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Abstract 

Our gut microbiota is involved in human development, nutrition, and the 

pathogenesis of gut disorders, but has more recently been implicated as a possible 

mechanism in the pathophysiology of several brain disorders, including disorders of mood 

and affect, such as depression. Researchers have referred to this dynamic, bidirectional 

signaling pathway between the gut and the brain as the “gut-brain axis.” However, most 

research on this axis has been limited to rodent studies, and there has been little insight into 

the mechanism behind it. I propose that the kynurenine pathway, where tryptophan is 

converted to kynurenine, is a compelling mechanism mediating the gut microbiota’s 

influence on depression. Kynurenine is a metabolite associated with depression, and this 

pathway has been shown to be manipulated through probiotic (Lactobacillus reuteri) 

consumption. I propose to study a probiotic intervention in humans, which would assess 

tryptophan metabolism along the kynurenine pathway by measuring metabolites downstream 

of this pathway. Urine, feces and blood samples would be collected from two groups, control 

and probiotic treatment, on day zero and day thirty. Colonic biopsies would be obtained on 

day thirty, and various analyses would be run to measure metabolite concentrations from the 

collected samples. The results from this study will help clarify a mechanistic connection 

between gut microbes and depression via the kynurenine pathway. Additionally, findings 

could indicate that a probiotic intervention has the ability to influence depressive behavior 

via a two-pronged approach originating from the kynurenine pathway. 
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Introduction 

Depression and the Importance of our Gut Microbes 

 Our gastrointestinal tract is home to over 1 x 1014 microorganisms that are 

responsible for many functions throughout our body and essential for health (1). It has been 

estimated that at least 1 x 104 distinct species cohabit the human gut and compose the 

microbiota, an ecological community of commensal, mutualistic and pathogenic 

microorganisms (2). This provides a glimpse into the size and complexity of the human 

microbiome, and the important role our gut microbiota plays in our health. Our gut 

microbiota is involved in the pathogenesis of gut disorders, but has more recently been 

implicated as a possible mechanism in the pathophysiology of several brain disorders, 

including disorders of mood and affect (3). There is growing evidence of bidirectional, 

reciprocal communication between the gut and brain (1, 3, 4) that has important implications 

in human health. Researchers have referred to this dynamic, bidirectional signaling pathway 

as the “gut-brain axis,” and components of this axis have, and are currently receiving 

extensive study as dysfunction of this axis has broad pathophysiological consequences (1). 

Several experimental approaches have been used to study the effect of gut microbiota on gut-

brain interactions, including gut microbial manipulation with probiotics, prebiotics, and 

antibiotics, fecal microbial transplantation and germ-free animal models (3). While there are 

many limitations of these approaches, there has been significant progress towards better 

understanding the role our gut microbiota plays in CNS disorders.  

Depression is a mood disorder that is frequently studied in this axis, with the hope to 

further clarify its link to the gut. Several studies in mice have demonstrated that there is a 

distinct difference in the composition of gut microbiota in animal models of depression and 
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chronic stress (5). In addition, the high co-morbidity between psychiatric symptoms, such as 

depression or anxiety, with gastrointestinal disorders including irritable bowel syndrome 

(IBS) and inflammatory bowel disorder (IBD) is further evidence of the importance of this 

axis (6). Further clarifying the microbiome’s link to depression is important, as depression is 

considered the leading cause of disability worldwide, impacting more than 350 million 

people (7). In addition, according to the World Health Organization, depression will displace 

heart disease in terms of cost of caring for patients by the year 2020 (7). Serotonin-specific 

reuptake inhibitor medications (SSRIs) are the primary medications prescribed for patients 

who are diagnosed with depression, however, these medications do not treat the root cause of 

depression, and instead only improve symptoms. With this in mind, it is interesting to note 

that antidepressants are one of the three most commonly used therapeutic drug classes in the 

U.S. (8).  This common use of antidepressants is alarming, because the cause of depression is 

not entirely understood, and these antidepressants are only aiding in symptom relief, rather 

than curing the problem (2). SSRIs block the reabsorption of serotonin in the brain, making 

more serotonin available, however, this same neurotransmitter found in the brain is primarily 

produced in the gut (2). In fact, more than 90% of the body’s serotonin is synthesized in the 

gut (9). Ultimately, a further understanding of the connection between the gut and depression 

could prove to have important implications in the medical field, and potentially reduce 

antidepressant use among U.S. society.  

 One of the major recent findings in this field was from an experiment led by Irish 

scientist John Cryan in 2011. His research group fed half their mice with Lactobacillus 

rhamnosus (JB-1), a lactic acid bacterium shown to be beneficial for the gut and commonly 

present in probiotics, then evaluated several different measures of behavior between the two 
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groups of mice, such as tests for anxiety and depression-related behavior, and stress-induced 

corticosterone levels (10). They found that the mice given L. rhamnosus kept swimming for 

longer and with more motivation in the forced swim test analysis, which is a test for 

depression-related behavior (10). In addition, these mice were also found to have lower 

stress-induced corticosterone levels, showing that L. rhamnosus had beneficial effects on the 

mouse (10). Yet when they severed the mouse’s vagus nerve, there was no difference 

recorded between the two groups of mice, thus the vagus nerve plays a critical role in 

communication between the gut and the brain (10). Overall, this study highlights the 

important role of bacteria in the bidirectional communication of the gut-brain axis and 

suggests that certain organisms may prove to be useful therapeutically in stress-related 

disorders such as anxiety and depression. One of the first human studies assessing the 

psychotropic-like effects of probiotics was also in 2011 by a group of researchers led by 

Messaoudi. The clinical study demonstrated that in the general population, when a probiotic 

formulation (PF) of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 was 

taken in combination for 30 days, global scores of hospital anxiety and depression scale 

decreased (11). Thus oral intake of this PF showed beneficial effects on anxiety and 

depression related behaviors in human volunteers, just like it did in the mice. Mouse studies 

have begun to elucidate a link between gut microbiota and depression, and clinical trials, 

such as Messaoudi et al.’s, are working to translate these findings from mouse studies to the 

human body. These studies suggest a potential for positive effects of some probiotics on 

mood, however, there is a need for larger clinical trials, with biological and self-reported 

outcomes in patient populations, in order to make clear conclusions on a mechanistic 

connection between the gut microbiota and the brain (12).  Deciphering the mechanism by 
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which microbiota communicate with the gut-brain axis will be crucially important for the 

development of any microbiota-based and microbiota-specific therapeutic strategies for CNS 

diseases and mood disorders.  

The gut is composed of a variety of different bacterial phyla, such as Firmicutes 

(genera such as Lactobacillus, Clostridium, Enterococcus) and Bacteroidetes (genera such as 

Bacteroides), which account for the majority (13). Other phyla are also present in the gut 

such as Actinobacteria (Bifidobacteria), Proteobacteria (Escherichia coli), Fusobacteria, 

Verrucomicrobia and Cyanobacteria (13). Not all genera of microbes are considered 

beneficial to mental health, and some are more than others, so it is important for future 

research to focus on deciphering which genera or species of bacteria are more beneficial than 

others, and what they specifically do that proves to be beneficial. Lactobacillus and 

Bifidobacterium are the main genera showing beneficial effects on mood disorders, such as 

anxiety and depression (12). B. infantis has been shown to increase plasma tryptophan levels, 

L. helveticus was shown to prevent diet-induced anxiety-like behavior and memory, and B. 

longum NCC3001 reversed colitis-induced anxiety in the mouse via the vagus nerve (5). 

These results have not been replicated in humans. Clinical validation of these findings is 

necessary in order to determine whether or not probiotics can be used therapeutically in 

mood disorders. In conclusion, findings from mouse studies begin to give a greater glimpse 

into the powerful role our gut plays in depression.  
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The Immune System: Mediator of Communication between the Gut and the Brain  

 The digestive tract does not operate independently, but instead requires functional 

integration with other organ systems. Communication between the gastrointestinal tract and 

the central nervous system (CNS) and enteric nervous system (ENS) are examples of how 

signals originating in one of these organ systems affect the function of the other (14). The 

ENS is a complex network of neurons that can function independently of the CNS, control 

gut motility and local blood flow, and directly communicate with cells of the intestinal 

barrier (14). However, mechanisms by which the ENS integrates with microbe-mediated GI 

immune responses are still poorly understood. For example, it is largely unknown whether 

the ENS senses the microbial environment and initiates an immune response, or whether the 

ENS senses immune responses and then modifies or propagates those signals (15). 

Microbial regulation of tryptophan, serotonin and kynurenine metabolism has become 

a focal point in understanding the influence exerted by the gut microbiota on brain function 

and behavior. The kynurenine pathway, where tryptophan is converted to kynurenine (Figure 

1), is of particular interest because kynurenine pathway metabolism might be regulated by 

microbial control of neuroendocrine function and parts of the immune system (16). Changes 

in the supply and availability of tryptophan has many implications for ENS and CNS 

functioning and consequently gut-brain axis signaling.  

 Tryptophan is an essential amino acid, so it must be supplied from one’s diet (17). 

Some common sources of tryptophan are bananas, dried prunes, milk, peanuts, chocolate and 

white meats, such as chicken, turkey and tuna (17). The gut microbiota can also directly 

utilize tryptophan, which could potentially limit its availability to the host (18). Additionally, 

B. subtilis is a known producer of tryptophan, a precursor to serotonin, so there are bacterial 
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strains that have the ability to directly influence tryptophan levels and indirectly influence 

serotonin levels (19). Thus, bacterial tryptophan utilization, tryptophan synthesis and dietary 

supply of this essential amino acid, all play a role in the tryptophan level in the gut and 

circulating tryptophan availability for the individual.  

 

Figure 1. The kynurenine pathway, where tryptophan is either converted to kynurenine or 

serotonin.  

While tryptophan is the precursor molecule to serotonin, around 90% of tryptophan is 

metabolized to kynurenine or the other downstream metabolites, kynurenic acid and 

quinolinic acid (Figure 1) (16). The rate of tryptophan metabolism along the kynurenine 

pathway is dependent on expression of indoleamine-2,3-dioxygenase (IDO1), and IDO1 

expression can be induced by the action of inflammatory cytokines such as Interferon (IFN)-

γ (16). As IDO1 is induced by proinflammatory cytokines, its expression has been proposed 

as a biomarker of GI diseases, including inflammatory bowel disease and colon cancer (16). 

Additionally, there are two interleukins, IL-10 and IL-4, that influence tryptophan 

metabolism down the kynurenine pathway and interact directly with IFNγ (20). Regulatory T 

cells produce IL-10, which directly inhibit TH1 cells that produce IFNγ (Figure 2) (20). IL-4, 

produced by TH2 cells, directly inhibits IFNγ, and conversely, IFNγ inhibits IL-4 (Figure 2) 
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(20). Thus IL-10 and IL-4 both inhibit tryptophan metabolism down the kynurenine pathway, 

and instead drive the pathway towards serotonin production (Figure 2).  

 

Figure 2. Immune system components involved in the kynurenine pathway. Adapted from 

reference 20.  

IDO1, the enzyme that converts tryptophan to kynurenine, was shown to be inhibited 

by Lactobacillus in a mice study conducted by Valladares et al. in 2013. Valladares et al. 

found that feeding L. johnsonii to rats increased H2O2 concentrations in the ileal lumen, and 

correlated with decreased peripheral kynurenine concentrations and altered IDO distribution 

(21). Most importantly, L. johnsonii was found to produce reactive oxygen species (ROS), 

H2O2, that inhibits the expression of the metabolizing enzyme, IDO1, in the intestine (21). 

Valladares et al. found that this decreased IDO activity in the gut consequently reduced 

peripheral kynurenine levels and increased ileum and peripheral serotonin levels (21). These 
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findings are supported by another mice study conducted by Marin et al. in 2017. Marin et al. 

used L. reuteri instead of L. johnsonii for their probiotic feeding in mice, because L. reuteri 

has been shown to colonize several vertebrate hosts, and was shown to improve despair and 

anxiety-like behaviors in mice (22). Their results show increased ido1 expression in the 

intestines after stress, which is decreased after L. reuteri treatment (22). Marin et al. found 

that chronic stress significantly altered intestinal microbiota composition, primarily by 

decreasing the abundance of Lactobacillus. In addition, they observed increased circulating 

kynurenine levels in stressed mice (22). Ultimately, Marin et al. found that treatment with L. 

reuteri alleviates despair behavior by directly inhibiting intestinal ido1 expression and 

decreasing the circulating level of kynurenine, which is a metabolite associated with 

depression (23).  
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Figure 3. The kynurenine pathway & the link to inflammation and the gut-brain axis. Image 

of the brain adapted from reference 24. 

The kynurenine pathway appears to be a compelling mechanism mediating the gut 

microbiota’s influence on the brain (Figure 3). Our gut microbes, specifically Lactobacillus, 

are involved in the mechanism by producing H2O2 that directly inhibits IDO1, the enzyme 

that converts tryptophan to kynurenine. Because kynurenine has been associated with 

depression, this pathway connects to the brain (23). More specifically, kynurenine can 

readily cross the blood-brain barrier to drive depression in the CNS by disrupting 
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neurotransmitter balance and driving neuroinflammation (25, 26). Thus, disruptions in 

tryptophan-kynurenine metabolism are an important factor in mediating despair behavior 

(22). The downstream metabolites of kynurenine, kynurenic acid and quinolinic acid, cross 

the blood-brain barrier very poorly and must be formed locally within the brain (25, 27). 

Quinolinic acid has been found to promote local inflammation within the CNS and modulate 

neuronal excitability, thus it can influence the brain in alternate ways (28). Kynurenic acid is 

protective against this neuronal excitotoxic action of quinolinic acid, and is considered 

neuroprotective (29). Thus, the downstream metabolites of kynurenine are not directly 

associated with depression, however, they influence the body in different ways that are both 

beneficial and harmful. Another important aspect of the kynurenine pathway is that IDO can 

also catalyze the conversion of 5-HT (serotonin) to 5-hydroxykynuramine, meaning 

increased IDO activity has been correlated with increased serotonin turnover (21). This is an 

important consideration, as lower IDO activity alone could result in both decreased 

kynurenine and increased serotonin concentrations. This creates a mechanism in which 

depressive behavior could be influenced via a two-pronged approach that begins with gut 

microbiota. It is uncertain whether or not this mechanism functions in the human body as 

studies have only been in mice. 

 

General Direction of Study: Proposing a Probiotic Intervention in Humans  

 I am proposing to study a probiotic intervention in humans, by measuring the effect 

of probiotics (Lactobacillus reuteri) on metabolite concentrations. These metabolites are 

involved in the kynurenine pathway, which is a pathway that has been associated with 

depression in mice (16, 21, 22). The majority of studies in mice have focused on total 
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circulating tryptophan levels with less attention given to the dynamics of tryptophan 

metabolism along the kynurenine pathway (16, 30). This study would look directly at 

tryptophan metabolism along the kynurenine pathway by measuring metabolites downstream 

of this pathway.  

Aims 

An aim of this study is to assess whether L. reuteri inhibits IDO expression in 

humans, as seen in Valladares et al.’s mouse study, and if this probiotic feeding 

influences tryptophan metabolism down the kynurenine pathway. Another goal is to 

further understand the impact of L reuteri in the human body and its role in 

depression.  

Predictions 

I predict that if individuals are fed L. reuteri for 30 days, then tryptophan metabolism 

along the kynurenine pathway will be affected. More specifically, I predict that in 

group 2, patients taking the L. reuteri supplement, there will be lower levels of IDO 

expression, kynurenic acid, quinolinic acid, kynurenine, c reactive protein and IFNγ, 

and higher levels of tryptophan, serotonin, interleukins (IL-4 and IL-10) and H2O2. 

Thus, I predict that there will be less tryptophan metabolism down the kynurenine 

pathway in group 2 compared to group 1 (control/placebo group). In addition, I 

predict there will be higher levels of serotonin and lower levels of kynurenine per 

each patient in group 2, which will consequently impact their mood given previous 

findings in this pathway, thus, there will be lower levels of depression according to 

the PHQ-9 among group 2. I predict that at day 30, the microbiota community 

structure of individuals in group 2 will be substantially different, with a higher 
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concentration of Lactobacillus in the gut in comparison to group 1. I also predict that 

microbiota community structure will be indistinguishable between both groups at day 

0 and group 1 on day 30.  

 

Methods 

 

Figure 4. Clinical study timeline 
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I will collect urine, feces and blood samples at the beginning of my study from all 

patients. I would partner with a gastroenterologist who is performing colonoscopies to gather 

my sample for this study. I would recruit patients of the gastroenterologist who were already 

scheduled for colonoscopies, and who were willing to participate and donate samples. This 

sample would hopefully be at least 60 people, and then patients would be randomized into 

two separate groups. Ideally each group of 30 is a random sample of people representative of 

the broader population, yet with a similar makeup across the 2 groups. I would hope to have 

a sample size of at least 60 people total, which is based on previous mouse and human 

studies (11, 21, 22). Most mouse studies have a sample size of 20-30 mice total, and most 

human studies have a sample size of 60-70 humans total. Thus, I hope to get at least 60 

people enrolled in my study, which would then allow 30 people at the minimum in each 

group. 

Group 1: Roughly 30 people who will be taking a placebo pill = control group 

 Colonoscopy= Day 30 

Group 2: Roughly 30 people who will be taking the L. reuteri probiotic  

Colonoscopy= Day 30 

I chose to administer a probiotic to group 2 of solely L. reuteri, as it has been shown 

to directly inhibit IDO1 in the kynurenine pathway in mice (22). In addition, L. reuteri is a 

species that colonizes several vertebrate hosts, including rodents and humans, and was shown 

to improve depression and anxiety-like behaviors, including the forced swim test in mice (10, 

22, 31). 2 x 109 CFU/mL of L. reuteri will be given to group 2 in oral capsule form for 30 

days. Amount of CFUs given per milliliter was determined based on previous studies in mice 
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and humans (11, 22). L. reuteri would be obtained from ATCC (23272) (22), and then 

encapsulated for oral consumption. Group 1, the control group, will be given a placebo of 

identical taste and appearance as the probiotic, for 30 days (11). All patients will be advised 

to take their oral pill during or just after breakfast, and will be reminded through a daily text 

message. Study compliance would be assessed by counting the number of pills returned by 

participants at the end of the study (11). 

Samples would be collected again at 30 days. These samples would be urine, feces 

and blood samples again from both groups, and I would collect colonic biopsies from their 

colonoscopies after taking the other samples (Figure 4). I would then quantify metabolite 

concentrations using the methods described below.  

Blood Serum Sample Analysis 

All blood samples would be collected from the patient’s vein in their arm. For 

analyzing whole blood, blood would be collected into glass Vacutainer Tubes containing 

disodium EDTA (32). Platelets would be counted with a Model S plus 4 Coulter Counter and 

then whole blood would be apportioned into 1 mL aliquots, stored at -20˚C and would be 

analyzed within 1 week after collection (32). For analyzing serum, blood would be collected 

into a covered test tube that is prepped for serum analysis. This sample would be centrifuged 

at 2000 g for 10 minutes at 4˚C, and apportioned into 0.5 mL aliquots and stored at -80˚C 

(21) until ready to be analyzed. These individual aliquots then allow for various serum 

sample analyses later on, and provide several aliquots to pull from, especially if a different 

analysis is desired much farther in the future.  
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To measure kynurenine, tryptophan and kynurenic acid levels in blood samples, I 

would use reverse-phase high performance liquid chromatography (HPLC), as described 

previously (30). In short, this involves using blood serum and a HPLC procedure with 

ultraviolet and fluorimetric detection to separate and quantify tryptophan, kynurenine and 

kynurenic acid. It has the ability to measure other kynurenine metabolites, but has not been 

expanded to measure quinolinic acid yet (30). Because Badawy’s method is unable to 

measure quinolinic acid, I would use a gas chromatography/mass spectrometry (GC/MS) 

assay to measure quinolinic acid in whole blood as described previously by Heyes and 

Markey (33). This experiment used whole blood samples, rather than serum samples, as it 

was found to be more effective in the GS/MS assay. In short, this GS/MS assay includes 

sample analysis through Finnigan 3200 chemical ionization quadrupole mass filter with 

Extrel electronics and a Teknivent data system 1050, and quinolinic acid is analyzed by 

selected ion monitoring (33). In addition, I would use HPLC with amperometric detection for 

determination of serotonin in whole blood, as described previously (32). This experiment was 

also found to be most effective using whole blood samples, rather than serum samples. In 

short, this HPLC includes a Model 510 HPLC pump, a Model SIL 9A autosampler from 

Shimadzu Analytical Division and a Model 460 amperometric detector equipped with a 

glassy carbon electrode maintained at a potential of +0.6V (32). In addition, I would measure 

inflammation through c reactive protein levels in blood serum, which can be done using a 

Human C Reactive Protein ELISA Kit by following the manufacturer’s instructions (Thermo 

Fischer KHA0031, Walthan, MA).  
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Urine Sample Analysis 

I would measure kynurenic acid and tryptophan levels in urine samples using reverse-

phase HPLC as described previously by John B. Tarr (34). In short, this method includes a 

Model 6000A pumping system, Model 440 ultraviolet absorbance detector set at 254 nm, and 

Model R40l differential refractometer, and all chromatograms are obtained at ambient 

temperature (around 20°C) (34). Tarr’s method, however, was unable to measure quinolinic 

acid levels in urine, because the conditions used in Tarr’s analysis gave too broad of an 

elution for quinolinic acid for it to be of analytical use. So I would measure quinolinic acid 

levels through a process described by McDaniel et al. (35). This process involves bringing 

urine samples to pH 1.4 with hydrochloric acid and then adding 3 grams of Norit-A to each 

50mL aliquot of urine. Norit-A is an activated carbon that is a great adsorbent and is 

commonly used in purification processes and the removal of dyes (36). This addition of 

Norit-A creates a charcoal suspension that is then filtered out and ammonium hydroxide is 

added. The ammonium hydroxide filtrate is evaporated to dryness over a 50°C water bath, 

and this dry residue is then taken up in 5 mL of glacial acetic acid, and heated at 105°C. 

After cooling, 1 mL of the acetic acid is then brought to pH 7.3 by the addition of sodium 

hydroxide. 3 mL of 1M Tris-HCl is added to the neutralized acetic acid solution and the final 

volume is brought to 10 mL with distilled water. 1 mL of this solution is then placed in a tube 

with ethanol, cyanogen bromide and o-toluidine. Absorbance of this solution is compared to 

that of the blank at 450nm using a Beckman DU or Zeiss spectrophotometer (35). Ultimately, 

this protocol achieves the desired chemical reaction, the decarboxylation of quinolinic acid to 

nicotinic acid, which is necessary to determine the quinolinic acid concentration in urine 

(35). Urinary serotonin would be purified by two successive cationic and anionic extraction 
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steps, then serotonin levels would be measured under the same chromatographic conditions 

as used for quantifying blood serum levels, which was described previously by Pussard et al. 

(32). All urine samples would be collected and then frozen at −20 °C and transferred to lower 

storage temperatures (−80 °C) within one week (37). Total protein concentration in each 

patient’s urine sample would be measured using a Bradford assay (Bio-Rad Laboratories, 

Hercules, CA) following the manufacturer’s instructions. Each patient’s tryptophan 

measurement would then be compared to their total protein concentration in order to obtain 

the amount of tryptophan per microgram of protein in the urine. This would be done with 

each measurement from the urine, so kynurenic acid, quinolinic acid and serotonin as well. 

This ratio then allows for a more accurate comparison across patients, as it accounts for 

confounding variables, for example if someone just drank alcohol, their protein levels would 

be much higher than another patient.  

Fecal Matter Sample Analysis 

I would assess bacterial community structure by first performing 16S rRNA 

sequencing on genomic DNA isolated from fecal samples. Whole genomic DNA would be 

isolated via phenol-chloroform extraction as described by Marin et al. (22). For 16S rRNA 

sequencing, the V3-V4 region of the 16S rRNA gene would be amplified using polymerase 

chain reaction (PCR) for 25 cycles using specific primers (forward 5’-

TCGTCGGCAGCGTCAGATGTGTA TAAGAGACAGCCTACGGGNGGCWGCAG- 3’ 

and reverse 5’- GTCTCGTGGGCTCGGAGATGTGTA 

TAAGAGACAGGACTACHVGGGTATCTAATCC-3’) as per the Illumina library 

preparation guide as explained in the supplemental figures by Marin et al. (22). DNA 

sequences will be processed in a data curation pipeline, such as mothur (38), that will remove 
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all sequences with indicators of low sequence confidence, such as those with a read quality 

score of under 25, sequences that contain ambiguous characters or contain more than four 

mismatches to the reverse primer sequence, or sequences that are less than 200 nucleotides or 

greater than 600 nucleotides (39). The sequences are then clustered into operational 

taxonomic units (OTUs), which are based on sequence identity (%ID), and various thresholds 

of sequence identity are used to represent different taxonomic levels (e.g., 97% ID for 

species, 95% for genera) (40). Using each patient’s compiled list of OTUs (from fecal 

samples) and their relative abundance (assigned a value between 0 and 1), a similarity matrix 

would be created to further reduce the complexities of each patient’s microbiota community 

structure and facilitate statistical analysis. I would then use principal coordinates analysis 

(PCoA) to visualize similarities and dissimilarities of data across patients (40). 

I would measure H2O2 (reactive oxygen species, ROS) in feces using the Amplex Red 

hydrogen peroxide/peroxidase assay kit (Thermo Fischer) according to the manufacturer’s 

protocol. For ROS production by individual L. reuteri species, fecal L. reuteri would be 

cultured, and individual colonies would be selected and dissociated as described by Marin et 

al. (22), and then quantified using the Amplex Red hydrogen peroxide/peroxidase assay kit 

as described above. 

I would prep all fecal samples by collecting the fresh sample, weighing it, and then 

resuspending part of it in sterile phosphate-buffered saline (PBS) (22). After brief 

sedimentation of insoluble particles, part of this bacterial slurry would be incubated at 37˚C 

for 30 minutes (22). After bacterial culture centrifugation, the supernatant would be reacted 

with the Amplex Red assay kit. Otherwise, fecal matter samples will be stored at -80˚C for 

microbiota composition assessment.  
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Colonic Biopsy Analysis 

 Each patient will have a colonoscopy at 30 days, and during the colonoscopy, the 

gastroenterologist will take a tissue sample from the colon. Half of this tissue sample will 

then be preserved in RNAlater, which is a tissue storage reagent that stabilizes and protects 

cellular RNA, in order to analyze IDO expression (21). The other half of this tissue sample 

will be homogenized using a Tissue Master 125 (Omni International, Kennesaw, GA) with 

protease inhibitors (Sigma-Aldrich, St. Louis, MO) in order to analyze levels of 

inflammatory cytokines and chemokines (21). All samples will be stored at -80˚C until 

processing. For RNA quantification, frozen tissues would be homogenized by bead beating in 

RNA TRI Reagent (Life Technologies, Carlsbad, CA) and RNA would be extracted 

according to manufacturer’s protocol (22). IDO expression would then be measured using 

quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), as described by 

Valladares et al. (21). In short, the desired RNA template would be copied into a 

complementary DNA (cDNA) using a retroviral reverse transcriptase, and then this cDNA is 

amplified exponentially by PCR. cDNA would be synthesized using iScript cDNA synthesis 

kit (Bio-Rad Laboratories), by following the manufacturer’s instructions (21). qRT-PCR 

would then be performed using an iCycler detection system (Bio-Rad Laboratories) using 

200nM concentrations of each primer, and following the manufacturer’s instructions (21). 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) would be used as an internal control. 

Primers used would be: human IDO, forward 5’-GGTCATGGAGATGTCCGTAA-3’ and 

reverse 5’-ACCAATAGAGAGACCAGGAAGAA-3’, and human GAPDH forward 5’-

ACCACAGTCCATGCCATCAC-3’ and reverse 5’-TCCACCACCCTGTTGCTGTA-3’ 

(21). Reaction conditions would be the same as those used by Valladares et al. Data from the 
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iCycler detection system (Bio-Rad Laboratories) would be analyzed with iCycler software 

using the cycle threshold values (Ct) method of relative transcript analysis (2-∆∆Ct) to 

determine the relative quantification (21). For determining levels of inflammatory cytokines 

and chemokines [IFNγ, interleukin (IL-4 and IL-10)] in tissue samples, I would use the 

homogenized tissue sample with protease inhibitors and a tissue lysate enzyme-linked 

immunosorbent assay (ELISA). I would specifically use the Human Inflammatory Cytokines 

Multi-Analyte ELISArray Kit from QIAGEN (Hilden, Germany), which is a kit that was 

similarly used by Valladares et al. in their mouse study (21). Total protein concentration in 

each patient’s colonic biopsy sample would be measured using a Bradford assay (Bio-Rad 

Laboratories) following the manufacturer’s instructions, as described above with urine 

samples. Each patient’s IFNγ, IL-10 and IL-4 measurements would then be compared to their 

total protein concentration in order to obtain the amount of IFNγ, IL-10 or IL-4 per 

microgram of protein in the tissue sample.  

Questionnaire 

I would use the Patient Health Questionnaire (PHQ-9) (41) to test for depression-like 

symptoms pre and post treatment. This questionnaire allows for a quantitative measurement 

of depression. I would also propose a questionnaire to test for confounding variables, such as 

smoking, drinking, diet, stress levels, general physical activity levels, and any prescription 

drugs each patient is taking. This questionnaire would be given to patients on days 0 and 30 

to assess for confounding variables but also to test whether there was any variance or change 

in 30 days. I plan on first using this questionnaire to assess whether someone needs to be 

removed from the study. The criteria for a participant’s removal are: daily consumption of a 

significant amount of pre- and probiotics, daily consumption of five or more alcoholic 
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beverages, use of illegal drugs, or any indication that they will not reliably take their given 

pill for thirty days. Any other factor indicating that a participant would skew results is also 

grounds for removal from the study. I would then adjust for the remaining confounding 

variables through stratification. Stratification is a method in which the data set is broken into 

a number of subsets, called strata, corresponding to the number of potential confounders 

(e.g., smoking and stress levels) (42). The association between treatment (group 1 or 2) and 

time (day 0 or 30) with metabolite concentration is evaluated within each stratum of the 

confounder, for each metabolite (43). This then calculates a stratum-specific estimate, and 

makes it evident whether a factor introduces confounding in the analysis (42). The Mantel-

Haenszel method can then be used to provide an adjusted result according to strata, by 

calculating a weighted average of them (44). This calculated adjusted result would then be 

reported and discussed as a limitation of the study.  

 

Statistical Analysis   

For each group, I would perform a t-test between day 0 and day 30 for every 

metabolite (between column 1 and 2 in Table 1 below), not including microbiota composition 

and findings from the colonic biopsy. All metabolite measurements across patients in each 

group would be averaged and then statistically analyzed. I would perform a t-test for average 

findings for each metabolite between groups 1 and 2 on day 0 and on day 30. Figure 5 

describes the general overview for which t-tests I would perform. 
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Table 1. Samples and average measurements from each group. 

Average Metabolite Level 

on Day 0 

Average Metabolite Level 

on Day 30 

Sample 

Serotonin Serotonin  

Kynurenine Kynurenine  

Tryptophan Tryptophan Blood 

Kynurenic acid Kynurenic acid  

C reactive protein C reactive protein  

Tryptophan Tryptophan  

Kynurenic acid Kynurenic acid Urine 

Quinolinic acid Quinolinic acid  

Serotonin Serotonin  

Microbiota composition Microbiota composition Feces 

H2O2 H2O2  

N/A IDO expression  

N/A IFNγ  Colonic Biopsy 

N/A Interleukins  

• IL-4 

• IL-10 

 

Patient Health Questionnaire 

(PHQ-9)  

Patient Health Questionnaire 

(PHQ-9)  

 

Questionnaire 

Confounding variables 

questionnaire  

Confounding variables 

questionnaire 

 

 

Figure 5 shows expected t-test findings between the groups for each metabolite if my 

hypotheses were supported (see expected results section for further analysis). For example, 

Figure 5 shows average measurements for kynurenine across groups 1 and 2.  
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Figure 5. Statistical analysis of average findings for each metabolite. Also, the expected t-

test findings for each metabolite between groups 1 and 2 if my hypotheses were supported.  

A permutational multivariate analysis of variance (PERMANOVA) would be used to 

assess microbiota composition across individuals, which will compare the similarity scores 

given for each individual in the similarity matrix (as described in fecal matter sample 

analysis above) (45). PERMANOVA will indicate if microbiota community structure is 

significantly different between groups 1 and 2. More specifically, it will provide further 

information on whether treatment or time affects the p-value, and which is more significant. 

In addition, I would use principal coordinates analysis (PCoA) to visualize dissimilarities 

between bacterial communities across patients. I would be able to see if there is a difference 

between individuals on day 30 after taking L. reuteri and individuals on day 30 after taking 

the placebo. Additionally, I will be able to use the PCoA ordination to discover the species 

and factors that strongly correlate to the patterns seen across treatment groups by using key 

indicator species analysis (46). Using key indicator species analysis, it is possible to identify 

which treatment (group 1 vs. 2), time (day 0 vs. 30), and metabolite is driving this shift in 

microbiota.  

Ultimately the findings from the colonic biopsies would be additional support to the 

other samples (feces, urine & blood), as they are more difficult to collect, so there will likely 
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be a higher failure rate. I would plan on correlating findings of IDO expression, IFNγ, IL-10 

and IL-4, with findings from the other samples for each individual. This would be done 

through calculating the average level of IDO expression, IFNγ, IL-10 and IL-4 across groups, 

and then performing a t-test between group 1 and 2 for each finding to test for statistical 

significance.  

 

Expected Results 

 If my hypotheses were supported, I expect certain levels of metabolites to be higher 

than others, and some t-tests to result in p-values that are significant and others with p-values 

that are non-significant. I expect a significant difference for every metabolite between groups 

1 and 2 on day 30 (Figure 5 in methods). In addition, I expect a significant difference within 

group 2 on day 0 vs. 30 for every metabolite (Figure 5). However, I expect no significant 

difference between groups on day 0, and within group 1 between day 0 and 30 (Figure 5). 

Table 2 shows the expected average metabolite level in group 2 day 30, where I expect there 

to be a statistically significant difference when compared to both groups at day 0, and when 

compared to group 1 at day 30. Overall, I suspect metabolite levels in group 2 day 30 to be 

substantially different (Table 2). I chose to measure some metabolites in multiple samples 

throughout my study, so for these, serotonin, kynurenine, tryptophan and kynurenic acid, I 

have chosen to label them with varying degrees of expected increase or decrease in findings. 

+ indicates an increase, and – indicates a decrease, in metabolite level as compared to group 

1 and 2 day 0, and as compared to group 1 day 30 (Table 2). ++ indicates an even greater 

increase, whereas - - indicates an even greater decrease (Table 2).  
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Table 2. Expected average metabolite concentration level in group 2 on day 30 as compared 

to group 2 on day 0 and group 1 on day 0 and 30.  

Metabolite  Expected Average Change in 

Metabolite Concentration (+/-)  

Serotonin from blood sample + 

Serotonin from urine sample ++ 

Kynurenine from blood sample - 

Kynurenine from urine sample - -  

Tryptophan from blood sample + 

Tryptophan from urine sample ++ 

Kynurenic acid from blood sample - 

Kynurenic acid from urine sample - - 

C reactive protein - 

Quinolinic acid  - 

H2O2  ++ 

IDO expression  - 

IFNγ - 

Interleukins  

• IL-4 

• IL-10 

 

+ 

+ 

Patient Health Questionnaire 

(PHQ-9) numerical results 

-  

 

In general, I expect kynurenine pathway metabolite levels to be higher in urine than 

in blood (47). A critical aspect of Table 2 is that I expect lower IDO expression and lower 

levels of kynurenine, and higher tryptophan and serotonin levels in the group of patients that 

have been taking L. reuteri as compared to the placebo group (21, 22). This would imply that 

the L. reuteri feeding was effective in influencing tryptophan metabolism down the 
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kynurenine pathway, and a potential reason for this is that L. reuteri produces H2O2, which 

inhibits IDO and consequently results in higher levels of tryptophan and serotonin, and lower 

levels of kynurenine. 

I expect to see a reduction in depression attributable to a certain treatment. My 

expected results consistent with this would be from the PHQ-9 responses. I expect to see 

lower levels of depression in group 2 day 30 as indicated through the numerical value from 

the questionnaire. I would then correlate this finding to serotonin and kynurenine levels. I 

would correlate these findings using a linear regression to obtain slope, r2 and r, the Pearson 

product-moment correlation coefficient. I would then use Vassar stats (http://vassarstats.net/) 

to test for the significance of the Pearson product-moment correlation coefficient. I expect to 

see significance between low questionnaire values and low levels of kynurenine, and low 

questionnaire values with high levels of serotonin.  

I expect to see a significant change in community structure due to probiotic feeding. 

My expected results consistent with this would be a significant shift in community structure 

on day 30 for group 2, as compared to group 2 day 0, and group 1 day 0 and 30. This 

expected shift is depicted in Figure 6. I would expect to see more L. reuteri present in the 

stool samples of individuals from group 2 on day 30, than individuals from group 1 on day 0 

and 30, and from group 2 on day 0.  

http://vassarstats.net/
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Figure 6. Expected experimental ordination of microbial communities for both treatments on 

day 0 and day 30 (n=30). Community structure is expected to shift in group 2 on day 30 after 

probiotic consumption.  

 

Discussion 

If my hypotheses were supported, then this would indicate that the mouse findings 

from Valladares et al., and Marin et al. could be translated to humans. This study would give 

a greater glimpse into a mechanism behind this gut-brain axis in humans. If findings support 

my hypotheses, then the kynurenine pathway proves to be a significant pathway in 

understanding how our gut microbes influence depression. In addition, L. reuteri would 

prove to be influential in this axis and play a role in depression. This could broaden the view 

on probiotics as one that is not just focused on the gut, but also on the brain.  
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This study contributes measurements of specific markers using several samples, such 

as H2O2 in feces or kynurenine levels in urine or blood, which could be valuable for other 

purposes, such as prognosis or monitoring changes throughout drug or probiotic intervention. 

The results from this study would be valuable in establishing a mechanistic connection 

between the gut and the brain. Additionally, the kynurenine pathway could serve as a target 

for drugs or other therapies in treating depression. This would especially be true if the link to 

depression is supported through the PHQ-9 questionnaire responses, because this would open 

the opportunity to view depression in an entirely different way than the current view in the 

medical field and society. Antidepressants would no longer be the main way to ease 

depression symptoms, and this pathway could serve as a way to truly cure and treat 

depression. If gut microbes and tryptophan metabolism along the kynurenine pathway play 

significant roles in depression, then the emphasis previously placed on the brain would 

lessen. Depression would no longer be viewed as a chemical imbalance in the brain, but 

instead an imbalance in gut microbiota.  

 

Complicating Factors 

This study contains a few complicating factors that are uncontrolled. First, 

compliance with taking the probiotic treatment will be facilitated through counting pills 

returned at the end of the study, but this could allow patients to throw out or keep pills in 

order to make it seem like they took it every day, when they really did not. Another 

important consideration in my study is the role of confounding variables on my results. I plan 

on assessing for confounding variables through the questionnaire given at the beginning and 

end of my study, however, these confounding variables could influence my data. For 
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example, the diet of each patient will be not be controlled or restricted, meaning that the 

occasional consumption of prebiotic and probiotic rich foods could influence metabolite 

levels and PHQ-9 findings. It would be detrimental to my study if a patient in group 1 

consumed prebiotic and probiotic rich foods, because their microbiota and metabolite levels 

may look similar to a patient in group 2. Other variables such as physical activity and 

moderate alcohol consumption could influence my data as well. Another influencing factor is 

the level of depression among patients in group 1 and 2 on day 0. I plan to randomize my 

sample into two groups, however, this does not account for people who are depressed. Major 

depressive disorder (MDD) affects about 6.7% of the U.S. population, and is more prevalent 

in women than in men (48). 6.7% of my 60-person sample size is 4 people, so I calculated 

the binomial probability of my sample to contain 4 people with MDD. This resulted in the 

mere chance probability of 20.21% for exactly 4 people in my study with MDD. In addition, 

there is 42.27% probability of having 4 or fewer people with MDD, and 37.52% probability 

of having 4 or more people in my study with MDD. I also calculated the binomial probability 

of my sample to contain one person with MDD, because having only one person with MDD 

in my study would most significantly impact my results, as one of the two groups would have 

zero people with MDD. This binomial probability resulted in the mere chance probability of 

6.7% for exactly 1 person in my study with MDD. In addition, there is 1.5% probability of 

having 1 or fewer people with MDD, and 91.8% probability of having 1 or more people in 

my study with MDD. Thus I would expect between 1-4 people in my study to have MDD, so 

upon randomizing people into two groups, this randomization could potentially lead to an 

uneven distribution of people with depression across the two groups, which would influence 

my results, especially when looking at PHQ-9 outcomes and metabolite levels. Ultimately, I 
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expect my sample to contain people with major depressive disorder, which is an important 

factor that will not be controlled for. Finally, another important influencing factor is that 

people coming in to get colonoscopies and regularly checking in with a gastroenterologist 

may not be representative of the general population. This is because people who are coming 

in to get colonoscopies are likely of a certain age, health status and socioeconomic status. 

These patients have the money and time to access a gastroenterologist, and are typically 

around 50 years old. Additionally, women are more likely than men to have a colonoscopy 

(49), so there may not be an even split among males and females in my sample. If my sample 

group is not representative of the general population, then my data can not necessarily be 

extrapolated for broader medical purposes. 

 

Future Directions 

The gut-brain axis and its link to depression is an increasingly popular topic of study 

and conversation. However, research on this link is limited, especially in humans. Most 

studies are limited to manipulation of rodents, which makes it difficult to apply these 

findings to humans, and consequently impact the medical field. My study proposes a 

probiotic intervention in humans, with the hope of getting a greater glimpse into the role the 

kynurenine pathway plays in humans and the link between gut microbes and depression. 

There are many areas that future researchers could explore in order to learn about and utilize 

this relationship further. 

A future direction is to look further into the kynurenine pathway and probiotics in 

younger populations, as my sample will primarily contain people over 50 years old. These 
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studies would not need to be so comprehensive, and could instead analyze feces or urine 

samples in different populations to look at tryptophan metabolism along the kynurenine 

pathway. In addition, I anticipate that IDO expression may not be statistically significant 

with a small group of people, thus if this proves to be true, then a future direction for this 

study would be to add more people to obtain a greater sample size to analyze IDO expression 

in order to see statistical significance. Probiotic feeding of a larger sample size is 

recommended, and also to use other strains of bacteria besides L. reuteri for probiotic 

consumption. There is a lot of uncertainty surrounding which genera or species of bacteria 

are most beneficial in this axis’ link to depression, and what they specifically do that proves 

to be beneficial. Future research must focus on deciphering which bacteria influence the 

kynurenine pathway, and if a probiotic formulation of such bacteria can serve as a 

therapeutic strategy for mood disorders.   

To conclude, this study holds the potential to demonstrate that the kynurenine 

pathway is a critical link between the gut microbiome and depression in humans. 

Additionally, this study could find that a thirty-day L. reuteri probiotic intervention can 

influence tryptophan metabolism down the kynurenine pathway to increase circulating levels 

of serotonin and tryptophan in the body, and decrease levels of kynurenine, which all 

contribute to decrease levels of depression in an individual. An emphasis on the microbiome 

in the treatment of depression could drastically alter the use of antidepressants and work 

towards curing depression, rather than simply alleviating symptoms.  
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Appendix  

Patient Health Questionnaire (PHQ-9) (41) 
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