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Abstract	  

Shorebirds are increasingly threatened by introduced predators, invasive grasses, and human 

disturbance. Matrix models can be used to predict population growth and assess management 

options. The Pacific coast population of the western snowy plover, Charadrius alexandrinus 

nivosus, is listed as threatened under the Endangered Species Act, largely due to high rates of 

nest predation. A matrix model for the entire Pacific coast metapopulation of western snowy 

plovers was published in 1999 by Nur et al., but population growth has not been 

comprehensively reassessed since, even after development of a recovery plan (USFWS 2007) 

and extensive management intervention. I built and analyzed a matrix model for one 

subpopulation of western snowy plovers previously considered a sink habitat—Recovery 

Unit 2 in northern California, comprising Humboldt, Mendocino, and Del Norte counties. 

Based on my model, growth rate (lambda) is 1.05—countering a previous finding that 

Recovery Unit 2 is a sink—compared to 1.036 for the Nur et al. (1999) metapopulation 

model. I found that sensitivities and elasticities for each vital rate were similar between the 

two models; adult survival had the greatest effect on lambda, followed by juvenile survival, 

and fecundity had the least effect. Even though fecundity was lower for my model than Nur 

et al.’s (1999), adult survival was higher, which had a larger impact on population growth. In 

terms of management strategies, predator control, habitat restoration, and restriction of 

human activity should continue as outlined in the recovery plan, so as to continue the trend of 

positive growth for the coastal breeding population. Future directions involve performing 

population viability analyses for other recovery units to reassess the state of western snowy 

plovers compared to 1999. 
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Introduction 

 Shorebirds are known for extensive breeding and wintering ranges, and therefore 

dependence on networks of beaches, rocky shorelines, and estuaries that tend to be limited in 

size and distribution (Drut and Buchanan 2000). Due to this dependence on limited habitats, 

they are threatened by any habitat loss or degradation. Shorebirds, from plovers to 

oystercatchers to sandpipers, have been witnessing an increase in habitat loss and other 

threats to their populations in recent years, including increased nest predation by subsidized 

predators, the introduction of invasive grasses, and human disturbance (Hickey et al. 2003). 

To assess the severity of these problems and evaluate whether different management options 

are useful, a variety of demographic approaches could be implemented that measure and 

predict population growth under different conditions. One of the best tools to make such 

measurements and assessments is a matrix model. 

 

Matrix Models in Conservation Ecology 

Matrix models are a tool, common in conservation ecology, for predicting population 

growth rate and determining which demographic factors have the greatest effect on that rate. 

These demographic factors are referred to as vital rates, which quantify survivorship and 

reproduction for different life history stages—for example, juvenile survivorship, adult 

survivorship, and fecundity (reproductive rate). Vital rates are the parameters comprising 

matrix models. Using a matrix model, one can determine the contribution of each age or 

stage class to the persistence of the population, by characterizing a population’s growth 

rate—generally referred to as lambda, 𝜆—as a function of individual vital rates for each age 

or stage class (Stearns 1992). A matrix model is an ideal method for studies of population 
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viability because it allows one to determine a multitude of information about a population. 

While one could use a series of population counts over time to determine growth rate and to 

project future population sizes, this method cannot inform the researcher of the relative 

contribution of different age or stage classes. Matrix models, on the other hand, use age-

specific survival and fecundities, and so allow one to determine how particular life history 

stages and processes contribute to population growth. 

After a matrix model has been developed, the stable age distribution and reproductive 

values can be determined. An age or stage distribution represents the distribution of 

individuals among the various life stages within a population—the stable age distribution 

represents the convergence on a stable proportion of individuals in each age class once the 

population reaches exponential growth (Stearns 1992). Reproductive values represent an 

individual’s (or entire age class’s) expected contribution to population growth, both through 

current and future reproduction (Stearns 1992). In addition, sensitivity and elasticity analyses 

can be performed to determine which vital rates have the largest influence on population 

growth. Sensitivity (equation a) is the absolute change in lambda given an absolute change in 

a vital rate, while elasticity (equation b) is the proportional change in lambda given a 

proportional change in a vital rate (Stearns 1992).  

(a) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦   =    !!
!  !!"

         (b) 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =
!!
!

!!!"
!!"

 

 The stable age distribution, reproductive values, sensitivities, and elasticities are 

useful for informing management decisions about endangered and threatened species because 

they indicate which life history stage should contain the greatest proportion of individuals, 

which stages produce the most offspring, and how a change in a single vital rate could 
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influence population trajectory. Matrix model analysis has been used for a variety of 

shorebirds (Hitchcock and Gratto-Trevor 1997; Nur et al. 1999). In this thesis, I describe a 

matrix model I created to analyze a currently threatened population of the western snowy 

plover (Charadrius alexandrinus nivosus).  

 

Study Species: Western Snowy Plover 

 
Figure 1. Western snowy plovers on Morro Strand State Beach, Morro Bay, CA (Photo: 
Mike Baird, flickr.bairdphotos.com). 

 

The western snowy plover (WSP), Charadrius alexandrinus nivosus, is a small 

shorebird with populations extending from Washington to Baja California (USFWS 2007). 

The Pacific coast population, defined as the birds that nest adjacent to tidal waters of the 

Pacific Ocean, was federally listed by the United States Fish and Wildlife Service as 

threatened under the Endangered Species Act in 1993 (U.S. Dept. of Interior 1993), and 

remains listed currently (USFWS 2007). Regionally, it is designated as a California Species 

of Special Concern, it is listed as endangered in Washington, and it is listed as threatened in 

Oregon (USFWS 2007). This subspecies is threatened particularly because nesting season 

extends from March through September, which corresponds to the greatest human use of 

beaches during the year, putting plover breeding sites at higher risk (USFWS 2007). Other 
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causes of habitat degradation, and therefore threat to the species, include human disturbance 

along beaches, urban development, introduced beachgrass, and expanding predator 

populations (Hickey et al. 2003; USFWS 2007). As birds that nest primarily along sandy, 

dune-backed beaches, the introduction of European beachgrass (Ammophila arenaria) is 

contributing to a loss in dune habitat (Hickey et al. 2003). Natural predators to WSP include 

falcons, raccoons, coyotes, and owls (Audubon). In addition, human activity has led to 

greater predation by gulls, crows, ravens, red foxes, coyotes, feral cats, skunks, raccoons, and 

domestic dogs—generalist species whose populations are subsidized by human disturbance, 

such as food left on beaches (Audubon; National Park Service). Predation lowers nesting 

success by causing adults to abandon nests and expend energy that could have been used to 

maintain nests (Audubon). 

Critical habitat for the Pacific coast population has been designated and a recovery 

plan was published, which separates this population into six subpopulations, referred to as 

recovery units (USFWS 2007). The recovery plan’s criteria for delisting include a target of at 

least 3000 breeding adults for 10 years for the entire Pacific coast with specifications for 

each recovery unit, a yearly average productivity of at least 1 fledged chick per male in each 

recovery unit for 5 consecutive years, and mechanisms developed to maintain the specified 

population sizes and average productivity. In general, adult survival is considered the vital 

rate that has the strongest influence on population growth (Hitchcock and Gratto-Trevor 

1997, Saether and Bakke 2000, Sandercock 2003; cited in Colwell et al. 2013). However, the 

recovery plan issued by USFWS focuses largely on increasing reproductive success, which 

has in some cases been found to decrease adult survival, potentially due to increased 

energetic stress (Colwell et al. 2013).  
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Predator management has been identified as a key strategy to recover the Pacific 

coast population. Particularly in Humboldt County, a suggested management action is 

ameliorating the effects of predation by ravens to increase plover productivity (Burrell 2010). 

Thus far, attempts at predator management have had mixed results, particularly the use of 

nest exclosures. Nest exclosures are defined as mesh fences that surround a snowy plover 

nest and act to keep away predators, both mammalian and avian (Lauten et al. 2015). Nest 

exclosures on the Pacific coast have been effective by increasing hatching success; however, 

they have also resulted in increased adult mortality. In particular, the reproductive success of 

a population was monitored in Monterey Bay with and without predator management from 

1984-1999. The predator management was shown to increase hatching success and number 

of chicks hatched per male, but not fledging success or number of chicks fledged per male 

(Neuman et al. 2004). Similarly, plover nests were monitored in coastal Oregon from 1990–

2009 to examine the effectiveness of a variety of nest exclosures, as well as removal of 

invasive grasses; the authors found that these strategies resulted in the short-term benefit of 

increased nesting success, but they could not determine how improved nest success 

contributes to population growth (Dinsmore et al. 2014). According to life history theory, a 

tradeoff exists between reproductive effort and survival (Stearns 1992), so any management 

efforts to increase productivity might actually compromise population growth. However, 

Colwell et al. (2013) studied a 10-year plover data set which indicated that nest exclosures 

would not compromise survival in the following year. The authors warned, however, that 

such predator management practices may still be detrimental if higher productivity does not 

result in higher per capita fledging success, or if the practice directly results in adult 

mortality.  
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My analysis focused on Recovery Unit 2 (RU2), a coastal northern California 

subpopulation comprising Humboldt, Del Norte, and Mendocino counties (Colwell et al. 

2013) (Figure 2). Out of the 3000 breeding adults needed from the entire Pacific coast 

population to de-list the species, 150 individuals are needed from RU2 specifically. The 

recovery plan outlines management activities needed in WSP breeding and wintering 

locations, such as management of vegetation, restriction of vehicles and pets, and addition of 

exclosures and fencing when breeding is observed (USFWS 2007). Subsidized predation by 

the Common Raven (Corvus corax) is the most important ecological factor limiting the 

Humboldt County portion of the population (where the majority of nesting takes place) 

(Burrell 2010). Previous studies indicate this subpopulation is a sink (lambda<1) if the rest of 

the recovery units are considered source populations as part of a greater Pacific coast 

metapopulation (Eberhart-Phillips et al. 2014; Mullin et al. 2010). Eberhart-Phillips et al. 

(2014) conducted a population viability analysis by simulating stochastic growth rate of the 

northern California population. They argue that the WSP recovery objectives do not take 

source-sink dynamics into account, leading to unrealistic criteria for the sink population so 

that the entire metapopulation is restricted from being delisted, even if the source populations 

were to meet delisting requirements. RU2 has been considered a sink due to its reliance on 

immigration, though Eberhart-Phillips et al. (2014) found that lethal predator removal and 

reduction of human disturbance may reduce reliance on immigration by increasing 

permanent resident numbers. However, they were cautionary about use of nest exclosures as 

a management strategy due to their potential to compromise adult survival. The current status 

of RU2 WSP, according to a recent report by Feucht et al. (2016), is a population of around 

72 breeding adults, roughly halfway to the recovery objective of 150 breeding adults in RU2. 
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However, it is unclear whether continued increases toward the recovery goals are likely. If 

RU2 is actually a sink, then immigration from other populations is the only factor allowing 

increased numbers; this would make it difficult to ever meet the recovery objectives, as 

Eberhart-Phillips argue. If previous conclusions about the sink status of RU2 are not correct, 

then this would suggest a greater potential for recovery. 

The goals of this paper are to (1) estimate lambda for RU2 of the Pacific coast 

population of WSP, to (2) compare sensitivities and elasticities of the RU2 model to the Nur 

et al. (1999) model of the entire Pacific coast metapopulation, to (3) determine how 

uncertainty in vital rates plays a role in model output and predictions, and to (4) in light of 

these analyses, evaluate the existing USFWS recovery plan for the northern California 

subpopulation. 
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Methods 

Study Site 

 
Figure 2. Distribution of WSP recovery units (baseline model was 
based on RUs 1–6; my model was based on RU2, highlighted 
above) (USFWS 2007). 
 

 

Data Collection and Matrix Construction 

My matrix follows the construction of the model used in a previous population 

viability analysis conducted by Nur et al. (1999) (hereafter “baseline model”). This study was 
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a metapopulation analysis of the entire Pacific coast population of WSP, in which the authors 

simulated a variety of scenarios and simulations that incorporated dispersal and catastrophic 

stochasticity. I have included the vital rates used for their deterministic model in Table 1. In 

this model, a Leslie matrix is divided into age classes from years 1 to 20—this technique 

seeks to eliminate the probability of adult survival past an age feasible for this species. The 

model also follows a pre-breeding census and assumes that all individuals one year of age 

and older are breeders. In effect, the matrix itself is structured by age, while the vital rate 

inputs are stage-based—specified for juveniles and adults. Following the convention of 

previous snowy plover studies, the vital rates are presented in terms of males. According to 

Nur et al. (1999) and Warriner et al. (1986), demographic parameters can be estimated with 

greater certainty for males than females, and male availability is considered to limit 

reproductive success since they are responsible for the majority of post-hatching parental 

care. 

Table 1. Vital rates used to produce the baseline matrix from Nur et al. (1999). 

Vital Rate Value 
Juvenile Survivorship 0.5 

Fecundity 1.105 
Adult Survivorship 0.76 

  
 

The vital rates for my matrix came from a variety of sources, including a Colwell et 

al. (2013) study of a 10-year data set of the northern California population, Feucht et al. 

(2016), and Nur et al. (1999). The exact values for the vital rates implemented in the model 

are outlined in Table 2. Juvenile survivorship, which represents survival from fledging to one 

year (breeding age), was given a value identical to the Nur et al. (1999) model because no 
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estimates were available in the more recent studies. Fecundity, which represents the number 

of fledglings per male, was determined using an appendix on plover breeding from Feucht et 

al. (2016)—by dividing the average number of chicks fledged in RU2 from 2001-2016 by the 

average number of males in the population for those years. Adult survivorship was 

determined by extracting points from the apparent survival graph for adults from the Colwell 

et al. (2013) study. I used WebPlotDigitizer (Rohatgi 2016) to extract the values of the points 

representing apparent survival of males from 2001–2010, and then I averaged these values 

for use in my matrix. Table 2 presents fecundity and adult survival with 95% confidence 

intervals. 

Table 2. Vital rates used to produce my age matrix. 

 

Vital Rate Value Source 
Juvenile Survivorship 0.50 Nur et al., 1999 

Fecundity 0.85 + 0.15 Feucht et al., 2016 
Adult Survivorship 0.84 + 0.069 Colwell et al., 2013 

   
 

 As the framework by which I structured my own matrix, the baseline model served as 

a source to which I could compare my resulting lambda values and sensitivity analyses. The 

results of this study also served as the basis for the recovery criteria proposed by USFWS, so 

in this respect it is a useful tool to explore how management strategies have affected 

subpopulations in the past 15 or so years. 

Moving across the matrix rows (Figure 3), the adult (1–20) to one-year-old transition 

is a function of fecundity (chicks fledged per male) multiplied by juvenile survivorship 

(survival from the point of fledging to one year), multiplied by a 0.5 sex ratio (equation c). 

(c)                           𝐴𝑑𝑢𝑙𝑡  𝑡𝑜  𝑜𝑛𝑒  𝑦𝑒𝑎𝑟  𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 =   𝑆! ∗ 𝐹 ∗ 𝑠𝑒𝑥  𝑟𝑎𝑡𝑖𝑜 
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Adult survival is the only other value included in the matrix, accounting for the transition 

from one year to the next (1–2, 2–3,…,19–20). As mentioned above, the matrix is divided by 

years up to 20 to reduce the possibility of adults surviving past a feasible age in the model. 

 

Figure 3. Age matrix for Recovery Unit 2 of the western snowy plover. 

 

Calculating Lambda, Sensitivity, and Elasticity 

After the matrices were constructed, the dominant eigenvalue and eigenvectors were 

calculated in order to determine lambda, reproductive values of each age class, and the stable 

age distribution for the RU2 population. The lambda value from my matrix was compared 

with lambda from the baseline model to determine how much they differed. Then, to simply 

compare the sensitivities of the three vital rates in my model to the sensitivities in the 

baseline model, I ran simulations in R version 3.2.3 in which each rate was altered, one at a 

time, by a fixed value of 0.01. The corresponding absolute change in lambda was determined, 

and the sensitivities of each vital rate were compared. I conducted the same comparison with 

elasticities of the three vital rates in both models by running simulations in which each rate 

was lowered, one at a time, by one percent. The corresponding proportional change in 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 
2 0.84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0.84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0.84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0.84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0.84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0.84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0.84 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0.84 0 0 0 0 0 0 0 0 0 0 0 0 
10 0 0 0 0 0 0 0 0 0.84 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0.84 0 0 0 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 0.84 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0.84 0 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0.84 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0.84 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.84 0 0 0 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.84 0 0 0 0 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.84 0 0 0 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.84 0 0 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.84 0 
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lambda was determined, and the elasticities of each vital rate were compared. By doing so, I 

could determine how my prediction of population growth rate might change given a slightly 

different value for juvenile or adult survival. 

 

The Full Relationship Between Vital Rates and Lambda 

Next, because there was uncertainty surrounding my values both for adult survival 

and especially juvenile survival, I examined the full relationship between vital rates and 

lambda. To do so, I ran simulations in R that systematically varied a single vital rate, either 

juvenile survival or adult survival, from 0.05–1 by increments of 0.05 while holding the other 

rates constant (see Appendix B for R code). Fecundity was varied from 0.1–2 by increments 

of 0.1, which is more in line with the potential range of reproductive rate. Based on these 

simulations, I determined the full impact of each individual vital rate on lambda, since 

sensitivities and elasticities only indicate the effects of very small changes in vital rates.  

 

Results 

Lambda, Reproductive Values, and Stable Age Distribution 

 The initial vital rates used to construct the WSP RU2 matrix resulted in a positive 

population growth rate (Table 3). 
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Table 3.  Comparison of lambda for my matrix, the baseline, and a stable population. 

Population Lambda 

RU2 Model 1.050 

Baseline Model 1.036 

Stable 1.000 

  

Reproductive values for the RU2 model decreased as life stages progressed, in line 

with the adult-only matrix in which every age class is capable of reproduction—0.26 for one-

year-olds, and 0.057 for 20-year-olds (Figure 4).  

 
Figure 4. Reproductive values by age class for WSP in RU2 (values shown 
are absolute values). 

 

The stable age distribution, based on my matrix parameters, indicates one-year-olds as the 

highest proportion of the population, with proportion decreasing exponentially as adults age 

(Figure 5). 
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Figure 5. Stable age distribution for WSP RU2 adults. 

 

Sensitivities and Elasticities 

  The sensitivities followed the same general trend for my model and 

the baseline model. That is, an absolute change in adult survival produced the 

largest absolute change in lambda, followed by juvenile survival, and 

fecundity had the lowest sensitivity (Figures 6, A-1–A-3). 

0	  

0.02	  

0.04	  

0.06	  

0.08	  

0.1	  

0.12	  

0.14	  

0.16	  

0.18	  

0.2	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	   17	   18	   19	   20	  

Pr
op

or
)o

n	  
of
	  In

di
vi
du

al
s	  

Age	  Class	  



 18 

 
Figure 6. Sensitivities for juvenile survival, fecundity, and adult survival of 
RU2 compared to the baseline model when each vital rate is altered by 0.01. 

 

 In terms of elasticity, juvenile survival and fecundity were identical to each other, 

both in my model and the baseline, due to the structure of the matrix. Because juvenile 

survival and fecundity are parameters in the same matrix transitions (adult to one year), a 

proportional change in this transition means that both vital rates produce the same 

proportional change in lambda. Adult survival had an elasticity roughly three times larger 

than the other two vital rates, in line with the general understanding that adult survival is the 

vital rate with the largest influence on population growth (Colwell et al. 2013). In addition, 

for each vital rate, elasticity was slightly lower in my model than in the baseline (Figures 7, 

A-4–A-6). 
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Figure 7. Elasticities for juvenile survival, fecundity, and adult survival of 
RU2 compared to the baseline model when each vital rate is lowered by 
one percent. 

 

The Full Relationship Between Vital Rates and Lambda 

 For my WSP RU2 model, varying juvenile survivorship from 0.05 to 1 resulted in 

lambda ranging from 0.79 to 1.27. Juvenile survivorship was the most uncertain vital rate in 

the model because data was not available for my population. While I used 0.5 as juvenile 

survival for my matrix, this vital rate could decrease to at least 0.39 before lambda would fall 

below 1 (Figure 8). 
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Figure 8. The effect of varying juvenile survival on lambda (black=0.5, 
the value used in my matrix and the baseline; red=0.39, the lowest 
value juvenile survival could reach and maintain a stable lambda). 

 

 Varying fecundity from 0.1 to 2 resulted in lambda ranging from 0.80 to 1.34. While 

this vital rate is lower in my model than the baseline, even the value for the lower 95% 

confidence interval results in a lambda greater than 1 (Figure 9). 
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Figure 9. The effect of varying fecundity on lambda (black=0.85, the 
value used in my matrix; red=95% confidence intervals surrounding the 
value used in my matrix; blue=1.105, the value used in the baseline 
matrix). 

 

Varying adult survival from 0.05 to 1 while the other rates were held constant 

resulted in lambda ranging from 0.26 (when adult survival was 0.05) to 1.21 (when adult 

survival was 1). The lower 95% CI of adult survival for my matrix was larger than adult 

survival in the baseline matrix. This low estimate of adult survival resulted in a negative 

growth rate (lambda=0.98), while the average and high estimate of adult survival resulted in 

lambda greater than 1 (Figure 10). It is interesting to note that the value for adult survival in 

the baseline matrix results in a negative growth rate when paired with the other vital rates 

from the RU2 model, whereas the same value for adult survival resulted in positive growth 

when paired with the other vital rates from the baseline matrix. 
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Figure 10. The effect of varying adult survival on lambda (black=0.84, 
the value used in my matrix; red=95% confidence intervals surrounding 
the value used in my matrix; blue=0.76, the value used in the baseline 
matrix). 

 

Discussion  

Lambda, Reproductive Values, and Stable Age Distribution 

The projected population growth rate of WSP in RU2 was estimated at 1.05, so the 

population is slightly increasing. In fact, my model output counters previous findings that 

RU2 is a sink habitat. There is still the possibility that this subpopulation could be a sink 

habitat, however, based on the reasoning of Mullin et al. (2010); they stated that RU2 is 

sustained by immigration (a parameter I did not include in my model), which is similar to the 

most recent findings about RU2 by Eberhart-Phillips et al. (2014) and Feucht et al. (2016). In 

the population viability analysis by Eberhart-Phillips et al. (2014), they used a juvenile 

survivorship with a mean of 0.23, which explains their resulting lambda <1.  My model 
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produced similar results, since juvenile survival could not drop below 0.39 and maintain a 

stable population.  Interestingly, the authors of the 2014 model stated that 0.23 was probably 

too pessimistic. When they used a juvenile survival closer to 0.5, they also found a positive 

population growth rate, though not as fast as my prediction. Their model made a lot more 

assumptions as well, such as stochasticity and source-sink dynamics, so it is interesting that 

even though my model is simpler and makes less assumptions, it still produced similar 

results. This uncertainty in juvenile survival leads to an uncertainty concerning the 

classification of RU2 as a sink or not.   

In addition, because my model excluded immigration, its outcomes have the potential 

to be overly optimistic. For example, it is possible that some birds recruiting as adults are not 

actually survivors from chicks that fledged in the RU2 area, but are instead new immigrants. 

However, if my vital rates are correct, excluding immigration from the model should not alter 

the results, because I am still able to determine if net local growth without immigrants is >1. 

Reproductive values for the RU2 subpopulation decreased slightly with each passing 

year. While one might be surprised that reproductive values did not increase over time, my 

result is expected due to the structure of my matrix, in which all inputs represent adults 

capable of breeding. Once maturity is reached, it is expected that reproductive values decline 

(Stearns 1992). The stable age distribution had the greatest proportion of one-year-olds, then 

the proportion of all age classes afterward decreased rapidly, following a trend of exponential 

decay with time. Because the average life span of WSP is very short, around three years 

(USFWS 2001), this sharp drop-off is expected.  
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Sensitivities and Elasticities  

Sensitivities and elasticities for RU2 and the baseline were very similar. For both 

models, adult survival was the most influential vital rate on lambda, followed by juvenile 

survival, and fecundity was the least influential rate. In addition, for each vital rate, elasticity 

was slightly lower in my model than in the baseline. Because my initial lambda was higher 

than the baseline’s, any percent change in lambda in response to a vital rate altered by a fixed 

amount would end up being a smaller percentage of lambda compared to the baseline, which 

had a lower initial lambda. Even though fecundity in my model was lower than the 

baseline’s, adult survival was higher, which can explain the higher lambda compared to the 

baseline. 

 

Limitations 

My analysis faced some shortcomings by using the deterministic, average vital rates 

and lambda values of the baseline matrix as the basis for comparison with my own matrix. I 

also did not consider stochasticity or dispersal in my model. Another limiting factor was the 

need to use vital rates from other populations and years in the RU2 matrix because estimates 

for those rates were not available from the RU2 study on which I based the majority of the 

matrix. Because juvenile survival was not available for the 2013 or 2016 northern California 

population, I decided to use the juvenile survival value from Nur et al. (1999), but this 

estimate may have been too high. Mullin et al. (2010) observed apparent juvenile survival 

around 0.4 for the time span 2001-2007, and as mentioned above, Eberhart-Phillips (2014) 

estimated juvenile survival at merely 0.23. In addition, my value for adult survival may not 
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have been an accurate representation of the whole RU2 population, simply because the data 

represented annual variation in apparent survival of males from 2001–2010 in Humboldt 

County (the county in which the majority of breeding and nesting occurs). Apparent survival 

is a slightly different measure than true survival; it is most likely an underestimate because it 

cannot distinguish between mortality and permanent emigration. Therefore, if a large portion 

of birds migrated to a different site in a following year, the apparent survival measurement 

would count that emigration as a death. Countering this possible underestimation, however, 

is the fact that the matrix was constructed in terms of males, who overall displayed a higher 

adult survival rate than females (which could be a source of potential overestimation). 

 

The Full Relationship Between Vital Rates and Lambda 

 Due to these uncertainties in vital rates, I explored the full relationship between vital 

rates and lambda. Juvenile survival could drop below 0.39 before growth rate became 

negative. Adult survival produced a positive growth rate in all scenarios except the lower 

95% confidence interval, in which lambda was 0.98. These results depict the importance of 

focusing efforts on adult survival and juvenile survival. Recovery plan stipulations are 

focused on increasing productivity, but according to my model, these efforts toward 

increasing number of offspring will only be helpful if juvenile survival also increases (so that 

more plovers reach maturation and eventually increase the adult population). The rate for 

fecundity (including 95% confidence intervals) always returned lambda greater than 1. 

However, the fledging rate itself has not yet reached recovery plan objectives. 
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One of the stipulations of the recovery plan is an annual average productivity of at 

least 1 fledged chick per male in each recovery unit for 5 consecutive years (USFWS 2007). 

Based on the data used to construct my model, RU2 has not yet reached the point of 1 

fledged chick per male on average (the fledge rate for my model was based on average 

fledging rate in northern California from 2001–2016). While there were periods within that 

time span in which the yearly average productivity was 1 or greater, the overall trend in this 

time span has been a productivity of 0.85 fledglings per male. Because of this, recovery 

efforts geared toward productivity should continue, but the recovery method should not put 

adult survival at risk. The direction of this population is a positive one, however, because in 

2016, per capita productivity reached 1.21 + 1.29 fledglings per male, which is the highest 

productivity for RU2 since 2001, and the first time since 2004 that it has exceeded the 1.0 

fledglings per male delisting requirement (Feucht et al. 2016). In addition, the number of 

breeding adults in RU2 exceeds 70 individuals, almost halfway to the recovery plan objective 

of 150 breeding individuals.	  

Based on my results, efforts to restore habitat, restrict human activity, and control 

predator populations should continue, in order to further the positive trend in growth for 

RU2. Particular attention should be paid to adult survival and juvenile survival, and future 

analyses can incorporate more certain data on these vital rates to more accurately assess the 

state of RU2. Another way to build on the results of this study is to perform population 

viability analyses for the other recovery units in order to assess how population growth has 

changed from 1999 to the present. The most accurate models will incorporate data from the 

same populations and time periods, and will incorporate dynamics such as source-sink 

populations, stochasticity, and dispersal. 
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Appendix A 
 

Sensitivity and elasticity graphs for juvenile survival, fecundity, and adult survival of western 
snowy plovers in RU2. 

 

Figure A-1. Sensitivity of lambda to variations in juvenile survival. 

 

Figure A-2. Sensitivity of lambda to variations in fecundity. 
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Figure A-3. Sensitivity of lambda to variations in adult survival. 

 

 

Figure A-4. Elasticity of lambda given proportional changes in juvenile survival. 
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Figure A-5. Elasticity of lambda given proportional changes in fecundity. 

 

 

Figure A-6. Elasticity of lambda given proportional changes in adult survival. 
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Appendix B 
 

R code for matrix model analysis of the baseline and RU2 plover populations 
 
 
# Baseline matrix from Nur et al. (1999) 
sa=0.76 
sj=0.5 
f=1.105 
sexratio=0.5 
 
plover=rep(sj*f*sexratio,20) 
plover=rbind(plover,c(sa,rep(0,19))) 
 
for (i in 1:18){ 
  plover=rbind(plover,c(rep(0,i),sa,rep(0,19-i))) 
   
} 
 
model1=eigen(plover) 
model1$values 
lambda0 = model1$values[1] 
lambda0 
 
# Comparison of vital rate elasticities: decrease by 1% 
vars=c(sj,f,sa) 
lambda=numeric(0) 
 
for(vr in 1:3) { 
  
 vars[vr]=vars[vr]*.99 
 plover=rep(vars[1]*vars[2]*sexratio,20) 
 plover=rbind(plover,c(vars[3],rep(0,19))) 
 
 for (i in 1:18){ 
    plover=rbind(plover,c(rep(0,i),vars[3],rep(0,19-i))) 
   
 } 
 y=eigen(plover) 
 lambda=c(lambda,y$values[1]) 
 vars=c(sj,f,sa) 
} 
 
changelambda=(lambda-lambda0)/lambda0 
elast=changelambda/(.01*vars[vr]) 
elast 
 
# Comparison of vital rate sensitivities: change by 0.01 
vars=c(sj,f,sa) 
lambda=numeric(0) 
 
for(vr in 1:3) { 
  
 vars[vr]=vars[vr]+0.01 
 plover=rep(vars[1]*vars[2]*sexratio,20) 
 plover=rbind(plover,c(vars[3],rep(0,19))) 
 
 for (i in 1:18){ 
    plover=rbind(plover,c(rep(0,i),vars[3],rep(0,19-i))) 
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 } 
 y=eigen(plover) 
 lambda=c(lambda,y$values[1]) 
 vars=c(sj,f,sa) 
} 
 
sensitivity=(lambda-lambda0)/(0.01) 
sensitivity 
 
 
# MY MODEL: RU2 
f=0.85 # average fledge rate from 2001-2016 in Feucht et al. (2016) 
sa=0.84 # average apparent male survival found by digitizing graph in Colwell et al. (2013) 
sj=0.5  #  no data on this, for 2013 or 2016, used Nur et al. (1999) value 
sexratio=0.5 
 
plover=rep(sj*f*sexratio,20) 
plover=rbind(plover,c(sa,rep(0,19))) 
 
for (i in 1:18){ 
  plover=rbind(plover,c(rep(0,i),sa,rep(0,19-i))) 
   
} 
 
y=eigen(plover) 
lambda1=y$values[1] 
lambda1 
ssd=y$vectors[,1] 
ssd 
sum(ssd) 
ssd=ssd/(sum(ssd)) 
ssd 
z=eigen(t(plover)) 
rv=z$vectors[,1] 
rv 
 
 
# VARYING VITAL RATES: 
 
# 1. VARYING JUVENILE SURVIVAL 
 
vars=c(sj,f,sa) 
juvsurvival=seq(0.05,1,0.05) 
lambda=numeric(0) 
 
for(percent in 1:20) { 
  
 vars[1]=juvsurvival[percent] 
 plover=rep(vars[1]*f*sexratio,20) 
 plover=rbind(plover,c(sa,rep(0,19))) 
 
 for (i in 1:18){ 
    plover=rbind(plover,c(rep(0,i),sa,rep(0,19-i))) 
   
 } 
 y=eigen(plover) 
 lambda=c(lambda,y$values[1]) 
 vars=c(sj,f,sa) 
} 
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lambda 
plot(juvsurvival,lambda,xlab="Juvenile Survival",ylab="Lambda") 
lines(juvsurvival,lambda,type="l",lwd=2) 
abline(v=0.5,lwd=2) 
abline(v=0.385,col="red",lty=4,lwd=1.5) 
 
# SENSITIVITY ANALYSIS on juvenile survival 
sensitivity=(lambda-lambda1)/(juvsurvival-sj) 
sensitivity 
plot(juvsurvival-sj,lambda-lambda1,xlab="Change in Juvenile Survival",ylab="Change in 
Lambda") 
lines(juvsurvival-sj,lambda-lambda1,lwd=2) 
 
# ELASTICITY ANALYSIS 
elasticity=((lambda-lambda1)/lambda1)/((juvsurvival-sj)/sj) 
elasticity 
plot((juvsurvival-sj)/sj,(lambda-lambda1)/lambda1,xlab="Percent Change in Juvenile 
Survival",ylab="Percent Change in Lambda") 
lines((juvsurvival-sj)/sj,(lambda-lambda1)/lambda1,lwd=2) 
 
# 2. VARYING FECUNDITY 
 
vars=c(sj,f,sa) 
fecundity=seq(0.1,2,0.1) 
lambda=numeric(0) 
 
for(percent in 1:20) { 
  
 vars[2]=fecundity[percent] 
 plover=rep(sj*vars[2]*sexratio,20) 
 plover=rbind(plover,c(sa,rep(0,19))) 
 
 for (i in 1:18){ 
    plover=rbind(plover,c(rep(0,i),sa,rep(0,19-i))) 
   
 } 
 y=eigen(plover) 
 lambda=c(lambda,y$values[1]) 
 vars=c(sj,f,sa) 
} 
lambda 
plot(fecundity,lambda,xlab="Fecundity",ylab="Lambda") 
lines(fecundity,lambda,type="l",lwd=2) 
abline(v=0.85,lwd=2.5) 
abline(v=1.105,col="blue",lwd=2) 
abline(v=0.85+0.15,col="red",lty=4,lwd=1.5) 
abline(v=0.85-0.15,col="red",lty=4,lwd=1.5) 
 
# SENSITIVITY ANALYSIS on fecundity 
sensitivity=(lambda-lambda1)/(fecundity-f) 
sensitivity 
plot(fecundity-f,lambda-lambda1,xlab="Change in Fecundity",ylab="Change in Lambda") 
lines(fecundity-f,lambda-lambda1,lwd=2) 
 
# ELASTICITY ANALYSIS 
elasticity=((lambda-lambda1)/lambda1)/((fecundity-f)/f) 
elasticity 
plot((fecundity-f)/f,(lambda-lambda1)/lambda1,xlab="Percent Change in 
Fecundity",ylab="Percent Change in Lambda") 
lines((fecundity-f)/f,(lambda-lambda1)/lambda1,lwd=2) 
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# 3. VARYING ADULT SURVIVORSHIP 
 
vars=c(sj,f,sa) 
adultsurvival=seq(0.05,1,0.05) 
lambda=numeric(0) 
 
for(percent in 1:20) { 
  
 vars[3]=adultsurvival[percent] 
 plover=rep(sj*f*sexratio,20) 
 plover=rbind(plover,c(vars[3],rep(0,19))) 
 
 for (i in 1:18){ 
    plover=rbind(plover,c(rep(0,i),vars[3],rep(0,19-i))) 
   
 } 
 y=eigen(plover) 
 lambda=c(lambda,y$values[1]) 
 vars=c(sj,f,sa) 
} 
lambda 
plot(adultsurvival,lambda,xlab="Adult Survival",ylab="Lambda") 
lines(adultsurvival,lambda,type="l",lwd=2) 
abline(v=0.84,lwd=2.5) 
abline(v=0.76,col="blue",lwd=2) 
abline(v=0.84+0.069,col="red",lty=4,lwd=1.5) 
abline(v=0.84-0.069,col="red",lty=4,lwd=1.5) 
 
# SENSITIVITY ANALYSIS on adult survival 
sensitivity=(lambda-lambda1)/(adultsurvival-sa) 
sensitivity 
plot(adultsurvival-sa,lambda-lambda1,xlab="Change in Adult Survival",ylab="Change in Lambda") 
lines(adultsurvival-sa,lambda-lambda1,lwd=2) 
 
# ELASTICITY ANALYSIS 
elasticity=((lambda-lambda1)/lambda1)/((adultsurvival-sa)/sa) 
elasticity 
plot((adultsurvival-sa)/sa,(lambda-lambda1)/lambda1,xlab="Percent Change in Adult 
Survival",ylab="Percent Change in Lambda") 
lines((adultsurvival-sa)/sa,(lambda-lambda1)/lambda1,lwd=2) 
 
# MY MATRIX Comparison of vital rate elasticities: decrease by 1% 
vars=c(sj,f,sa) 
lambda=numeric(0) 
 
for(vr in 1:3) { 
  
 vars[vr]=vars[vr]*.99 
 plover=rep(vars[1]*vars[2]*sexratio,20) 
 plover=rbind(plover,c(vars[3],rep(0,19))) 
 
 for (i in 1:18){ 
    plover=rbind(plover,c(rep(0,i),vars[3],rep(0,19-i))) 
   
 } 
 y=eigen(plover) 
 lambda=c(lambda,y$values[1]) 
 vars=c(sj,f,sa) 
} 
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changelambda=(lambda-lambda1)/lambda1 
elast=changelambda/(0.01*vars[vr]) 
elast 
 
# Comparison of vital rate sensitivities: change by 0.01 
vars=c(sj,f,sa) 
lambda=numeric(0) 
 
for(vr in 1:3) { 
  
 vars[vr]=vars[vr]+0.01 
 plover=rep(vars[1]*vars[2]*sexratio,20) 
 plover=rbind(plover,c(vars[3],rep(0,19))) 
 
 for (i in 1:18){ 
    plover=rbind(plover,c(rep(0,i),vars[3],rep(0,19-i))) 
   
 } 
 y=eigen(plover) 
 lambda=c(lambda,y$values[1]) 
 vars=c(sj,f,sa) 
} 
 
sensitivity=(lambda-lambda1)/(0.01) 
sensitivity	  
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