is composed of a cargo-

recognition trimer, made up of the proteins Vps35, Vps26, and Vps29, and a 

membrane-associated dimer of sorting nexin (SNX) proteins Snx1, Snx2, Snx5, and 

Snx6, in various combinations (Fig 2) (Swarbrick et al., 2011).  Responsible for 

recycling and trafficking cargo molecules and transmembrane proteins from 

endosomes to the trans-Golgi network (TGN), the retromer complex is an integral 

part of the endosomal protein sorting system (Maruzs et al., 2015).  Because it 

mediates the recycling of receptors that are involved in the transportation of 

hydrolytic enzymes to lysosomes, the retromer also plays a part in the early stages of 

autophagy and endocytosis (Maruzs et al., 2015). 

 The cargo-recognition complex (CRC) trimer (also referred to as the cargo-

selective complex, or CSC), composed of Vps26, Vps29, and Vps35, is responsible 

for recognizing and binding to trafficking receptors (Williams et al., 2017).  Vps35 is 

the largest protein in the CRC trimer and functions as the scaffold for which Vps29 
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can bind to its C-terminal end and Vps26 can bind to its N-terminal end (Swarbrick et 

al., 2011, Williams et al., 2017).   

 The SNX-BAR dimer, made up of sorting nexin proteins Snx1 or Snx2 and 

Snx5 or Snx6, induces membrane remodulation and facilitates the stabilization of 

endosomal tubules.  The sorting nexin proteins associated with the retromer complex 

are characterized by a phox homology (PX) domain, with a high affinity for binding 

phosphatidylinositol phosphate membrane lipids, and a Bin/Amphiphysin/Rvs (BAR) 

domain, which functions in recruitment to the membrane and stabilization of 

tubulation (Collins, 2008). 

 

 

Figure 2. A schematic representation of the retromer complex.  Made up of 

Vps26, Vps29, and Vps35, the cargo-recognition complex (CRC)–or cargo-selective 
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trimer, as its termed here–interacts with the Snx-BAR dimer largely through the 

cooperation of Vps35 and Vps29.  Vps35 plays an important role in recruitment of 

the CRC to the endosomal membrane while PI3P–or Ptdln3-P, in this figure–

functions as the binding site for the PX domain of the Snx-BAR dimer, allowing for 

separate recruitment to the membrane.  Together making up the retromer complex, 

the CRC and the Snx-BAR dimer allow for endosome-to-Golgi retrieval of cargo 

molecules and other proteins (Figure courtesy of Harbour & Seaman, 2011). 

 

 

 To transport cargo, the CRC must first be recruited to the endosomal 

membrane.  It has been shown that Rab7a and Snx3 are required for recruitment of 

the cargo-recognition complex, as the loss of either causes a displacement of the CRC 

(Vardarajan et al., 2012).  It has further been shown that Snx3 interacts specifically 

with the Vps35 subunit of the CRC, suggesting that Vps35 is integral for correct 

recruitment of the CRC to the endosomal membrane and, therefore, for proper cargo 

trafficking (Seaman, 2012).  The Snx-BAR dimer is separately recruited to the 

membrane of early endosomes and is able to interact with the CRC through its PX 

domain, which binds to phosphatidylinositol 3-phosphate (PI3P) present on the 

membrane (Williams et al., 2017).  Produced by the phosphoinositide 3-kinase 

(PI3K), Vps34, PI3P is able to recruit Rab7a and Snx proteins.  As the connection 

between the CRC and Snx-BAR dimer is not very strong, Rab7a is important in 

strengthening their association with the endosomal membrane.   

 Another important action of the retromer is its interaction with the Wiskott-

Aldrich Syndrome Protein and SCAR Homolog (WASH) complex.  Composed of 

Wash1, Fam21, CCDC53, KIAA1033/SWIP, and strumpellin, the WASH complex 

plays a role in endosomal sorting, as it is a nucleation-promoting factor and regulates 

the generation of actin filaments and networks (Seaman et al., 2013, Wang et al., 

2014).  Shown in Figure 3, the interaction of Vps35 of the retromer complex with the 
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unstructured tail domain of Fam21 of the WASH complex allows for recruitment of 

the WASH complex to the endosomal membrane so as to function in endosome-to-

cell surface retrieval and trafficking of cellular cargo and receptors.  At the 

membrane, the WASH complex promotes the formation of actin domains which act 

to restrict retromer cargo proteins and thereby concentrate cargo, such as the cation-

independent mannose 6-phosphate receptor (CIMPR), in specific areas for endosome-

to-TGN retrieval (Seaman, 2012, Williams et al., 2017).  The WASH complex can 

further interact with Snx27 and the retromer to regulate the endosome-to-plasma 

membrane transport of ß2-adrenergic receptor (ß2AR), which mediates smooth 

muscle relaxation, and the glucose transport 1 (GLUT1), which facilities glucose 

transport to the brain (Williams et al., 2017).  
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Figure 3. A schematic representation of the interaction of the retromer complex 

and WASH complex and their role in endosomal sorting.  The WASH complex, 

responsible for regulating actin filament branching, associates with Vps35 of the 

cargo-recognition complex through the ‘tail’ of Fam21.  The CRC, WASH complex, 

and Snx27 facilitate the endosome-to-cell surface retrieval of ß2-adranergic receptor.  

The WASH complex also plays a role in the endosome-to-Golgi retrieval of CIMPR, 

a retromer cargo protein (Figure courtesy of Seaman, 2012). 
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e) Leucine-rich repeat kinase 2 (LRRK2) mutations induce PD 

 

Mutations to the leucine-rich repeat kinase 2 (LRRK2) gene are the most common 

cause of late-onset autosomal dominant PD.  Identified LRRK2 mutations, including 

N1437H, R1441C/G/H, Y1699C, G2019S, and I2020T, are responsible for more 

cases of familial PD than any other implicated genes (Williams et al., 2017).  The 

mechanisms by which these mutations induce PD pathology, however, remains 

unclear. 

LRRK2 is a large (2527 amino acid) multi-domain protein characterized by its 

carboxy-terminal of Ras of complex (COR) sequence which links its Ras of complex 

(Roc) G-domain and kinase domains.  Due to its distinct domains, LRRK2 is able to 

catalyze phosphorylation through its kinase domain and function in GTP-GDP 

hydrolysis through its ROC-GTPase domain (Li et al., 2014).  While many of its roles 

remain unknown, LRRK2 is expressed in most cells, pointing to its involvement in a 

variety of basic cellular functions.  Further studies have implicated LRRK2 in 

endolysosomal trafficking, the transport and sorting of proteins, and synaptic vesicle 

trafficking (Linhart et al., 2014).  This was supported by evidence that LRRK2 

mutations cause defects in both lysosomal protein degradation and macroautophagy 

(MacLeod et al., 2013).  Alegre-Abarrategui et al. procured direct evidence for a 

functional relationship of LRRK2 and autophagy by demonstrating that the LRRK2 

mutation caused accumulation of autophagic vesicles, a hallmark pathological feature 

of neurodegenerative disorders, especially PD (2009).  The knowledge that both 

Vps35 and LRRK2 mutations recapitulate key pathological features of 

neurodegenerative disorders, including the impairment of endosomal cargo 
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trafficking and sorting as well as the disruption of autophagy, lends itself to the idea 

that Vps35 and LRRK2 may operate in a common pathway and interact to induce PD 

pathology. 
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III. METHODS 

 
Drosophila melanogaster models are typically used to study the effects of the Vps35 

(D620N) and LRRK2 (I2020T) mutations and their interactions in causing PD 

symptoms.  While many genetic screens can allow for identification of influential 

genetic mutations as well as components in pathways of interest, phenotypic analyses 

are just as important.  A climbing assay and eye phenotype analysis can provide 

information about the presence of key pathological features of PD. 

 

a) Climbing Assay 

 

A reliable and cost-effective system, the climbing assay is used to analyze the 

locomotor defects of the PD-linked mutant flies.  This climbing assay is effective as it 

capitalizes on negative geotaxis, or the innate escape response of Drosophila to 

ascend the walls of a cylinder after being forced to the bottom.   

The day before the climbing assay, 10 female flies are collected using CO2 

anesthetization methods under a microscope and placed in a 3.8 cm x 10 cm 

collection vial containing a cornmeal food mixture.  Left in an incubator kept at 29ºC 

overnight, the flies were then transferred to an empty collection vial that had a 

horizontal line drawn on it 8 cm from the bottom and which was closed off with a 

cotton ball to prevent flies from escaping.  The vial was then tapped three times on 

the table surface so as to displace the flies to the bottom of the vial.  The number of 

flies that crossed the horizontal line after 10 seconds and then 20 seconds was 

recorded and filmed with a camera placed about 10 inches away from the vial.  This 
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climbing assay was performed on wild-type flies without any mutations (DDC / + ; + 

/ +), flies expressing the wild-type Vps35 (DDC / + ; wtVPS35 / +), flies expressing 

the Vps35 (D620N) mutation (DDC / + ; D620N / +), flies expressing the LRRK2 

(I2020T) mutation (DDC / +; + / LRRK2), flies expressing both the Vps35 (D620N) 

mutation and the LRRK2 (I2020T) mutation (DDC / + ; D620N / LRRK2), and flies 

expressing the wild-type Vps35 and the LRRK2 (I2020T) mutation (DDC / + ; 

wtVPS35 / LRRK2) to examine the effects of only the Vps35 mutation, then only the 

LRRK2 mutation, and then the interplay of the Vps35 wild-type and mutant forms 

with the mutant LRRK2 on locomotor functions in Drosophila.  Climbing ability was 

categorized as normal, impaired, or rescued. 

 

 

Figure 4.  A representation of the climbing assay experimental setup.  The vial, 

with 20 flies, is tapped three times to bring the flies to the bottom of the vial.  As they 
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begin to climb up the vial, the number of flies that cross the red line in 10s and 20s 

are recorded and filmed. 

 

b) Eye Pigmentation Analysis 

 

An eye pigmentation analysis is used to assess the phenotypic effects of 

neurodegeneration.  As previously stated, the photoreceptor neurons of the 

Drosophila compound eye manifest neurodegeneration through pigmentation loss, 

disorganization of bristles and/or ommatidia components (also called the “rough eye” 

phenotype), and the presence of black lesions.  

The GMR-Gal4 system was used to drive the expression of transgenes of 

interest in the Drosophila eye.  The eye pigmentation analysis was assessed in wild-

type flies without any mutations (GMR / + ; + / +), flies expressing the wild-type 

Vps35 (GMR / + ; wtVPS35 / +), flies expressing the Vps35 (D620N) mutation 

(GMR / + ; D620N / +), flies expressing the LRRK2 (I2020T) mutation (GMR / +; + / 

LRRK2), flies expressing both the Vps35 (D620N) mutation and the LRRK2 

(I2020T) mutation (GMR / + ; D620N / LRRK2), and flies expressing the wild-type 

Vps35 and the LRRK2 (I2020T) mutation (GMR / + ; wtVPS35 / LRRK2).  

Pigmentation loss was categorized as none, low, high, or rescued.  A rough eye 

phenotype was noted as glossy or misshapen eyes.  The presence of black lesions was 

also noted. 
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IV. COMPOSITE EXPERIMENTAL FINDINGS 

 

a) Proposed mechanism of mutant Vps35 (D620N)-induced neurodegeneration 

 
The retromer complex is necessary for proper recruitment of the WASH complex to 

the endosomal membrane through the binding of Vps35 to Fam21.  Evidence has 

shown, however, that the expression of the Vps35 (D620N) mutation impairs 

retromer association with the WASH complex, due to a large decrease in affinity of 

mutated Vps35 for Fam21 of the WASH complex (McGough et al., 2014, Zavodszky 

et al., 2014).   

By examining the effect of the Vps35 (D620N) mutation on both the 

endosome-to-TGN transport of CIMPR and the endosome-to-plasma membrane 

transport of GLUT1, McGough et al. found that the mutated Vps35 impaired 

endosome-to-TGN transport but did not affect the endosome-to-plasma membrane 

transport (2014).  Further experiments established that the Vps35 (D620N) does not 

affect the formation of the cargo-recognition complex of the retromer–in that it 

demonstrates an ability to bind to Vps26 and Vps29 with the same affinity and 

thermodynamic properties as wild-type Vps35–nor does it inhibit the endosomal 

localization of Vps35 (Fig 5) (Zavodzsky et al.,2014; Follett et al., 2016).   
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Figure 5. The effect of mutant Vps35 (D620N) on association with proteins of the 

CRC and WASH complex.  Lanes 2 and 4 represent stably transfected and 

transiently transfected fluorescently tagged wild type VPS35, respectively.  Wild type 

Vps35 shows normal association with the CRC proteins Vps26 and Vps29, as well as 

the WASH proteins Strump (strumpellin) and Wash1.  Lanes 3 and 6 represent stably 

transfected and transiently transfected fluorescently tagged mutant Vps35 (D620N), 

respectively.  The D620N mutant shows normal association with the CRC proteins 

Vps26 and Vps29 but shows decreased association with the WASH proteins 

strumpellin and Wash1 (Figure courtesy of Zavodszky et al., 2014). 

 

The impaired association of the retromer with the WASH complex, however, 

disrupts autophagy through abnormal Atg9 localization and trafficking.  Atg9 

normally colocalizes with both Vps35 on sorting endosomes–operating through some 

of the same domains at which the retromer functions–and with the WASH complex 

on endosomes. Impaired WASH recruitment to the endosomal membrane, as a result 

of the Vps35 D620N mutation, thereby perturbs proper trafficking of Atg9 



 25 

(Zavodszky et al., 2014).  Mutant D620N cells show significantly increased abnormal 

colocalization between Atg9 and TGN46, a marker for the TGN (Fig 6).  

 

  

Figure 6. The Vps35 (D620N) mutation impairs proper trafficking and 

localization of ATG9A.  Under normal conditions, ATG9A localizes to the TGN. In 

cells expressing wild-type Vps35, ATG9A showed normal colocalization with the 

TGN marker TGN46.  In cells expressing mutant Vps35 (D620N), ATG9A showed 

significantly increased colocalization with the TGN (Figure courtesy of Zavodszky et 

al., 2014). 

 

 This abnormally localization of Atg to the TGN suggests that Atg9 could be 

trapped in a perinuclear compartment.  Impaired trafficking of Atg disrupts proper 
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autophagosome formation–a deficit similarly observed with other PD-linked 

mutations (Winslow et al., 2010).  In cell lines with mutant Vps35, there is a 

consistently higher percentage of transfected cells with aggregates, demonstrating a 

defect in autophagosome formation and autophagic clearance.  The impaired 

association of retromer with the WASH complex which causes abnormal autophagy 

and a subsequent build-up of toxic protein aggregates and other cellular components 

as a result of the Vps35 (D620N) mutation seems a plausible mechanism by which 

mutant Vps35 induces neurodegeneration (Fig 7).  

 

 

 

Figure 7. A comparative schematic of the downstream effects of wild-type Vps35 

and Vps35 (D620N) mutation.  On the left, wild-type Vps35 allows for correct 

association of the retromer with the WASH complex, leading to proper Atg9 

trafficking and normal autophagy.  With normal autophagy, autophagosomes fuse 

with lysosomes to degrade unwanted proteins.  On the right, the Vps35 (D620N) 

mutation disrupts association of the retromer with the WASH complex, leading to 
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improper Atg9 trafficking and impaired autophagy.  This impaired autophagy 

condition is characterized by impaired autophagosome formation causing a build-up 

of protein aggregates (Figure courtesy of Wang & Bellen, 2015). 
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b) LRRK2-linked neurodegeneration and association with Vps35 

 

LRRK2 mutations recapitulate the fundamental pathological characteristics of 

neurodegenerative diseases.  Ectopic expression of LRRK2 causes substantial loss of 

dopaminergic neurons as well as locomotor defects in Drosophila mutants. 

 To gain a better understanding of the physiological and pathological functions 

of LRRK2 mutations, many groups study transgenic Drosophila models.  Utilizing 

the Drosophila UAS/Gal4 system of targeted transgene expression and selective 

expression of genes allows for generation of transgenic Drosophila models 

overexpressing the human LRRK2 (hLRRK2) with a specific kinase domain mutation 

of isoleucine to threonine at residue 2020 (I2020T).   

Through examination of four posterior paired dopaminergic clusters 

(dorsolateral posterior protocerebral (PPL1), lateral posterior porotocerebral (PPL2) 

and two dorsomedial posterior protocerebral clusters (PPM1/2 and PPM3), 

Venderova et al. found that expression of LRRK2 mutations, under the control of the 

tyrosine hydroxylase (TH) gene promotor, causes a loss of dopaminergic neurons (Fig 

7) (2009). 
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Figure 8. Schematic representation of the fly brain, highlighting the four posterior 

paired dopaminergic clusters: PPL1, PPL2, PPM1/2, and PPM3 (Figure courtesy of 

Venderova et al., 2009).  

 

 

While the dopaminergic clusters of control fly brains did not show any 

significant changes in number of morphology of neurons during aging, analysis of 

mutant fly brains revealed loss of dopaminergic neurons most noticeably in the 

PPM1/2 cluster and the PPL1 cluster, with the most prominent loss of neurons seen in 

flies expressing the LRRK2 (I2020T) mutation (Fig 9). 
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Figure 9. Mutant LRRK2 expression induces dopaminergic neuron death.  The 

number of TH positive dopaminergic neurons was significantly lower after 10 days in 

the two dorsomedial posterior protocerebral clusters (PPM1/2) and the dorsolateral 

posterior protocerebral cluster (PPL1) of transgenic flies expressing the LRRK2 

12020T mutation (Figure courtesy of Venderova et al., 2009). 

 

LRRK2 mutations were also found to impair Drosophila locomotor activity.  

Using the climbing assay technique, locomotor defects were quantified through the 

number of flies that crossed the horizontal line on the vial within a certain amount of 

time. While the effects of the mutant LRRK2 were complex as a result of the age of 

the fly, climbing ability in all mutant lines was impaired, with the greatest locomotor 

deficit seen in LRRK2 (I2020T) mutants (Fig 10) (Venderova et al., 2009).  
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Figure 10. Mutant LRRK2 expression causes locomotor defects. A climbing assay 

was used to analyze the effects of the LRRK2 mutations on locomotor activity.  Flies 

with the mutant LRRK2 I2020T exhibited the greatest locomotor deficit, quantified 

through the number of flies that crossed the horizontal line in 10 seconds in a 

climbing assay (Figure courtesy of Venderova et al., 2009). 

 

While younger transgenic flies were able to climb as well as non-mutant 

control flies, their performance deteriorated at a much faster rate than the control flies 

(Liu et al., 2008).  

LRRK2 mutations were further shown to cause retinal degeneration, as loss of 

pigmentation, disorganization of the eye structure, and black lesions in Drosophila 

eyes phenotypically manifested the neurodegenerative effects of the mutations.  

Ectopic expression of the LRRK2 (I2020T) mutation in the fly eye caused loss of 

pigmentation and, in some cases led to the development of black lesions.  Further, 

sectional examination of the ommatidial structure demonstrated disruption of the 

well-structured photoreceptor arrangement in flies expressing the LRRK2 (I2020T) 

mutation.  With glossy and rough eye surfaces in addition to disorganization of the 
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bristles surrounding each photoreceptor neuron, flies with the LRRK2 (I2020T) 

mutation ultimately displayed sever neurodegenerative effects (Fig 11) (Venderova et 

al., 2009).   

 

Figure 11. Mutant LRRK2 expression causes pigmentation loss and structural 

abnormalities in the Drosophila eye.  Wild-type Drosophila eyes exhibit a red 
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pigmentation and display a highly organized structure of mechanosensory 

interommatidial bristles.  Transgenic Drosophila eyes exhibit pigmentation loss as 

well as a disorganization of bristles (Figure courtesy of Venderova et al., 2009). 

 

 

Specifically, with experimental evidence to suggest that association of wild- 

Vps35 is two-fold in their involvement with the retromer and endosomal trafficking 

and sorting as well as their causal links to PD pathology, a focus on the interactions 

of Vps35 and LRRK2 and the downstream effect could elucidate the molecular 

mechanisms of neurodegenerative disease pathogenesis.  
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c) Wild-type Vps35 rescues neurodegenerative effects of PD-linked LRRK2 mutation  

 

Recent evidence has shown that expression of wild-type Vps35 rescues the PD-

associated characteristics of flies expressing mutant LRRK2, demonstrating that 

Vps35 and LRRK2 operate within common cellular pathways and genetically interact 

to produce pathological features of PD.    

 As previously shown, the expression of the LRRK2 (I2020T) mutation causes 

neurodegeneration of photoreceptor neurons in the Drosophila eye, manifest through 

pigmentation loss, structural defects, and the appearance of black lesions.  However, 

overexpression of Vps35 completely rescued the eye phenotype of LRRK2 mutant 

flies.  When Vps35 was expressed, none of the flies with the mutant LRRK2 

exhibited black lesions.  Expressing Vps35 also ameliorated some of the pigmentation 

loss seen in flies with the LRRK2 (12020T) mutation, as there was less yellow 

coloration compared to flies only expressing the LRRK2 mutation (Fig 12) (Linhart et 

al., 2014).  
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Figure 12. Eye-specific overexpression of wild-type Vps35 rescues the black 

lesion phenotype caused by the LRRK2 (I2020T) mutation.  The use of the GMR 

promoter allowed for targeted expression of transgenes in the eye.  The Drosophila 

eye displays black lesions when only the mutant LRRK2 is expressed.  When wild-

type Vps35 is expressed with the mutant LRRK2, there are no black lesions (Figure 

courtesy of Linhart et al., 2014). 

 

 Expression of the LRRK2 (I2020T) mutation also causes locomotor defects.  

Transgenic flies with the LRRK2 mutation expressed in dopaminergic neurons had 

significant locomotor defects–manifest through their impaired climbing ability.  

However, overexpression of Vps35 rescued the locomotor defects caused by the 

LRRK2 (I2020T) mutation, as a larger percent of flies expressing wild-type Vps35 

and mutant LRRK2 were able to cross the line in 5 seconds as compared to transgenic 

flies not expressing the wild-type Vps35 (Fig 13) (Linhart et al., 2014). 

 

 
 

Figure 13. Overexpression of wild-type Vps35 rescues the locomotor defects 

caused by mutant LRRK2 I2020T. The use of the DDC driver allowed for targeted 
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expression of the transgenes in dopaminergic neurons.  Flies expressing the LRRK2 

mutation had a statistically significant lower percentage of flies cross the line in 5 

seconds compared to wild-type control flies in a climbing assay.  Flies expressing the 

wild-type Vps35 and LRRK2 mutation had a statistically significant increase in 

percentage of flies that crossed the line in 5 seconds compared to flies only 

expression the LRRK2 mutation (Figure courtesy of Linhart et al., 2014). 
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V. IMPLICATIONS AND FUTURE DIRECTIONS 

 

While the molecular mechanisms and cellular pathways underlying Parkinson’s 

disease pathology are still not fully understood, evidence of a functional interaction 

between Vps35 and LRRK2 provides immense insight into the ways PD-linked genes 

may interplay within a common pathway and also strongly implicates the retromer 

complex in the progression of neurodegenerative diseases, especially PD.   

Continued research in the field of Parkinson’s disease is crucial given the 

disparity between effective treatments for neurodegenerative disorders and the 

increasing prevalence of these diseases as a greater percentage of the population ages.  

Emerging evidence pointing to the integral role of the retromer in PD pathology has 

allowed for a greater focus on its cellular pathways and molecular mechanisms.  

While the specific Vps35 (D620N) mutation has been implicated in PD pathology as 

a result of its disruption of WASH and retromer association and impairment of proper 

autophagy, both the retromer and WASH complexes have many other components 

that also play important roles in endosomal sorting and recycling.   

Preliminary data has shown links between PD-like pathology and mutations in 

various components of the retromer and WASH complexes, including the receptor-

mediated endocytosis-8 (RME-8), the family with sequence similarity 21 (FAM21), 

and the WAS protein family homolog 1 (WASH1).  Broader research into the role 

these genes play in the retromer and WASH complexes in addition to more focused 

research into the ways their variants associate with PD progression could allow for a 

better insight into the molecular mechanisms of PD pathogenesis.   
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Further research into the functional relationship between Vps35 and LRRK2 

could also promise exciting findings.  A more robust understanding of the ways in 

which overexpression of wild-type Vps35 ameliorates PD pathologies, as well as 

research into the plausible ability of other genes to rescue detrimental symptoms, 

could point toward certain genes as potential targets for therapeutic treatments of PD. 
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