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Abstract

In this thesis, we develop the Kubota-Leopoldt Riemann zeta function in
the 𝑝-adic integers. We follow Neil Koblitz’s interpolation of Riemann
zeta, using Bernoulli measures and 𝑝-adic integrals. The underlying goal
is to better understand 𝑝-adic expansions and computations. We finish
by connecting the Riemann zeta function to L-functions and their 𝑝-adic
interpolations.
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Chapter 1

Overture

When Kurt Hensel formally introduced the 𝑝-adic numbers in 1897, he
probably was not thinking about how silly the name sounded. The 𝑝-adics
are not actually a type of obscure vegetable or a swear someone might use
in Oklahoma. Instead, they are all about prime numbers, which is what the 𝑝
stands for.

The 𝑝-adic numbers, written ℚ𝑝 , are an entirely different number field
from the reals or the complex numbers. In place of ℤ are the 𝑝-adic integers,
ℤ𝑝 . Instead of decimals, we have 𝑝-adic expansions. Lots of things look like
real numbers. Nothing acts like it.

Our goal is, ostensibly, to interpolate a function in the 𝑝-adics. The
underlying hope is to understand how computations work in ℚ𝑝 . We will go
through examples and see the connections between real numbers, modular
arithmetic, and 𝑝-adic numbers.

Often, numbers in the 𝑝-adics are written like real numbers: 4, 83, 6725601
22 ,

etc. The true form of a 𝑝-adic number, though, is the 𝑝-adic expansion–a
number represented in powers of 𝑝. Most 𝑝-adic math is done with these
expansions. For example, in ℚ7,

6725601
22 = 1 + (5 · 7) + (6 · 72) + (1 · 73) + . . . .

Chapter 3 will explain how to find these expansions.
Integer shorthand will be extended to rational numbers for this thesis.

When we say 𝑝 ∤ 𝑘, we mean that 𝑝 does not divide the numerator or the
denominator of 𝑘 in its simplified form. When we say that 𝑘 ≡ 𝑗 (mod 𝑝),
we mean that 𝑘 = 𝑗 + 𝑚𝑝 where 𝑚 ∈ ℤ. This way, any fractional parts of 𝑘
and 𝑗 remain fractions.



2 Overture

We will do our best to supply all necessary context, but this thesis is
intended to be accessible to someone with a background in undergraduate
number theory and analysis. For Chapter 2, familiarity with complex
integrals will also be assumed.

The next section will provide some background on the Riemann zeta
function, focusing on complex analysis. The third section is a more in-depth
look at the 𝑝-adics, and the fourth section interpolates the Riemann zeta
function into the 𝑝-adics.

Interpolation means taking a function in one field and making it work in
another. For instance we will take the Riemann zeta function, defined on
the complex plane, and manipulate it until it works in the 𝑝-adic integers.
Sometimes this means substituting in analogous operations, sometimes it
means changing the inputs, and sometimes it means completely rewriting
parts of the function. We reserve the right to take creative liberties.



Chapter 2

Classical Functions

This chapter acts as an overview of the Riemann zeta function. The zeta
function has several important uses, but we are most interested in its relation
to Bernoulli numbers. We will 𝑝-adically interpolate the function in Chapter
4. For now, it is helpful to establish some major properties.

Before beginning, some notation is required. The following section takes
place in the complex plane, so for complex variable 𝑧 = 𝑥 + 𝑖𝑦, Re(𝑧) will
denote the real part of the variable, 𝑥, and Im(𝑧) will denote the imaginary
coefficient, 𝑦.

2.1 The Riemann Zeta Function

Definition 2.1.1 (Riemann Zeta Function). The Riemann zeta function is defined
for 𝑧 ∈ ℂ as

𝜁(𝑧) =
∞∑
𝑛=1

1
𝑛𝑧
. (2.1)

Alternatively,

𝜁(𝑧) =
∏

prime 𝑝

(
1 − 1

𝑝𝑧

)−1
. (2.2)

Riemann zeta converges when Re(𝑧) > 1:���� 1
𝑛𝑧

���� ≤ ���� 1
𝑛Re(𝑧)

���� ≤ 1
𝑛1+𝛿



4 Classical Functions

for some 𝛿 > 0, and a well-established fact from calculus is that infinite
series

∞∑
𝑛=1

1
𝑛𝑝

converge for 𝑝 > 1. By the comparison test, Riemann zeta converges when
Re(𝑧) > 1.

Additional functions will be introduced throughout this section, but they
are just a means to an end. What we really want is the following identity for
natural number 𝑘:

𝜁(1 − 𝑘) = −𝐵𝑘
𝑘

(2.3)

where 𝐵𝑘 is the k𝑡ℎ Bernoulli number. When we finally 𝑝-adically interpolate
the Riemann zeta function, this is the equation we will work with. It is
much simpler than an infinite sum or product, and Bernoulli numbers are
surprisingly easy to work with in the 𝑝-adics. The appearance of Bernoulli
numbers is a bit startling, so we will use this section to illustrate how they
got in there.

The zeta function is often analyzed in tandem with the Gamma function,
defined for 𝑧 ∈ ℂ with Im(𝑧) > 0, as

Γ(𝑧) =
∫ ∞

0
𝑒−𝑡𝑡𝑧−1 𝑑𝑡.

The Gamma function is a way to generalize factorials, because

Γ(𝑛 + 1) = 𝑛! (2.4)

for any nonnegative integer 𝑛.
Conventional analysis also establishes

Γ(𝑧)Γ(1 − 𝑧) = 𝜋

sin(𝜋𝑧) . (2.5)

One integral representation of 𝜁(𝑧) for Re(𝑧) > 1 is

Γ(𝑧)𝜁(𝑧) =
∫ ∞

0

𝑥𝑧−1𝑒−𝑥

1 − 𝑒−𝑥 𝑑𝑥. (2.6)

For a proof, consult Apostol (1998: p.251).
Define another function:

𝐼(𝑧) = 1
2𝜋𝑖

∫
𝐶

𝑠𝑧−1𝑒 𝑠

1 − 𝑒 𝑠 𝑑𝑠. (2.7)
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It can be shown that I(𝑧) is an entire function of 𝑧. Again, see proof in
Apostol (1998: p.253).

The contour over which 𝐼 is defined, contour 𝐶, is illustrated in Figure
2.1. The contour goes around the negative real axis, consisting of 𝐶1 and 𝐶3
which move counterclockwise around the axis, and circle 𝐶2 centered about
the origin.

Figure 2.1 Contour 𝐶

To get to the Bernoulli numbers, we will need the following integral
representation of Riemann zeta. Incidentally, this lemma also acts as an
analytic continuation of 𝜁(𝑧)–which we will use–but it is not our primary
motivation.
Lemma 2.1.1. When Re(𝑧) > 1,

𝜁(𝑧) = Γ(1 − 𝑧)𝐼(𝑧). (2.8)

Proof. The aim of 𝐼 is to integrate over the nonnegative real axis, so we will
eventually let the radius of 𝐶2 go to 0 as the lines (𝐶1 and 𝐶3) go to negative
infinity. There are two issues. One, 𝐼 has a pole at 𝑠 = 0, and two, 𝑧𝑠−1 is a
multivalued function, which means simplifying too early could result in the
wrong answer.

Isolate the multivalued part of the integral by letting

𝑔(𝑠) = 𝑒 𝑠

1 − 𝑒 𝑠 .

For most of the following calculations, 𝑔(𝑠) will not be important, so we can
safely set it aside and write

2𝜋𝑖𝐼(𝑧) =
∫
𝐶

𝑠𝑧−1𝑔(𝑠) 𝑑𝑠.
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Parameterize 𝐶1 as 𝑠 = 𝑟𝑒−𝜋𝑖 and 𝐶3 as 𝑠 = 𝑟𝑒𝜋𝑖 . As previously stated, 𝑟
will eventually go to infinity, but by convention, instead we let 𝑟 go from 𝜀
to 𝜌 and take the limit as 𝜌 goes to infinity.

Parameterize 𝐶2 as 𝑠 = 𝜀𝑒 𝑖𝜃 where −𝜋 ≤ 𝜃 ≤ 𝜋. Eventually, we will take
the limit as 𝜀 goes to 0, but not yet. In fact, note that

2𝜋𝑖𝐼(𝑧) = lim
𝜌→∞
𝜀→0

(∫
𝐶1

+
∫
𝐶2

+
∫
𝐶3

)
.

By evaluating 𝐼 with these limits, we will eventually reach Equation 2.8.
Start with 𝐶1. Recall that 𝑒−𝜋𝑖 = 𝑒𝜋𝑖 = −1 by Euler’s formula. In every

case except 𝑠𝑧−1 , simplifying 𝑟𝑒−𝜋𝑖 to −𝑟 is fine. As mentioned earlier,
however, 𝑠𝑧−1 will give a different answer if we simplify before plugging in.
To change from 𝑠 to 𝑟𝑒−𝜋𝑖 , we will need to change measures as well:

𝑠 = −𝑟
𝑑𝑠 = −𝑑𝑟.

Thus, letting 𝑠 = −𝑟 for most of the integral,

−
∫ 𝜀

𝜌
(𝑟𝑒−𝜋𝑖)𝑧−1𝑔(−𝑟) 𝑑𝑟 = −

∫ 𝜀

𝜌
𝑟𝑧−1𝑒−𝜋𝑖𝑧𝑒𝜋𝑖 𝑔(−𝑟) 𝑑𝑟

=

∫ 𝜀

𝜌
𝑟𝑧−1𝑒−𝜋𝑖𝑧 𝑔(−𝑟) 𝑑𝑟

=

∫ 𝜌

𝜀
−𝑟𝑧−1𝑒−𝜋𝑖𝑧 𝑔(−𝑟) 𝑑𝑟.

We switched bounds on the integral so that 𝐶1 will have the same bounds
as 𝐶3 when we add them. The process for 𝐶3 is nearly identical to that of 𝐶1:

−
∫ 𝜌

𝜀
(𝑟𝑒𝜋𝑖)𝑧−1𝑔(−𝑟) 𝑑𝑟 =

∫ 𝜌

𝜀
𝑟𝑧−1𝑒𝜋𝑖𝑧 𝑔(−𝑟) 𝑑𝑟.

Combining the two, we get∫ 𝜌

𝜀
−𝑟𝑧−1𝑒−𝜋𝑖𝑧 𝑔(−𝑟) 𝑑𝑟 +

∫ 𝜌

𝜀
𝑟𝑧−1𝑒𝜋𝑖𝑧 𝑔(−𝑟) 𝑑𝑟

=

∫ 𝜌

𝜀
𝑟𝑧−1𝑔(−𝑟)[−𝑒−𝜋𝑖𝑧 + 𝑒𝜋𝑖𝑧] 𝑑𝑟

=

∫ 𝜌

𝜀
𝑟𝑧−1𝑔(−𝑟)[2𝑖 sin(𝜋𝑧)] 𝑑𝑟,
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by Euler’s formula.
As a reminder, what we have so far is

2𝜋𝑖𝐼(𝑧) = lim
𝜌→∞
𝜀→0

2𝑖 sin(𝜋𝑧)
∫ 𝜌

𝜀
𝑟𝑧−1𝑔(−𝑟) 𝑑𝑟 + lim

𝜌→∞
𝜀→0

∫
𝐶2

(something).

Now take the limit of the first integral:

2𝑖 sin(𝜋𝑧) lim
𝜌→∞
𝜀→0

∫ 𝜌

𝜀

𝑟𝑧−1𝑒−𝑟

1 − 𝑒−𝑟 𝑑𝑟.

By Equation 2.6, the above limit is equivalent to

2𝑖 sin(𝜋𝑧)Γ(𝑧)𝜁(𝑧),

which is quite similar to what we eventually want.
Before finishing up, we still need to take care of 𝐶2 , which is paramater-

ized by 𝑠 = 𝜀𝑒 𝑖𝜃 with −𝜋 ≤ 𝜃 ≤ 𝜋. For change of variables,

𝑠 = 𝜀𝑒 𝑖𝜃

𝑑𝑠 = 𝑖𝜀𝑒 𝑖𝜃 𝑑𝜃.

The integral is

𝑖

∫ 𝜋

−𝜋
𝜀𝑧−1𝑒(𝑧−1)𝑖𝜃𝑔(𝜀𝑒 𝑖𝜃)𝜀𝑒 𝑖𝜃 𝑑𝜃

= 𝑖𝜀𝑧
∫ 𝜋

−𝜋
𝑒 𝑖𝑧𝜃𝑔(𝜀𝑒 𝑖𝜃) 𝑑𝜃.

This integral will eventually go to 0, but to prove it, we will need a result
from complex analysis.

Lemma 2.1.2. If 𝑓 (𝑧) is continuous on some complex contour Γ, and if | 𝑓 (𝑧)| ≤ 𝑀

for all 𝑧 ∈ Γ, then ����∫
Γ

𝑓 (𝑧) 𝑑𝑧
���� ≤ 𝑀 · the arc length of Γ.

Break up
|𝑖𝜀𝑧𝑒 𝑖𝑧𝜃𝑔(𝜀𝑒 𝑖𝜃)| = |𝑖𝜀𝑧 | · |𝑒 𝑖𝑧𝜃 | · |𝑔(𝜀𝑒 𝑖𝜃)|.
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Let 𝑧 = 𝑥 + 𝑖𝑦 for some real 𝑥 and 𝑦. Then in a well-known result,

|𝑖𝜀𝑥+𝑖𝑦 | = |𝑖 | · |𝜀𝑥 | · | cos(𝑦) + 𝑖 sin(𝑦)|

= 1 · |𝜀𝑥 | ·
√

cos2(𝑦) + sin2(𝑦)
= 𝜀𝑥 .

Consider |𝑒 𝑖𝑧𝜃 |. By the same argument as above, |𝑒 𝑖𝑧𝜃 | = 𝑒−𝑦𝜃 . In the first
case, if 𝑦 > 0, this function is greatest at 𝜃 = 𝜋. In the second case, if 𝑦 < 0,
then this function is greatest at 𝜃 = −𝜋, but the output is equal to that of the
first case’s maximum. If 𝑦 = 0, then the function is 1 and 𝜃 does not matter.
In every case,

𝑒−𝑦𝜃 ≤ 𝑒 |𝑦 |𝜋.

The last term is |𝑔(𝜀𝑒 𝑖𝑧𝜃)|. Since 𝑔(𝑠) is analytic apart from a simple pole
at 𝑠 = 0, 𝑧𝑔(𝑧) is analytic over all of 𝐶2. Analytic over a bounded domain
implies that 𝑧𝑔(𝑧) is also bounded by a constant, say 𝐴. Thus

|𝑧 | |𝑔(𝑧)| ≤ 𝐴,

implying

|𝑔(𝑧)| ≤ 𝐴

|𝑧 | .

As proven by an argument similar to that of |𝑖𝜀𝑧 |, |𝜀𝑒 𝑖𝜃 | = 𝜀. Therefore,
|𝑔(𝜀𝑒 𝑖𝜃)| ≤ 𝐴

𝜀 .

Lastly, the arc length of 𝐶2 is 2𝜋𝜀. Putting everything together, we find����∫
𝐶2

𝑖𝜀𝑧𝑒 𝑖𝑧𝜃𝑔(𝜀𝑒 𝑖𝜃) 𝑑𝜃
���� ≤ 2𝜋𝜀 · 𝑖𝜀𝑥 · 𝐴

𝜀
· 𝑒 |𝑦 |𝜋 = 2𝐴𝜋𝑖𝑒 |𝑦 |𝜋𝜀𝑥 .

Finally, take the limit as 𝜀 → 0. We said Re(𝑧) > 1, meaning 𝑥 > 1.
Therefore,

lim
𝜀→0

2𝐴𝜋𝑖𝑒 |𝑦 |𝜋𝜀𝑥 = 0.

Finally, go back to 𝐼(𝑧):

2𝜋𝑖𝐼(𝑧) = 2𝑖 sin(𝜋𝑧)Γ(𝑧)𝜁(𝑧).

Then
𝐼(𝑧) = sin(𝜋𝑧)

𝜋
Γ(𝑧)𝜁(𝑧).
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By Equation 2.5,
Γ(𝑧) = 𝜋

sin(𝜋𝑧)Γ(1 − 𝑧) ,

and thus,
𝜁(𝑧) = Γ(1 − 𝑧)𝐼(𝑧).

□

Note that Γ(1 − 𝑧) and 𝐼(𝑧) are fully defined and analytic for Re(𝑧) < 1,
so with this equation, we can define 𝜁(𝑧) for Re(𝑧) < 1. This is how analytic
continuation works: we rewrite a function in terms of other functions with
larger domains, and use the new equation to extend our first function.

2.2 Zeta and the Bernoulli Numbers

At this point, we can introduce Bernoulli numbers. Bernoulli numbers
were first discovered by Seki Takakazu in Japan, but due to Eurocentrism,
they are conventionally named after Western mathematician Jacob Bernoulli
(O’Connor and Robertson, 1997: p. 32).

There are several ways to define Bernoulli numbers. They show up
as coefficients in equations which sum up the first 𝑛 numbers, raised
individually to some power𝑚. Another way to define them is with Bernoulli
polynomials, which are coefficients themselves. In short,

𝑧𝑒𝑥𝑧

𝑒𝑧 − 1 =

∞∑
𝑛=0

𝐵𝑛(𝑥)
𝑛! 𝑧𝑛 , (2.9)

where 𝐵𝑛(𝑥) is defined as the n𝑡ℎ Bernoulli polynomial. For this sum to
converge, |𝑧 | < 2𝜋.
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Behold, the first five Bernoulli polynomials:

𝐵0(𝑥) = 1

𝐵1(𝑥) = 𝑥 − 1
2

𝐵2(𝑥) = 𝑥2 − 𝑥 + 1
6

𝐵3(𝑥) = 𝑥3 − 3
2𝑥

2 + 1
2𝑥

𝐵4(𝑥) = 𝑥4 − 2𝑥3 + 𝑥2 − 1
30

𝐵5(𝑥) = 𝑥5 − 5
2𝑥

4 + 5
3𝑥

3 − 1
6𝑥

The Bernoulli numbers are 𝐵𝑛(0), but we just write 𝐵𝑛 .
The first five Bernoulli numbers are:

𝐵0 = 1

𝐵1 = −1
2

𝐵2 =
1
6

𝐵3 = 0

𝐵4 = − 1
30

𝐵5 = 0

It turns out that for every 𝑛 odd and greater than 1, 𝐵𝑛 = 0.
It can also be shown that

𝐵𝑛(0) = 𝐵𝑛(1) for 𝑛 ≥ 2.

See Apostol (1998: p.265) for proofs.
Mathematicians have no real explanation for why Bernoulli numbers pop

up in so many contexts, so there is little overall intuition for their appearance
in the Riemann zeta function. Earlier integral representations of the Riemann
zeta function do, however, bear a passing resemblance to the function in
Equation 2.9, and thus, perhaps it is not quite as surprising that we find
Bernoulli polynomials in the next lemma.
Lemma 2.2.1. For every positive integer 𝑛,

𝜁(−𝑛) = − 𝐵𝑛+1
𝑛 + 1 . (2.10)
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Proof. Lemma 2.1.1 says

𝜁(𝑧) = Γ(1 − 𝑧)𝐼(𝑧),

and via analytic continuation, this equation will hold for all values of 𝑧.
Let 𝑛 be a nonnegative integer. Then by Lemma 2.1.1

𝜁(−𝑛) = Γ(1 − (−𝑛))𝐼(−𝑛) = Γ(𝑛 + 1)𝐼(−𝑛).

For 𝑛 ∈ ℤ, we can directly compute the right hand side of the equation
to get the Bernoulli polynomials.

First consider 𝐼(−𝑛). In the proof of Lemma 2.1.1 we found the integral
along 𝐶1 to be ∫ 𝜌

𝜀
−𝑟𝑧−1𝑒−𝜋𝑖𝑧 𝑔(−𝑟) 𝑑𝑟.

Additionally, the integral along 𝐶3 was∫ 𝜌

𝜀
𝑟𝑧−1𝑒𝜋𝑖𝑧 𝑔(−𝑟) 𝑑𝑟.

If 𝑧 = −𝑛 is an odd integer, then 𝑒𝜋𝑖(−𝑛) = −1 = 𝑒−𝜋𝑖(−𝑛). If 𝑧 = −𝑛 is even,
then 𝑒𝜋𝑖(−𝑛) = 1 = 𝑒−𝜋𝑖(−𝑛).

Either way,
∫
𝐶1

= −
∫
𝐶3

when 𝑛 is an integer. For example, if 𝑛 = 2, then
the integral along 𝐶1 is ∫ 𝜌

𝜀
−𝑟𝑔(−𝑟) 𝑑𝑟

while the integral along 𝐶3 is ∫ 𝜌

𝜀
𝑟𝑔(−𝑟) 𝑑𝑟.

Ultimately, adding
∫
𝐶1

+
∫
𝐶3

results in 0 at integer values of 𝑛; 𝐶1 and 𝐶3

will cancel each other out. Accordingly, we only need to solve I(−𝑛) over 𝐶2,
which is a simple, closed, positively-oriented curve. By Cauchy’s Residue
Theorem,

𝐼(−𝑛) = 1
2𝜋𝑖 · 2𝜋𝑖 · Res

𝑠=0

(
𝑠−𝑛−1𝑒 𝑠

1 − 𝑒 𝑠

)
.
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To find the residue, we manipulate the integrand of 𝐼(−𝑛) into Equa-
tion 2.9:

𝑠−𝑛−1𝑒 𝑠

1 − 𝑒 𝑠 = −𝑠−𝑛−2 𝑠𝑒 𝑠

𝑒 𝑠 − 1

= −𝑠−𝑛−2
∞∑
𝑚=0

𝐵𝑚(1)
𝑚! 𝑠𝑚

= −
∞∑
𝑚=0

𝐵𝑚(1)
𝑚! 𝑠𝑚−𝑛−2.

Momentarily setting aside the negative sign, the residue of an integral is
the coefficient on 𝑠−1 in the Laurent expansion of the integrand. The Laurent
series, in this case, is the sum given. Since 𝑚 − 𝑛 − 2 = −1 when 𝑚 = 𝑛 + 1,
the residue will be

𝐵𝑛+1(1)
(𝑛 + 1)! .

Thus, I(−𝑛) = −𝐵𝑛+1(1)
(𝑛+1)! . For 𝑛, a positive integer, Γ(𝑛 + 1) = 𝑛!. Therefore,

𝜁(−𝑛) = −𝑛!𝐵𝑛+1(1)
(𝑛 + 1)!

= −𝐵𝑛+1(1)
𝑛 + 1 .

As mentioned earlier, 𝐵𝑛(1) = 𝐵𝑛(0) for 𝑛 ≥ 2, and hence,

𝐵𝑛+1(1) = 𝐵𝑛+1(0) for 𝑛 > 0.

Therefore,
𝜁(−𝑛) = − 𝐵𝑛+1

𝑛 + 1 .

□

We are almost at our final version of the Riemann zeta function. Only a
few quick manipulations remain.

Lemma 2.2.2. For positive integer 𝑘,

𝜁(1 − 2𝑘) = −𝐵2𝑘
2𝑘 . (2.11)
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Proof. By Lemma 2.2.1

𝜁(−𝑛) = − 𝐵𝑛+1
𝑛 + 1 .

Let −𝑛 = 1 − 2𝑘, so 𝑛 = 2𝑘 − 1. Note that 𝑛 > 0 if 𝑘 is a positive integer.
Hence,

𝜁(1 − 2𝑘) = −𝐵2𝑘
2𝑘 .

□

At this point, we need the following identity:

Lemma 2.2.3. For Re(𝑧) > 1,

𝜁(1 − 𝑧) = 2 cos
(𝜋𝑧

2

)
Γ(𝑧)(2𝜋)−𝑧𝜁(𝑧). (2.12)

Proofs can be found in Apostol (1998: p.259) or Koblitz (1984: p.22).
Lemma 2.2.3 holds for any positive integer 𝑘, but by slightly limiting the

input, the output can be further generalized.

Theorem 2.2.1. For integer 𝑘 > 1,

𝜁(1 − 𝑘) = −𝐵𝑘
𝑘
. (2.13)

Proof. If 𝑘 is even, then we can represent it as 𝑘 = 2𝑚 for 𝑚 ∈ ℤ.

Therefore, by Lemma 2.2.1 , 𝜁(1 − 𝑘) = −𝐵𝑘
𝑘
.

If 𝑘 is odd but greater than 1, then

cos
(
𝜋𝑘
2

)
= 0.

Additionally, 𝐵𝑘 = 0 when 𝑘 is an odd integer greater than 0. Hence, by
Lemma 2.2.3, 𝜁(1 − 𝑘) = 0 = −𝐵𝑘

𝑘
. □

A great deal of complex analysis went into proving such a simple
equation. In deriving Theorem 2.2.1 we saw links between the Gamma
function, multiple zeta functions, and Bernoulli polynomials. Although we
have yet to find an overarching explanation to the appearance of Bernoulli
numbers, on a mathematical level, they arose naturally from various integral
representations. The 𝑝-adic analogue to the Riemann zeta function builds
on Theorem 2.2.1 as, (un)surprisingly, the Bernoulli numbers also pop up in
the 𝑝-adics.





Chapter 3

A p-adic Primer

This chapter provides an introduction to the 𝑝-adic field, assuming prior
knowledge of basic number theory and analysis.

3.1 The Basics

The 𝑝-adic numbers are a field built around some specific prime 𝑝. Accord-
ingly, when working in the 𝑝-adics, we should think in terms of 𝑝.

To build the norm, first start with a smaller measuring tool.

Definition 3.1.1 (𝑝-adic Valuation). Let 𝑛 be a nonzero integer, and let 𝑣𝑝(𝑛) be
the unique nonnegative integer satisfying

𝑛 = 𝑝𝑣𝑝(𝑛)𝑛′, 𝑝 ∤ 𝑛′, 𝑛′ ∈ ℤ.

Then 𝑣𝑝(𝑛) is the 𝑝-adic valuation of 𝑛.

In other words, the 𝑝-adic valuation is the largest power of 𝑝 which
divides 𝑛. For example,

𝑣5(10) = 1, since 10 = 51(2)
𝑣7(10) = 0, since 10 = 70(10).

If we are working in ℚ×, the valuation is defined to be

𝑥 =
𝑎

𝑏
, 𝑣𝑝(𝑥) = 𝑣𝑝(𝑎) − 𝑣𝑝(𝑏).
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Here are some examples:

𝑣3

(
2
9

)
= 0 − 2 = −2,

𝑣3

(
6
27

)
= 1 − 3 = −2.

It appears our valuation is well-defined. By convention, 𝑣𝑝(0) = ∞.
Lemma 3.1.1. For all 𝑥 and 𝑦 ∈ ℚ,

(a) 𝑣𝑝(𝑥𝑦) = 𝑣𝑝(𝑥) + 𝑣𝑝(𝑦)

(b) 𝑣𝑝(𝑥 + 𝑦) ≥ min{𝑣𝑝(𝑥), 𝑣𝑝(𝑦)}

Proof. Let 𝑥 = 𝑝𝑚 𝑗 and let 𝑦 = 𝑝𝑛𝑘 where 𝑗 , 𝑘 ∈ ℚ and 𝑝 does not divide the
numerator or denominator of 𝑗 or 𝑘. For part (𝑎), if 𝑗 ≠ 0 and 𝑘 ≠ 0, we have

𝑥𝑦 = (𝑝𝑚 𝑗)(𝑝𝑛𝑘) = 𝑝𝑚+𝑛 𝑗𝑘.

Therefore, 𝑣𝑝(𝑥𝑦) = 𝑣𝑝(𝑥) + 𝑣𝑝(𝑦).
If 𝑗 = 0, then 𝑥 = 0, 𝑚 = ∞, and ∞+ 𝑛 is still ∞. The same goes for 𝑘 = 0.

For part (𝑏),

𝑥 + 𝑦 = 𝑝𝑚 𝑗 + 𝑝𝑛𝑘 = 𝑝𝑛(𝑝𝑚−𝑛 𝑗 + 𝑘).

If 𝑗 = 0, then 𝑥 = 0 and 𝑣𝑝(0) = ∞. Then

𝑣𝑝(𝑦) = 𝑚 ≥ min{𝑚,∞}.

The same goes for if 𝑘 = 0.
Let 𝑗 ≠ 0 and 𝑘 ≠ 0. Without loss of generality, say 𝑚 ≥ 𝑛. If 𝑚 ≠ 𝑛, then

(𝑝𝑚−𝑛 𝑗 + 𝑘) ≡ 𝑘 (mod 𝑝).
Because 𝑘 ≠ 0, we know that 𝑝 ∤ (𝑝𝑚−𝑛 𝑗 + 𝑘). Hence, 𝑣𝑝(𝑥 + 𝑦) = 𝑛.

If 𝑚 = 𝑛, then the 𝑝-term vanishes and we could potentially get another
𝑝 out of 𝑗 + 𝑘, meaning our exponent on 𝑝 might be even greater.

In any case,
𝑣𝑝(𝑥 + 𝑦) ≥ 𝑛 = min{𝑣𝑝(𝑥), 𝑣𝑝(𝑦)}.

□

Now that we have a way to measure the amount of 𝑝 in some number,
we can start thinking about size and distance.
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Definition 3.1.2 (Norm). Norm | · | on arbitrary field 𝕂 with some elements 𝑥, 𝑦
is a function that maps 𝕂 to the nonnegative reals with the following properties:

1. |𝑥𝑦 | = |𝑥 | |𝑦 |

2. |𝑥 + 𝑦 | ≤ |𝑥 | + |𝑦 |

3. |𝑥 | = 0 if and only if 𝑥 = 0.

Some norms have another feature, sometimes called the “stronger triangle
inequality" because it implies the norm triangle inequality, and sometimes
called the non-Archimedean property.

Definition 3.1.3 (Non-Archimedean Property). A norm is non-Archimedean if,
for any 𝑥, 𝑦 elements in the field,

|𝑥 + 𝑦 | ≤ max{|𝑥 |, |𝑦 |}.

The 𝑝-adic valuation is easily manipulated into a non-Archimedean
norm. If 𝑣𝑝 stays an exponent, property (a) from Lemma 3.1.1 becomes the
first property of the norm definition. We still want to measure in terms of
prime 𝑝, so we keep 𝑝 as the base. The first attempt looks like

|𝑥 |𝑝 = 𝑝𝑣𝑝(𝑥).

Comparing part (b) of Lemma 3.1.1 to the triangle inequality (part 2 of the
norm definition), on the other hand, does not bring the same success. If the
exponent gains a negative sign though, part (b) flips to the correct inequality.

There is no way to raise 𝑝 to a power and achieve exactly 0, so we just set

|0|𝑝 = 0

to fulfill our last property.

Definition 3.1.4 (𝑝-adic Norm). Let 𝑥 ∈ ℚ. Then

|𝑥 |𝑝 =
{
𝑝−𝑣𝑝(𝑥) , 𝑥 ≠ 0
0, 𝑥 = 0

is the 𝑝-adic norm.

We usually measure size in relation to 0 so it might not be obvious at first
why the 𝑝-adic norm is so weird. But when we measure distance from 0, we
are subtracting and adding, which works for any number. In the 𝑝-adics, we
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are factoring, and that means any number which does not have a multiple of
𝑝 in the numerator or denominator is in a nebulous this-seems-wrong kind
of space.

A closely related concept is a metric, or a measure of distance.

Definition 3.1.5 (Metric). A metric or distance function on arbitrary field𝕂 maps
𝕂 to the nonnegative real numbers. For elements 𝑥 and 𝑦 and 𝑧 in 𝕂, the metric 𝑑
has the following properties:

1. 𝑑(𝑎, 𝑏) > 0 and 𝑑(𝑎, 𝑎) = 0

2. 𝑑(𝑎, 𝑏) = 𝑑(𝑏, 𝑎)

3. 𝑑(𝑎, 𝑏) ≤ 𝑑(𝑎, 𝑐) + 𝑑(𝑐, 𝑏).

Lemma 3.1.2. The 𝑝-adic norm 𝑑(𝑎, 𝑏) = |𝑎 − 𝑏 |𝑝 for 𝑝-adic numbers 𝑎 and 𝑏 is
also a metric.

Proof. The proof of property 1 is straightforward. For distinct 𝑎, 𝑏,

|𝑎 − 𝑏 |𝑝 = 𝑝−𝑣𝑝(𝑎−𝑏).

The only way to get 0 out of the norm is if 𝑎 − 𝑏 = 0, meaning 𝑎 = 𝑏, so the
only instance of zero is 𝑑(𝑎, 𝑎) = 0.

For part 2, observe

|𝑎 − 𝑏 |𝑝 = |(−1)(𝑏 − 𝑎)|𝑝 .

By norm properties, the right hand side becomes

| − 1|𝑝 · |𝑏 − 𝑎 |𝑝 = |𝑏 − 𝑎 |𝑝 .

Thus, |𝑎 − 𝑏 |𝑝 = |𝑏 − 𝑎 |𝑝 .
The metric triangle inequality, helpfully, stems from the norm triangle

inequality:

|𝑎 − 𝑏 |𝑝 = |𝑎 − 𝑐 + (−𝑏 + 𝑐)|𝑝
≤ |𝑎 − 𝑐 |𝑝 + |𝑐 − 𝑏 |𝑝 .

Hence, |𝑎 − 𝑏 |𝑝 is a metric function. □
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3.2 Finding Expansions

By convention, we write numbers in base 10. The 𝑝-adic expansion of a
number is, essentially, writing in base 𝑝.

Definition 3.2.1 (𝑝-adic Expansion). The 𝑝-adic expansion of 𝑎 is∑
𝑖

𝑎𝑖𝑝
𝑖 = 𝑎𝑛0𝑝

𝑛0 + 𝑎𝑛1𝑝
𝑛1 + 𝑎𝑛2𝑝

𝑛2 + . . .

where 𝑎𝑛𝑖 ∈ ℤ and 0 ≤ 𝑎𝑛𝑖 ≤ 𝑝 − 1.

In general, we use 𝑎0 to denote the “constant" term, i.e. the coefficient on
𝑝0. If 𝑎 ∈ ℤ, then 𝑎 ≡ 𝑎𝑜 (mod 𝑝).

The complicated subscripts are necessary in case 𝑎 has negative powers
of 𝑝 in its expansion. Some expansions could go on to the right forever, but
every expansion is “finite-tailed" on one end. These expansions cannot go
on forever to the left; there is always a starting point. We begin by finding
expansions for positive integers, and progress by level of difficulty: negative
integers, fractions, and finally, irrational numbers.

For integer 𝑎, things are simple. The expansion of a positive integer 𝑎
follows the rule

𝑎 ≡ 𝑎0 + · · · + 𝑎𝑘𝑝𝑘 (mod 𝑝𝑘+1).

For instance, the 7-adic expansion of 10 is

10 = 3 + 1 · 7.

Think of negative integers as additive inverses. Then the 𝑝-adic expansion
for −𝑎 is the number which results in the 0 expansion.

Because 1 + (−1) = 0, the 5-adic expansion of −1 is

−1 = 4 + (4 · 5) + (4 · 52) + . . . .

This way,

1 + (−1) = 1 + (0 · 5) + (0 · 52) + . . .
+ 4 + (4 · 5) + (4 · 52) + . . .
= (1 · 5) + (4 · 5) + (4 · 52) + . . .
= 0 + (5 · 5) + (4 · 52) + . . .
= 0 + (0 · 5) + (0 · 52) + . . . .
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The 𝑝-adic expansion of a fraction is found through long division.
In the 7-adics, 2

9 is computed by first writing 2 and 9 in base 7:

2 = 2
9 = 2 + (1 · 7)

and dividing.

1 + (3 · 7)+ (5 · 72)+ (0 · 73)+ (3 · 74)+ · · ·

2 + (1 · 7)
)

2 + (0 · 7)+ (0 · 72)+ (0 · 73)+ (0 · 74)+ · · ·

2 + (1 · 7)
(−1 · 7)+ (7 · 7)+ (−1 · 72)+ (7 · 72)+ · · ·

(6 · 7)+ (6 · 72)+ (6 · 73)+ (6 · 74)+ · · ·
(6 · 7)+ (3 · 72)

(3 · 72)+ (6 · 73)+ (6 · 74)+ · · ·
(3 · 72)+ (6 · 73)

(6 · 74)+ · · ·
. . .

We could go on forever, but the first part of the expansion is

2
9 = 1 + (3 · 7) + (5 · 72) + (0 · 73) + (3 · 74) + . . . .

When we subtract in the 𝑝-adics, we borrow from the right side, not
the left. Even though every coefficient to the right in the first line is a 0,
we tell ourselves that eventually, somewhere down the line, we will hit a
nonzero which we can borrow from. The higher and higher powers of 7 are
practically nothing anyway, so eventually, it is as though we are subtracting
an infinitesimally small amount. We just do it and hope no one catches us.

Arithmetic like above reveals similarities between the 𝑝-adics and mod
𝑝𝑛 . To divide 2 by 2 + 1 · 7, we start by finding some number to multiply 2
and get back 2. Obviously, 2 · 1 = 2, so, without much excitement, we label
the first number in the answer 1. Skip ahead several lines, though, and we
have 3 · 72 + . . . . How can we multiply something by 2 to get 3? Go into mod
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7. Then

2𝑥 ≡ 3 (mod 7)
2(5) ≡ 3 (mod 7)
2(5) = 3 + 1 · 7.

Of course, we actually multiply by 5 · 72 to match powers of 7, so the 1 · 7
is really a 1 · 73 which we carry over to the other 73 term. Much of 𝑝-adic
arithmetic is like this: go into mod 𝑝, go out of mod 𝑝, then carry the 𝑝-term.

If, say, we wanted to find the expansion of 𝑛𝑎 to the 𝑝𝑛-place for integers
𝑛 and 𝑎, we could calculate the entire thing mod 𝑝𝑛+1 and rewrite everything
in base 𝑝. Reducing mod 𝑝𝑛+1 is like throwing away all terms with powers
of 𝑝 higher than 𝑛. This is exactly what we want in an abbreviated 𝑝-adic
expansion. In Chapters 4 and 5.2, further examples will demonstrate this
even deeper connection to mod.

The construction of irrational numbers in the 𝑝-adics is exactly like the
construction of irrationals in the reals. We define them to be the limits of
𝑝-adic Cauchy sequences, which means the 𝑝-adics are complete. Much
like standard irrational numbers, 𝑝-adic irrationals are those numbers with
infinite and non-repeating 𝑝-adic expansions.

With every type of real number accounted for, the formal field of 𝑝-adics
can now be defined.

Definition 3.2.2 (𝑝-adic Field). The field of 𝑝-adic numbers, denoted ℚ𝑝 , is the
set of 𝑝-adic numbers under addition and multiplication.

3.3 Sorting the Numbers

The 𝑝-adic numbers are split into three general categories. Let 𝑥 ∈ ℚ𝑝 , and
𝑎 ∈ ℕ, and 𝑝 ∤ 𝑥′. There are several types of numbers in a 𝑝-adic space:

1. |𝑥 |𝑝 > 1 meaning 𝑥 = 𝑝−𝑎(𝑥′).

2. |𝑥 |𝑝 = 1 meaning 𝑥 = 𝑝0(𝑥′)

3. |𝑥 |𝑝 < 1, meaning 𝑥 = 𝑝𝑎(𝑥′) (or 𝑥 = 0)

The first type of number is a (simplified) fraction with a denominator
containing 𝑝. Additionally, any infinite Cauchy sequence made with numbers
in this category leads to an irrational number also in this category. The
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number has a factor of 𝑝 to a negative power, so the absolute value gives a
positive power of 𝑝. For instance, 1

11 = 11−1, and thus���� 1
11

����
11

= 11.

These fractions are huge in the 𝑝-adic space because everyone else is stuck
at or below a size 1.

There exists better 𝑝-adic notation than simply saying a “group of
numbers." For 𝑛 ∈ ℕ ∪ {0}, mathematicians often study 𝑝-adic sets denoted
𝑝𝑛ℤ𝑝 :

𝑝𝑛ℤ𝑝 = {𝑥 ∈ ℚ𝑝 : |𝑥 |𝑝 ≤ 𝑝−𝑎}.
These sets are called balls, and they will be discussed further in the next

section. The case 𝑛 = 0 is of particular interest as it encapsulates type 2 and
type 3 of the numbers listed above.

Definition 3.3.1 (𝑝-adic Integers). The 𝑝-adic integers form the ring

ℤ𝑝 = {𝑥 ∈ ℚ𝑝 : |𝑥 |𝑝 ≤ 1}.

The norm of any 𝑝-adic integer becomes a fraction between 0 and 1 (or 1
itself). For example, |49|7 = 1

72 and | 39
2 |13 = 1

13 .

On the other hand, every number without any factors of 𝑝 has a valuation
of 0, so their absolute values are all equal to 1. These are the only numbers
with multiplicative inverses in the 𝑝-adic integers.

Definition 3.3.2 (𝑝-adic Units). The 𝑝-adic units are

ℤ×
𝑝 = {𝑥 ∈ ℚ𝑝 : |𝑥 |𝑝 = 1}.

Essentially, the 𝑝-adic units are every number without 𝑝 in the numerator
or denominator (when simplified).

Take a moment to consider 𝑝-adic expansions within the 𝑝-adic norm.
Let 𝑎 ∈ ℤ𝑝 and say |𝑎 |𝑝 = 𝑝−2. That means that the lowest power of 𝑝 in 𝑎 is
𝑝2:

|𝑎 |𝑝 = |𝑎2𝑝
2 + . . . |𝑝 .

In other words, any coefficients like 𝑎0 or 𝑎1 must be 0:

𝑎 = 0 + (0 · 𝑝) + (𝑎2 · 𝑝2) + . . . .

Alternatively, if 𝑎 = 𝑎−1𝑝
−1 + 𝑎0 + . . . , then

|𝑎−1𝑝
−1 + 𝑎0 + . . . |𝑝 = |𝑝−1(𝑎−1 + 𝑎0𝑝 + . . . )|𝑝 = 𝑝.
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That is to say, any number with a negative power of 𝑝 in its expansion
cannot be a 𝑝-adic integer.

Remark. If |𝑎 |𝑝 = 𝑝𝑛 , then the 𝑝-adic expansion of 𝑎 begins at the 𝑝−𝑛 place.

We move on to a bit of ℤ𝑝 analysis. Set 𝑋 is dense in set𝑌 if every point of
𝑌 is a limit point of 𝑋, or if there exists a sequence of terms in 𝑋 converging
to a point in 𝑌 for every point in 𝑌.

Proposition 3.3.1. The nonnegative integers are dense in ℤ𝑝 .

Proof. The 𝑝-adic expansion of every term in ℤ𝑝 is a series of nonnegative
integers. The sequence of partial sums,

𝑎0

𝑎0 + (𝑎1 · 𝑝)
𝑎0 + (𝑎1 · 𝑝) + (𝑎2 · 𝑝2)
. . .

is a sequence made of nonnegative integers, all converging to a 𝑝-adic
integer. □

Lastly, we briefly touch on convergence. As a result of the non-
Archimedean inequality and ℚ𝑝 ’s completeness, series convergence in ℚ𝑝 is
a straightforward affair.

Proposition 3.3.2. An infinite series converges in ℚ𝑝 if and only if its terms go to
0.

For a proof, see Gouvêa (1997: p.89).

3.4 A Sketch of the Landscape

In topology, space is broken up into neighborhoods or open balls.

Definition 3.4.1 (Open Ball). Let 𝑎 ∈ ℚ𝑝 , and 𝑟 > 0. The open ball of radius 𝑟
and center 𝑎 is the set

𝐵(𝑎, 𝑟) = {𝑥 ∈ ℚ𝑝 : |𝑥 − 𝑎 |𝑝 < 𝑟}.

In the 𝑝-adics, every open set is also closed, and every closed set is also
open, in ℚ𝑝 . As a result, we do not worry too much about whether a 𝑝-adic
set needs to be open or closed. Eventually, we will integrate over certain
𝑝-adic balls, so Section 4.4 relies heavily on the facts we are about to establish.
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Lemma 3.4.1. Given any two balls in ℚ𝑝 , either they are completely distinct sets,
or one ball is fully contained within the other.

A proof of the above can be found in Gouvêa (1997: p.36).
Now consider the elements of the ball

𝐵(𝑎, 𝑝−𝑁 ) =
{
𝑥 ∈ ℤ𝑝 : |𝑥 − 𝑎 |𝑝 ≤ 1

𝑝𝑁

}
.

Let
𝑥 = 𝑥0 + 𝑥1𝑝 + · · · + 𝑥𝑁𝑝𝑁 + . . .

and let
𝑎 = 𝑎0 + 𝑎1𝑝 + · · · + 𝑎𝑁𝑝𝑁 + . . . .

Then

|𝑥 − 𝑎 |𝑝 = |(𝑥0 − 𝑎0) + 𝑝(𝑥1 − 𝑎1) + · · · + 𝑝𝑁 (𝑥𝑁 − 𝑎𝑁 ) + . . . |𝑝 ≤ 1
𝑝𝑁

if and only if every term before 𝑝𝑁 is zero. In other words, 𝑥𝑖 = 𝑎𝑖 for 𝑖 < 𝑛.

Write
𝑥 = 𝑎0 + 𝑎1𝑝 + · · · + 𝑎𝑁−1𝑝

𝑁−1 + 𝑥𝑁𝑝𝑁 + . . . .

Reduce mod 𝑝𝑁 to get

𝑥 ≡ 𝑎0 + 𝑎1𝑝 + · · · + 𝑎𝑁−1𝑝
𝑁−1 ≡ 𝑎.

Accordingly, 𝑥 ≡ 𝑎 (mod 𝑝𝑁 ).
Another way to write 𝐵(𝑎, 𝑝−𝑁 ), then, is by equivalence class:

𝐵(𝑎, 𝑝−𝑁 ) = {𝑥 ∈ ℤ𝑝 : 𝑥 ≡ 𝑎 (mod 𝑝𝑁 )}.

Sometimes, we write 𝐵(𝑎, 𝑝−𝑁 ) as 𝑎 + (𝑝𝑁 ), a ball centered at 𝑎 with
radius 1

𝑝𝑁
. The notation will be discussed more in Section 4.4.

Lemma 3.4.2. Every ball of the form 𝑎 + (𝑝𝑁 ) can be decomposed into a finite,
disjoint union of balls 𝑎̂ + (𝑝𝑀) where 𝑀 is a fixed integer greater than 𝑁 , and
𝑎̂ ≡ 𝑎 (mod 𝑝𝑁 ).

Formally,
𝑎 + (𝑝𝑁 ) =

⊔
0≤ 𝑎̂≤𝑝𝑀−1

𝑎̂ + (𝑝𝑀).



Continuity 25

Proof. Fix an 𝑀 ∈ ℤ such that 𝑀 > 𝑁.

First, we prove that the 𝑎̂ balls are disjoint. If we take the centers of our
balls to be only the representatives of ℤ/𝑝𝑀ℤ, meaning {0, 1, . . . , 𝑝𝑀 − 1},
the balls will be disjoint. This is because every element in any 𝑎̂ + (𝑝𝑀)
will be equivalent to 𝑎̂ mod 𝑝𝑀 , and no number 𝑏 can be equivalent to two
distinct representatives mod 𝑝𝑀 . Accordingly, let each 𝑎̂ ∈ {0, 1, . . . , 𝑝𝑀 − 1}
with no repetition. Then for distinct 𝑎̂’s, the balls 𝐵(𝑎̂ , 𝑝−𝑀) are disjoint.

Next, we establish that the balls will be fully contained inside 𝑎 + (𝑝𝑁 ).
As previously discussed, 𝑎 + (𝑝𝑁 ) = {𝑥 ∈ ℤ𝑝 : 𝑥 ≡ 𝑎 (mod 𝑝𝑁 )}. Therefore,
if 𝑎 ≡ 𝑎̂ (mod 𝑝𝑁 ), then 𝑎̂ ∈ 𝑎 + (𝑝𝑁 ). We disregard all 𝑎̂’s which are not
already in 𝑎 + (𝑝𝑁 ); we keep only those for which 𝑎̂ ≡ 𝑎 (mod 𝑝𝑁 ). Because
𝐵(𝑎̂ , 𝑝−𝑀) is a smaller ball, and its center is inside 𝐵(𝑎, 𝑝−𝑁 ), they must
intersect. By Lemma 3.4.1, two balls are either disjoint, or one is contained
inside the other. Thus, 𝑎̂ + (𝑝𝑀) ⊂ 𝑎 + (𝑝𝑁 ).

Suppose there is some point 𝑐 which is not in any included 𝑎̂ + (𝑝𝑀).
Then 𝑐 ≡ 𝑐 (mod 𝑝𝑀) where 𝑐 is not in 𝑎 + (𝑝𝑁 ). This means that 𝑐 . 𝑎

(mod 𝑝𝑁 ). If 𝑐 ≡ 𝑐 (mod 𝑝𝑀), then because 𝑀 > 𝑁 , we must have 𝑐 ≡ 𝑐

(mod 𝑝𝑁 ) too. By the transitive property, 𝑐 . 𝑎 (mod 𝑝𝑁 ). Therefore, if 𝑐
is not an element of any 𝑎̂ + (𝑝𝑀) then 𝑐 is not an element of 𝑎 + (𝑝𝑁 ). We
conclude that we have not left out any points, and 𝑎̂ + (𝑝𝑀) balls must cover
all of 𝑎 + (𝑝𝑁 ).

This gives us a disjoint covering of 𝐵(𝑎, 𝑝−𝑁 ). The covering is finite,
both because ℤ𝑝 is compact, and because there are only as many possible
𝑎̂ candidates as there are representatives mod 𝑝𝑀 . Hence, for all 𝑎̂ ≡ 𝑎

(mod 𝑝𝑀),
𝑎 + (𝑝𝑁 ) =

⊔
0≤ 𝑎̂≤𝑝𝑀−1

𝑎̂ + (𝑝𝑀).

□

3.5 Continuity

A significant issue with functions is ensuring continuity. The final goal is to
interpolate functions, so it is a good idea to understand 𝑝-adic continuity.

We will use absolute value signs as the metric rather than a more general
distance metric because this thesis stays mostly in the real and 𝑝-adic spaces,
both of which use similar notation.

A function is pointwise continuous if changing the input a small amount
also only changes the output a small amount. Formally,
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Definition 3.5.1 (Continuity). For 𝑥 and 𝑦 in 𝑋, the map 𝑓 : 𝑋 → 𝐾 is
continuous at point 𝑦 if, for every 𝜀 > 0, there exists a 𝛿 > 0 such that

|𝑥 − 𝑦 | < 𝛿 implies | 𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜀.

A much stronger version of continuity is uniform continuity.

Definition 3.5.2 (Uniform Continuity). For 𝑥 and 𝑦 in 𝑋, the map 𝑓 : 𝑋 → 𝐾

is uniformly continuous if, for every 𝜀 > 0, there exists a 𝛿 > 0 such that

|𝑥 − 𝑦 | < 𝛿 implies | 𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜀.

While a continuous function needs a 𝛿 for each point, a uniformly
continuous function guarantees that the same 𝛿 will work for any two points,
given a fixed 𝜀. Every uniformly continuous function is continuous, but not
every continuous function is uniformly so.

Consider 𝑓 (𝑥) = 1
𝑥 . Let 𝜀 > 1. If 𝑥 = 1

𝑠 and 𝑦 = 1
𝑠+1 , then����1𝑠 − 1

𝑠 + 1

���� = 1
𝑠2 + 𝑠 .

On the other hand,

| 𝑓 (𝑥) − 𝑓 (𝑦)| = |𝑠 − (𝑠 + 1)| = 1.

Thus, for any delta, we can always find an 𝑠 such that 1
𝑠2+𝑠 > 𝛿 while still

remaining less than 𝜀.
Hence, 𝑓 (𝑥) is not uniformly continuous, although it is continuous on (0,∞).

Uniform continuity is incredibly powerful. Some well-known results of
uniform continuity are listed below.

Theorem 3.5.1. Let 𝑓 : 𝑋 → 𝑌 be a continuous mapping. If 𝑋 is compact, then
𝑓 is uniformly continuous on 𝑋.

Theorem 3.5.2. If 𝑓 : 𝐵 → 𝐾 is a uniformly continuous mapping, and 𝐵 is dense
in 𝐴, then 𝑓 has a unique continuous extension to 𝐴.

Consult Rudin (1976) for proofs of the above..
The strict inequalities used for continuity are conventional, but changing

to ≤ or ≥ would work just as well. If we want something smaller than a
given 𝜀, we can just pick a smaller 𝛿.

In the 𝑝-adics, higher powers of 𝑝 are quite small, so adding an arbitrary
multiple of 𝑝𝑣 is equivalent to adding 𝜀 and 𝛿 in classical analysis proofs. By
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Theorem 3.5.1, if 𝑓 is continuous on a dense subset of ℤ𝑝 (or ℤ𝑝 itself), then
it is uniformly continuous since ℤ𝑝 is compact. This thesis will only look
at values in ℤ𝑝 , so that is enough for us. The 𝑝-adic (uniform) continuity
criterion can be written in several different ways.

Definition 3.5.3 (𝑝-adic Continuity I). Let 𝑆 be dense in ℤ𝑝 . Map 𝑓 : 𝑆 → 𝐾 is
uniformly continuous if, for 𝑥, 𝑦 ∈ 𝑆 and 𝑚 ∈ ℤ, there exists an 𝑛 ∈ ℤ such that

𝑥 ≡ 𝑦 (mod 𝑝𝑛) implies 𝑓 (𝑥) ≡ 𝑓 (𝑦) (mod 𝑝𝑚).

By definition of mod, the above means that for integers 𝑗 and 𝑘, 𝑥 = 𝑦+ 𝑗𝑝𝑛
and 𝑓 (𝑥) = 𝑓 (𝑦) + 𝑘𝑝𝑚 . The 𝑝-adic absolute value simplifies things a bit.

Definition 3.5.4 (𝑝-adic Continuity II). Let 𝑆 be dense in ℤ𝑝 . Map 𝑓 : 𝑆 → 𝐾 is
uniformly continuous if, for 𝑥, 𝑦 ∈ 𝑆 and 𝑚 ∈ ℤ, there exists an 𝑛 ∈ ℤ such that

|𝑥 − 𝑦 |𝑝 ≤ 1
𝑝𝑛

implies | 𝑓 (𝑥) − 𝑓 (𝑦)|𝑝 ≤ 1
𝑝𝑚

.

3.6 Conceptualizing p-adic Topology: A Study in In-
digo

All functions in this thesis are interpolated for ℤ𝑝 rather than ℚ𝑝 , so we
spend most of our time there. A good portion of interpolation requires
understanding the topology of the 𝑝-adic integers. How, then, do we
conceptualize ℤ𝑝 , with its new ways of grouping numbers together?

Suppose you are taking part in a study where you are given a large bowl
of dark blue paint (indigo blue, if you are curious), and an infinite supply of
white paint (China white) off to the side. You are also given a teaspoon.

The instructions say to add teaspoons of white paint to the blue until you
have created your perfect shade. Then, write down the number of teaspoons
you added. Being, as you are, a big fan of dark blue, you only add three
teaspoons of white to your bowl. The person to the right of you adds twelve
teaspoons and is dismayed by the amount of stirring required. The person to
the left of you disdainfully declares that they will add five million teaspoons,
daring anyone to challenge them. You decide they are probably the type of
person who likes to play devil’s advocate in history classes.

Once everyone has completed their paint mixtures, the people in charge
collect your data and thank you. They say they are going to sort you into
groups based on the number of teaspoons and your Spotify Wrapped, and
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build personality archetypes around it (psych majors are always saying
things like this).1 Then, they send you home with 20 bucks and a voucher
for frozen yogurt.

Topology in the 𝑝-adics works a lot like the paint study. Imagine ℤ𝑝 as a
chart of all the study data. At the center is 0, pure white.

At the edges are those who added no paint at all, with a 𝑝-adic value of
1. This is an entire collection of different people (or numbers) who, despite
not being the same person (or number), are 𝑝-adically the same size.

Add one teaspoon of white paint and you have made slightly lighter
shade of blue, a little bit closer to that 0. This is everything with a 𝑝-adic
value of |𝑝 |𝑝 or 1

𝑝 . Perhaps there is an integer 𝑎 such that someone is actually
𝑎𝑝 rather than 𝑝. Perhaps there is another integer 𝑏 such that someone else
is 𝑏𝑝. Regardless, everyone is in the same category.

Two teaspoons means you are in the |𝑝2 |𝑝 , or the 1
𝑝2 group, and so on.

We can use the study to investigate balls like 𝐵(𝑎, 𝑝−𝑁 ) from Section 3.4
too.

For example, you and the person to the right of you are exactly 𝑝−3 away
from each other:

You = 𝑎𝑝3

Them = 𝑏𝑝12

|You − Them|𝑝 = |𝑎𝑝3 − 𝑏𝑝12 |𝑝 = |𝑝3(𝑎 − 𝑏𝑝9)|𝑝 =
1
𝑝3 .

Meanwhile, you and the person to your left are also 𝑝−3 away from each
other:2

You = 𝑎𝑝3

Them = 𝑐𝑝5,000,000

|You − Them|𝑝 = |𝑎𝑝3 − 𝑐𝑝5,000,000 |𝑝 = |𝑝3(𝑎 − 𝑐𝑝4,999,997)|𝑝 =
1
𝑝3 .

This is the ball 𝐵(𝑎, 𝑝−3) at work. Because everyone contains 𝑝𝑘 where
𝑘 ≥ 3, the first three terms in their 𝑝-adic expansions will all be 0. Hence,

You ≡ Person to the Right ≡ Person to the Left (mod 𝑝3).

1A psych major has assured me that personality archetypes are pseudoscience. So if you
are a psych major, this is a joke.

2Statistically-speaking. Emotionally, you are worlds apart.
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All of you exist inside 𝐵(𝑎, 𝑝−3). It is as though the researchers made a
group of everyone who added three or more teaspoons of white paint.

Every ball functions like this, as though every group made by the psych
study is of the form “everyone who added 𝑥 teaspoons or more." For any
ball of radius 𝑝−𝑁 , every number of size 𝑝−𝑀 where 𝑀 > 𝑁 is included.

Moreover, by definition of the 𝑝-adic norm, there is no way to take the
norm of something and get a number which is not a power of 𝑝. Thus, every
𝑝-adic number is some power of 𝑝 away from everything else.

If we were to extend this metaphor to the rest of ℚ𝑝 , we could say that
if lightening the paint means multiplying by 𝑝, darkening the paint is like
dividing by 𝑝.

You may still be in suspense over this story. Rest easy, reader. Your
personality archetype is Admiral Blue. Also, you did get frozen yogurt. It
was mango, and it was delicious.





Chapter 4

DIY p-adic Zeta

Finally, we can commence with the Riemann zeta 𝑝-adic interpolation. This
chapter begins with interpolating a smaller component of the function. Next,
we investigate something called a “p-Euler term," and then build a 𝑝-adic
measure. In Section 4.4, we build a 𝑝-adic integral. Section 4.5 finally sees
the interpolation of the zeta function.

Overall, we try to slowly build up to the more complicated function seen
below.

As seen in Section 2.2, for integer 𝑘 > 1,

𝜁(1 − 𝑘) = −𝐵𝑘
𝑘
. (4.1)

The standard Riemann zeta function is an infinite sum but the 𝑝-adic
Riemann zeta function is based around Equation 4.1.

The end goal is a version of the Riemann zeta function which takes
integer values and outputs 𝑝-adic values.

Definition 4.0.1 (Kubota-Leopoldt Zeta Function). The Kubota-Leopoldt 𝑝-adic
zeta function is the continuous map 𝜁𝑝 : ℤ → ℤ𝑝 defined as

𝜁𝑝(1 − 𝑘) = (1 − 𝑝𝑘−1)
(
−𝐵𝑘
𝑘

)
. (4.2)

What is of even more importance, though, is establishing that the above
equation is equivalent to

1
𝛼−𝑘 − 1

∫
ℤ×
𝑝

𝑥𝑘−1𝜇1,𝛼



32 DIY p-adic Zeta

for 𝛼 ∈ ℤ×
𝑝 and 𝑘 a positive integer. Later, we will prove that all outputs will

be independent of the choice of 𝛼. The result is two separate representations
of the Kubota-Leopoldt zeta function. The fancy integral representation of
the function is known as a “Mellin-Mazur integral transform." Do not worry
too much about the notation and Greek letters for the moment; we will build
up to them.

Through substitution of Equation 4.1 into Equation 4.2, we can further
establish the helpful relation for integer 𝑘 > 1:

𝜁𝑝(1 − 𝑘) = (1 − 𝑝𝑘−1)𝜁(1 − 𝑘).

Once we have established the above relations, we can extend the Kubota-
Leopoldt zeta function to allow inputs of any 𝑝-adic integer, rather than just
(1− 𝑘) ∈ ℤ. Any 𝑝-adic integer will be congruent to some number mod 𝑝 − 1,
between 0 and 𝑝 − 2. We will fix a representative 𝑠0 and stipulate that any
input must be congruent to this 𝑠0 (mod 𝑝 − 1). The generalized 𝑝-adic zeta
function is more like a family of functions: if we want a different 𝑠0, we end
up with a slightly different equation.

Notationally, we let 𝑆 be the set of all 𝑝-adic integers congruent to 𝑠0
(mod 𝑝 − 1). Then the generalized 𝑝-adic zeta function, written 𝜁𝑝,𝑠0 , maps
from 𝑆 to ℤ𝑝 .

For 𝑠 ∈ ℤ𝑝 and 𝛼 ∈ ℤ×
𝑝 ,

𝜁𝑝,𝑠0(𝑠) =
1

𝛼−(𝑠0+𝑠(𝑝−1)) − 1

∫
ℤ×
𝑝

𝑥𝑠0+𝑠(𝑝−1)−1𝜇1,𝛼 .

4.1 A Smaller Step

In the previous section, we said we wanted to prove that our eventual 𝑝-adic
zeta function is equal to

1
𝛼−𝑘 − 1

∫
ℤ×
𝑝

𝑥𝑘−1𝜇1,𝛼 . (4.3)

Moreover, we will want to generalize the zeta function to

𝜁𝑝,𝑠0(𝑠) =
1

𝛼−(𝑠0+𝑠(𝑝−1)) − 1

∫
ℤ×
𝑝

𝑥𝑠0+𝑠(𝑝−1)−1𝜇1,𝛼 . (4.4)

Those integrands, 𝑥𝑘−1 and 𝑥𝑠0+𝑠(𝑝−1)−1, are a much smaller function. In
simpler terms, they are 𝑥𝑠 where 𝑠 ∈ ℤ𝑝 .
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Before interpolating the whole Riemann zeta function, it’s easier to begin
with this simpler component:

𝑓 (𝑠) : ℤ𝑝 → ℤ𝑝

defined by
𝑓 (𝑠) = 𝑛𝑠

where 𝑛 is a fixed nonnegative integer. Although the 𝑥 in Equation 4.4 seems
to be a 𝑝-adic integer, and 𝑓 (𝑛) uses a normal integer for 𝑛, the process of
taking 𝑝-adic integrals will reconcile the difference.

Many parts of modular arithmetic act oddly when numbers are divisible
by our mod, and the 𝑝-adics are closely related to mod. It might, then, be
prudent to interrogate 𝑝 |𝑛 here, and see if 𝑓 (𝑠) is still continuous.

Suppose 𝑝 |𝑛. Then by definition of divisibility, 𝑛 = 𝑝𝑚 for some integer
𝑚. We could rewrite 𝑓 (𝑠) as

𝑓 (𝑠) = (𝑝𝑚)𝑠 .

To check continuity, we would like to see what happens when we change
our input a little bit. Start with 𝑠0 and let 𝑠 = 𝑠0 + 𝑎𝑝𝑣 , where 𝑎 and 𝑣 are
positive integers.

Then

|𝑛𝑠0 − 𝑛𝑠 |𝑝 = |(𝑝𝑚)𝑠0 − (𝑝𝑚)𝑠0+𝑎𝑝𝑣 |𝑝
= |𝑝𝑠0𝑚𝑠0 |𝑝 |1 − 𝑝𝑎𝑝𝑣𝑚𝑎𝑝𝑣 |𝑝

≤ 1
𝑝𝑠0

.

The second term in the second to last line, mod 𝑝, reduces to 1, so we
know it is not divisible by 𝑝. Hence, the 𝑝-adic absolute value of the whole
thing is 1/𝑝𝑠0 , regardless of the actual values of 𝑎 or 𝑚 or 𝑣. Moving closer
to 𝑠 does not change the output in any way, so we can never get close enough
to prove continuity when 𝑝 |𝑛. Accordingly, we restrict ourselves to 𝑝 ∤ 𝑛.

Numbers in the 𝑝-adics often have infinite-tailed expansions, and we
want to be able to use these infinite expansions as exponents.

When a calculator computes 9𝑒 , it is not really plugging in the irrational
number 𝑒. It cannot possibly compute the infinite number of digits contained
in 𝑒. Instead, it calculates an approximation. It might calculate 92.7 , and
then 92.71 , then 92.7182 , and so on. The exponents start out the same but new
numbers are added to the end of the decimal each time. Eventually, the
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calculator will stop adding digits, take the limit of its outputs, and call it a
day.

We too will calculate approximations; we just have to make sure our
outputs are close to each other each step of the way so they converge
𝑝-adically.

Let 𝑠 ∈ ℤ𝑝 ,
𝑠 = 𝑠0 + 𝑠1𝑝 + 𝑠2𝑝2 + 𝑠3𝑝3 + . . . .

Consider the partial sums of 𝑠:

𝑠0

𝑠0 + 𝑠1𝑝
𝑠0 + 𝑠1𝑝 + 𝑠2𝑝2

...

We can construct 𝑛𝑠 for some positive integer 𝑛 by taking the limit of 𝑛
to the partial sums of 𝑠:

𝑛𝑠0

𝑛𝑠0+𝑠1𝑝

𝑛𝑠0+𝑠1𝑝+𝑠2𝑝
2

...

To ensure that the 𝑝-adic limit exists, each partial 𝑛𝑠 must be close to the
one before and after it. This can be difficult to guarantee.

For example, consider 102+(72)+... 𝑝-adically. Let 𝑛 = 10 = 3 + 1 · 7 and
𝑠0 = 2. Let 𝑠 = 2 + 72, and let 𝑝 = 7. Then

|102 − 102+72 |7 = |102 |7 · |1 − 1072 |7
= 1 · |1 − (3 + 1 · 7)72 |7.

By Fermat’s Little Theorem, 𝑎𝑝 ≡ 𝑎 (mod 𝑝). A direct consequence is
that 372 ≡ 3 (mod 7), and therefore

(3 + 7)72 ≡ 372 (mod 7)
≡ 3 (mod 7).

By definition of mod, (3+1 ·7)72
= 3+7𝑚 where𝑚 is some integer. Substitute

in the new representation for (3 + (1 · 7))72 to get

|1 − 3 − 7𝑚 |7 = | − 2 − 7𝑚 |7 = 1.
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Even though 𝑠0 and 𝑠 were 7-adically close, 𝑓 (𝑠0) and 𝑓 (𝑠) were not. To
get around this, we use another application of Fermat’s Little Theorem:

𝑎𝑝−1 ≡ 1 (mod 𝑝).

Proposition 4.1.1. Let 𝑓 (𝑠) : ℤ𝑝 → ℤ𝑝 be the function 𝑓 (𝑠) = 𝑛𝑠 where 𝑝 ∤ 𝑛.
If 𝑠 ≡ 𝑠0 (mod 𝑝 − 1) and 𝑠 ≡ 𝑠0 (mod 𝑝𝑘), then 𝑓 (𝑠0) and 𝑓 (𝑠) are 𝑝-adically
close to each other, meaning the distance between them is less than a power of 𝑝.

Proof. Let 𝑠 = 𝑠0 + 𝑚(𝑝 − 1)𝑝𝑘 , 𝑚 ∈ ℤ.

Then |𝑠0 − 𝑠 |𝑝 = | − 𝑝𝑘(𝑝 − 1)𝑚 |𝑝 ≤ 1
𝑝𝑘
. We need to show that |𝑛𝑠0 − 𝑛𝑠 |𝑝

is also small. Without loss of generality, let 𝑠 > 𝑠0:

|𝑛𝑠0 − 𝑛𝑠 |𝑝 = |𝑛𝑠0 |𝑝 · |1 − 𝑛𝑚(𝑝−1)(𝑝𝑘 ) |𝑝 = 1 · |1 − (𝑛𝑝−1)𝑚𝑝𝑘 |𝑝 .

By Fermat’s Little Theorem, 𝑛𝑝−1 ≡ 1 (mod 𝑝), which means 𝑛𝑝−1 = 1 + 𝑏𝑝
for integer 𝑏. Through substitution,

1 · |1 − (𝑛𝑝−1)𝑚𝑝𝑘 |𝑝 = |1 − (1 + 𝑏𝑝)𝑚𝑝𝑘 |𝑝 which, by the binomial formula, becomes

= |1 − (1 + 𝑚𝑝𝑘(𝑏𝑝) + (𝑚𝑝𝑘)!𝑏2𝑝2

2(𝑚𝑝𝑘 − 2)!
+ · · · + (𝑏𝑝)𝑚𝑝𝑘 )|𝑝

= | − 𝑏𝑚𝑝𝑘+1 + 1
2 (𝑏

2𝑚𝑝𝑘+1(𝑚𝑝𝑘 − 1)) + · · · + (𝑏𝑝)𝑚𝑝𝑘 |𝑝 .

Every term in that last line has at least 𝑝𝑘+1 in it, and thus

|𝑛𝑠0 − 𝑛𝑠 |𝑝 ≤ |𝑝𝑘+1 |𝑝 =
1
𝑝𝑘+1 .

□

The idea of proving two outputs are close when two inputs are close is
equivalent to proving continuity. Before explicitly making the connection
between 4.1.1 and function continuity, however, we need new terminology.

Definition 4.1.1 (Set S). Let 𝑆 be the set of all 𝑝-adic integers which are congruent
to 𝑠0 mod 𝑝 − 1 and mod 𝑝𝑘 for some nonnegative integer 𝑘.

Corollary 4.1.0.1. The function 𝑓 (𝑠) = 𝑛𝑠 is a continuous mapping from 𝑆 to ℤ𝑝 .

Proof. This follows directly from Proposition 4.1.1. □

One last lemma remains before we test out the new function.
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Lemma 4.1.1. For natural numbers 𝑎 and 𝑚 and 𝑛, if 𝑝 ∤ 𝑎,

(1 + 𝑎 · 𝑝𝑚)𝑝𝑛 = 1 + 𝑎 · 𝑝𝑚+𝑛 + . . .

where every term after 𝑎 · 𝑝𝑚+𝑛 is a larger power of 𝑝.
The proof is merely the binomial formula.
To test out the lemmas, we can modify the earlier example. Let 𝑛 = 10,

𝑠0 = 2, and 𝑠 = 2 + 6 · 72. Then

|102 − 102+6·72 |7 = |102 |7 · |1 − ((3 + 1 · 7)6)72 |7
= 1 · |1 − (1 + 7𝑘)72 |7 by Fermat’s Little Theorem for integer 𝑘
= |1 − (1 + 𝑘 · 73 + . . . )|7 by Lemma 4.1.2

≤ 1
73 .

Happily, we have ended up somewhere nice.
Although it may seem as though we have limited the candidates for 𝑠,

by the below lemma, any 𝑝-adic input will work.
Lemma 4.1.2. Fix some 𝑠0 = {0, 1, . . . , 𝑝 − 2}. Then 𝑆 is dense in ℤ𝑝 .

Proof. One definition of density states that 𝐴 is dense in 𝐵 if, for any 𝑏 ∈ 𝐵\𝐴
and for any 𝜀 > 0, there is an element 𝑎 ∈ 𝐴 such that |𝑎 − 𝑏 | ≤ 𝜀. In the
𝑝-adics, we want to find an element of 𝑆 less than some power of 𝑝 away
from 𝑏 ∈ ℤ𝑝 .

Let
𝑏 = 𝑏0 + 𝑏1𝑝 + 𝑏2𝑝 + · · · + 𝑏𝑛𝑝𝑛 + . . . ,

and let 𝜀 = 1
𝑝𝑛+1 where 𝑛 ∈ ℕ.

Mod 𝑝 − 1, let
𝑏0 + 𝑏1𝑝 + · · · + 𝑏𝑛𝑝𝑛 ≡ 𝑦,

where 0 ≤ 𝑦 ≤ 𝑝 − 2. All we need to do is add another term to get to 𝑠0
(mod 𝑝 − 1). If 𝑠0 − 𝑦 ≡ 𝑧 (mod 𝑝 − 1), then add 𝑧𝑝𝑛+1. Multiplying by 𝑝𝑛+1

will not change the value mod 𝑝−1, because 𝑝𝑛+1 ≡ 1 (mod 𝑝−1). Therefore,
𝑧𝑝𝑛+1 ≡ 𝑧 (mod 𝑝 − 1).

Thus,
𝛽 = 𝑏0 + 𝑏1𝑝 + · · · + 𝑏𝑛𝑝𝑛 + 𝑧𝑝𝑛+1 ∈ 𝑆,

and
|𝑏 − 𝛽 |𝑝 = |(𝑏𝑛+1 − 𝑧)𝑝𝑛+1 + . . . |𝑝 ≤ 1

𝑝𝑛+1 .

By definition, 𝑆 is dense in ℤ𝑝 . □
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By density on a compact set, we have a unique extension 𝑓 (𝑠) : 𝑆 → ℤ𝑝

to 𝑓 (𝑠) : ℤ𝑝 → ℤ𝑝 . In practice, we use the approximations detailed above as
our partial 𝑠0 sums.

Example: Let 𝑛 = 10, and let

𝑠 =
2
9 = 1 + (3 · 7) + (5 · 72) + (0 · 73) + . . . .

The proof of the density of 𝑆 outlines our strategy for computing 𝑛𝑠 to
the 73 place. Start with 𝑎 = 1 and find 𝑛𝑎 :

101 = 3 + (1 · 7).

The next partial sum is 1 + (3 · 7), which is congruent to 4 mod 6. Since
1 − 4 ≡ 3 mod 6, to make the sum congruent to 1 mod 6 (and 7), add 3 · 72.

Let 𝑏 = 1 + (3 · 7) + (3 · 72), and rewrite in terms of 6, leaving the initial 1
alone:

𝑏 = 1 + (7)(24) = 1 + (6 · 4 · 7).
Plug into 𝑓 (𝑠):

101+6·4·7 = (3 + (1 · 7))[((3 + 1 · 7)6)4]7

= (3 + (1 · 7))((1 + (1 · 7) + (3 · 72) + (3 · 73) + . . . )4)7

= (3 + (1 · 7))(1 + (4 · 7) + (4 · 72) + (5 · 73) + . . . )7

= (3 + (1 · 7))(1 + (0 · 7) + (4 · 72) + (3 · 73) + . . . )
= 3 + (1 · 7) + (5 · 72) + (0 · 73) + . . . .

The remaining calculations are quite similar. We shall leave the explicit
computation to the reader, but if you intend to do it, the multinomial formula
and/or copious amounts of free time are advised. The next partial sum
leads us to

𝑐 = 1 + (6 · 4 · 7) + (6 · 5 · 72),
meaning our calculations will build on 10𝑏 :

10𝑐 = (10𝑏)[((3 + (1 · 7))6)5]72

= 3 + (1 · 7) + (5 · 72) + (5 · 73) + . . . .

Any further calculations will merely change the 74 and higher powers,
so we stop here. Accordingly,

101+(3·7)+(5·72)+(0·73)+... = 3 + (1 · 7) + (5 · 72) + (5 · 73) + . . . ..
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To transition to the Riemann zeta function, we need to go from 𝑛𝑠 to 𝑛−𝑠 .
Thankfully, the proof of Proposition 4.1.1 still holds with a negative sign in
front of the exponents (this is left to the reader as an exercise. Turnabout is
fair play). Thus, we retain our domain.

4.2 Interlude

The function 𝑛𝑠 in the previous section did not work when 𝑝 divided
𝑛, so we know that the 1

𝑛𝑠 term in the Riemann zeta sum will not be
interpolatable when 𝑝 |𝑛. As may be evident from the amount of pages left to
go, interpolating the Riemann zeta function is a rather complicated process.
Still, we can pretend for the moment that all we need to do is isolate the
parts of the sum we can work with:

𝜁(𝑠) =
∑
𝑛=1

1
𝑛𝑠

=
∑

𝑛=1,𝑝∤𝑛

1
𝑛𝑠

+
∑

𝑛=1,𝑝 |𝑛

1
𝑛𝑠

=
∑

𝑛=1,𝑝∤𝑛

1
𝑛𝑠

+
∑
𝑛=1

1
𝑝𝑠𝑛𝑠

=
∑

𝑛=1,𝑝∤𝑛

1
𝑛𝑠

+ 1
𝑝𝑠

𝜁(𝑠).

Let 𝜁∗(𝑠) = ∑
𝑛=1,𝑝∤𝑛

1
𝑛𝑠 .

Solving for 𝜁∗ in the previous equation achieves

𝜁∗(𝑠) = (1 − 𝑝−𝑠)𝜁(𝑠).

An alternative form for the Riemann zeta function is called an “Euler
product," or an infinite product

𝜁(𝑠) =
∏

prime 𝑝

(
1

1 − 𝑝−𝑠

)
.

Multiplying the Riemann zeta function by (1− 𝑝−𝑠) amounts to removing
a factor from this infinite product, so the process described above is often
called “removing the 𝑝-Euler factor." Regardless of where the rest of the
interpolation takes us, we will need to take out the 𝑝-Euler factor. This is
not the end goal, but it is a good start.



Measures 39

4.3 Measures

The best interpolation we have for −𝐵𝑘
𝑘

involves an integral, which means we
are going to need a 𝑝-adic measure.

The standard calculus integral looks like∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥.

Every integral needs three things:
1. an interval (like [𝑎, 𝑏]),
2. an integrand (like 𝑓 (𝑥)), and
3. a measure (like dx).
Number 1 is straightforward. Recall Section 3.4’s discussion of balls of

the form
𝑎 + (𝑝𝑛) or 𝐵(𝑎, 𝑝−𝑛) =

{
𝑥 ∈ ℚ𝑝 : |𝑥 − 𝑎 |𝑝 ≤ 1

𝑝𝑛

}
.

The full notation is 𝑎 + 𝑝𝑛ℤ𝑝 , but it becomes abbreviated to 𝑎 + (𝑝𝑛).
These are our intervals.

Integration in the 𝑝-adics takes place over sets which are both compact
and open. Every compact-open set in ℤ𝑝 can be written as the disjoint union
of 𝐵(𝑎, 𝑝−𝑛) for different values of 𝑎. This is great news because we are going
to need to be able to break regions up into disjoint areas (or balls) for our
integral measure.

As the name suggests, a measure is how we measure or quantify sets.
Definition 4.3.1 (Measure). A measure 𝜇 on topological space 𝐴 is an additive
map from 𝐴 to the nonnegative reals.

For example, the standard measure forℝ𝑘 is called the Lebesgue measure.
For ℝ1 , this looks like the distance between two points: |𝑏 − 𝑎 |. For ℝ2 ,

Lebesgue measure is area and for higher dimensions, it is volume.
Since we are talking about area, it makes sense to build up a larger region

with its smaller components. This is the “additive" component mentioned in
the definition. We need our measure to respect addition because otherwise,
nothing makes sense and we might as well take up philosophy. Specifically,
the measure should be additive for finite disjoint sets. If the sets overlap,
“adding" them becomes convoluted; see Figure 4.1 for an example.

Formally, for measure 𝜇 and disjoint sets 𝐴𝑖 ,

𝜇

(
𝑘⊔
𝑖=1

𝐴𝑖

)
=

𝑘∑
𝑖=1

𝜇(𝐴𝑖).
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Figure 4.1 𝐴 ∪ 𝐵 = 𝐴 + 𝐵 − (𝐴 ∩ 𝐵)?

In the 𝑝-adics, measures must also be bounded. For an explanation,
consult Bowers (2004: p.19).

The measure which we will use is the regularized k𝑡ℎ Bernoulli measure,
denoted 𝜇𝑘,𝛼 . The reason is twofold. First, Bernoulli numbers are already
vital to the Riemann zeta function, and they are closely related to Bernoulli
measures. More pressingly, though, Bernoulli polynomials turn out to be
the only polynomials which work as 𝑝-adic measures, so we are not exactly
drowning in alternatives.

We actually start with the Bernoulli distribution (unrelated to probability),
which is almost a measure, except it is not always bounded. The Bernoulli
distribution is defined by

𝜇𝑘(𝑎 + (𝑝𝑛)) = 𝑝𝑛(𝑘−1)𝐵𝑘

(
{𝑎}
𝑝𝑛

)
where 𝐵𝑘(𝑥) is the k𝑡ℎ Bernoulli polynomial, and {𝑎} is the representative
from {0, . . . , 𝑝𝑛 − 1} which is congruent to 𝑎 mod 𝑝𝑛 . Most of the time, to
make things easier, we forego the brackets and just write 𝑎.

Recall, from Section 2.2, the Bernoulli polynomials:

𝐵0(𝑥) = 1,

𝐵1(𝑥) = 𝑥 − 1
2 ,

𝐵2(𝑥) = 𝑥2 − 𝑥 − 1
6 ,

and so on.
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Some Bernoulli measures:

𝜇0(𝑎 + (𝑝𝑛)) = 𝑝𝑛(−1)𝐵0

(
𝑎

𝑝𝑛

)
=

1
𝑝𝑛
, and

𝜇1(𝑎 + (𝑝𝑛)) = 𝑝𝑛(0)𝐵1

(
𝑎

𝑝𝑛

)
=

𝑎

𝑝𝑛
− 1

2 .

The first, 𝜇0 , is known as the 𝑝-adic Haar distribution, and 𝜇1 is the
Mazur distribution.

Section 2.2 also established that 𝐵𝑘(0) = 𝐵𝑘 , the 𝑘𝑡ℎ Bernoulli number.
Thus, for example,

𝜇𝑘(ℤ𝑝) = 𝜇𝑘(0 + (𝑝0)) = 𝐵𝑘(0) = 𝐵𝑘 ,

and
𝜇𝑘(𝑝ℤ𝑝) = 𝜇𝑘(0 + (𝑝1)) = 𝑝𝑘−1𝐵𝑘 .

This is mostly a good way to quantify our region, but as stated earlier,
to be a 𝑝-adic measure, any distribution 𝜇 must be bounded by some real
constant. As it stands now, 𝜇𝑘 has a tendency to go off to infinity.

All is not lost; it is possible to turn the Bernoulli distribution into a
measure by “regularizing" it.

Definition 4.3.2 (Bernoulli Measure). For all 𝛼 ∈ ℤ×
𝑝 , the k𝑡ℎ Bernoulli measure

over compact-open set 𝑋 is

𝜇𝑘,𝛼(𝑋) = 𝜇𝑘(𝑋) − 𝛼−𝑘𝜇𝑘(𝛼𝑋).

In Section 4.5, we will see that the choice of 𝛼 does not matter: the answer
will still be the same.

Alas, the regularized Haar distribution is a bit anticlimactic:

𝜇0,𝛼(𝑎 + (𝑝𝑛)) = 𝜇0(𝑎 + (𝑝𝑛)) − 𝛼0𝜇0(𝛼𝑎 + (𝑝𝑛))

=
1
𝑝𝑛

− 1
𝑝𝑛

= 0.

Fine. Whatever. The Mazur measure, on the other hand, is functional.
Letting (𝛼𝑎)0 be the representative from (𝛼𝑎 + (𝑝𝑛)) such that 0 ≤ (𝛼𝑎)0 ≤
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𝑝𝑛 − 1, we find

𝜇1,𝛼 = 𝜇1(𝑎 + (𝑝𝑛)) − 𝛼−1𝜇1(𝛼𝑎 + (𝑝𝑛))

=
𝑎

𝑝𝑛
− 1

2 − 1/𝛼(𝛼𝑎)0
𝑝𝑛

+ 𝛼−1

2

=
1/𝛼 − 1

2 + 1
𝛼

(
𝛼𝑎
𝑝𝑛

− (𝛼𝑎)0
𝑝𝑛

)
=

1/𝛼 − 1
2 + 1

𝛼

⌊
𝛼𝑎
𝑝𝑛

⌋
.

For example,

𝜇𝑘,𝛼(ℤ𝑝) = 𝐵𝑘(0) − 𝛼−𝑘𝐵𝑘(0) = (1 − 𝛼−𝑘)𝐵𝑘 .

Additionally,

𝜇𝑘,𝛼(𝑝ℤ𝑝) = 𝜇𝑘(𝑝ℤ𝑝) − 𝛼−1𝜇𝑘(𝛼𝑝ℤ𝑝)
= 𝑝𝑘−1𝐵𝑘 − 𝛼−𝑘𝑝𝑘−1𝐵𝑘

= 𝑝𝑘−1𝐵𝑘 · (1 − 𝛼−𝑘).

Picture ℤ𝑝 as the ball 𝐵(0, 1) = {𝑥 ∈ ℚ𝑝 : |𝑥 |𝑝 ≤ 1}, meaning ℤ×
𝑝 is the

boundary. The inside of the ball, or every 𝑥 ∈ ℚ𝑝 such that |𝑥 |𝑝 < 1, is 𝑝ℤ𝑝 .

Thus, ℤ𝑝 = ℤ×
𝑝 ∪ 𝑝ℤ𝑝 without any overlap.

A defining quality of a measure is that it is an additive map, so

𝜇𝑘,𝛼(ℤ×
𝑝 ) = 𝜇𝑘,𝛼(ℤ𝑝) − 𝜇𝑘,𝛼(𝑝ℤ𝑝)

= [(1 − 𝛼−𝑘) − 𝑝𝑘−1(1 − 𝛼−𝑘)]𝐵𝑘
= (1 − 𝑝𝑘−1)(𝛼−𝑘 − 1)(−𝐵𝑘).

The goal of changing from a distribution to a measure is to get a bound.
We can be more specific than simply saying a measure like 𝜇1,𝛼 is bounded
though.

Lemma 4.3.1. For compact-open set 𝑋 ⊂ ℤ𝑝 ,

|𝜇1,𝛼(𝑋)|𝑝 ≤ 1.

Proof. For some interval 𝐼 = 𝑎 + (𝑝𝑛) and some 𝛼 ∈ ℤ𝑋
𝑝 ,

𝜇1,𝛼(𝑎 + (𝑝𝑛)) = 1/𝛼 − 1
2 + 1

𝛼

⌊
𝛼𝑎
𝑝𝑛

⌋
.
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By the non-Archimedean property,

|𝜇1,𝛼(𝐼)|𝑝 ≤ max
{

1/𝛼 − 1
2 ,

1
𝛼

⌊
𝛼𝑎
𝑝𝑛

⌋}
.

Since 𝛼 ∈ ℤ×
𝑝 , |1/𝛼 |𝑝 = 1. Furthermore, since all numbers outside ℤ𝑝

have 𝑝 in the denominator, all integers must be elements ofℤ𝑝 . Consequently,⌊
𝛼𝑎
𝑝𝑛

⌋
∈ ℤ𝑝 . Therefore, ���� 1𝛼 ⌊

𝛼𝑎
𝑝𝑛

⌋ ����
𝑝

≤ 1.

If 𝑝 = 2, then 𝛼 must be odd. Thus (1/𝛼) − 1 = (1 − 𝛼)/𝛼 must have
an even numerator. Multiplying through by 1/2 then clears the 2 in the
denominator: ���� (1/𝛼) − 1

2

����
𝑝

≤ 1.

If 𝑝 > 2, then 1
2𝛼 ∈ ℤ×

𝑝 and 1
2 ∈ ℤ×

𝑝 . By the non-Archimedean property,���� 1
2𝛼 − 1

2

����
𝑝

≤ max
{

1
2𝛼 ,

1
2

}
= 1.

Combining everything, we see |𝜇1,𝛼(𝐼)| ≤ 1.
Any compact-open set 𝑋 can be expressed as the disjoint union of balls

like 𝐼, and measures are additive maps, so by the non-Archimedean property,

|𝜇1,𝛼(𝑋)|𝑝 ≤ max{𝜇1,𝛼(𝐼𝑖)} ≤ 1.

□

We specifically bounded 𝜇1,𝛼 because, regardless of which Bernoulli
measure we ultimately want to use, all other Bernoulli measures can be
related back to 𝜇1,𝛼 .

Lemma 4.3.2. Let 𝑑𝑘 be the lowest common divisor of the coefficients of 𝐵𝑘(𝑥).
Then

𝑑𝑘𝜇𝑘,𝛼(𝑎 + (𝑝𝑛)) ≡ 𝑑𝑘 𝑘𝑎
𝑘−1𝜇1,𝛼(𝑎 + (𝑝𝑛)) (mod 𝑝𝑛).

The 𝑑𝑘 is unimportant, but difficult to get rid of. We can safely forget
about it, except in calculations. Lemma 4.3.2 otherwise says

𝜇𝑘,𝛼(𝑋) ∼ 𝑘𝑎𝑘−1𝜇1,𝛼(𝑋).
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The above statement is like a change of variable in standard calculus.
Imagine you are changing an integral variable from 𝑥 to 𝑥𝑘 . You also need
to change the measure, from 𝑑𝑥 to 𝑑(𝑥𝑘):

𝑑(𝑥𝑘)
𝑑𝑥

= 𝑘𝑥𝑘−1.

The 𝑑(𝑥𝑘) denotes 𝑥𝑘 evaluated on a vanishingly small interval [𝑎, 𝑏],
defined as 𝑏𝑘 − 𝑎𝑘 . The 𝑝-adic measure 𝜇𝑘,𝛼 is like this 𝑑(𝑥𝑘), and we can
write 𝜇𝑘,𝛼([𝑎, 𝑏]). Similarly, the 𝑑𝑥 is 𝑥 evaluated on [𝑎, 𝑏]: 𝑏 − 𝑎. In our case,
𝑑𝑥 is 𝜇1,𝛼([𝑎, 𝑏]). Recall that 𝑑𝑥 means taking the measure of an incredibly
tiny interval, one where 𝑏 gets closer and closer to 𝑎. Putting everything
together, 𝑑

𝑑𝑥
(𝑥𝑘) acts like the fraction

lim
𝑏→𝑎

𝜇𝑘,𝛼([𝑎, 𝑏])
𝜇1,𝛼([𝑎, 𝑏])

= 𝑘𝑥𝑘−1.

Next multiply through by the denominator:

lim
𝑏→𝑎

𝜇𝑘,𝛼([𝑎, 𝑏]) = 𝑘𝑥𝑘−1𝜇1,𝛼([𝑎, 𝑏]).

Replace the interval [𝑎, 𝑏] with our actual area 𝑋 to get

𝜇𝑘,𝛼(𝑋) = 𝑘𝑥𝑘−1𝜇1,𝛼(𝑋).

In other words, the 𝑘𝑎𝑘−1 is really the chain on switching measures. For
a more formal proof, see Koblitz (1984: p.37).

4.4 Building the Integral

Having defined the 𝑝-adic measure, we can now assemble the general 𝑝-adic
integral.

The traditional Riemann integral is defined by taking a limit of Riemann
sums, where for partition 𝑃,

𝑅(𝑃, 𝑓 ) =
𝑛∑
𝑖=1

𝑓 (𝑐𝑖)Δ𝑥𝑖

for some 𝑐𝑖 in each interval.
The 𝑝-adic analogue follows the same layout.
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Definition 4.4.1 (p-adic Riemann Sums). For some 𝑥𝑎,𝑁 ∈ 𝑎 + (𝑝𝑁 ) and 𝑝-adic
measure 𝜇 on compact-open set 𝑋, the Riemann sum over 𝑋 is

𝑆𝑁 =
∑

𝑎+(𝑝𝑁 )⊂𝑋
𝑓 (𝑥𝑎,𝑁 )𝜇(𝑎 + (𝑝𝑁 )).

Theorem 4.4.1. If 𝑓 : 𝑋 → 𝑌 is continuous with 𝑋 ⊂ ℤ𝑝 , then the limit

lim
𝑁→∞

{𝑆𝑁 }

converges to a limit in 𝑌 independent of the choice of 𝑥𝑎,𝑁 . We call this unique
limit ∫

𝑋

𝑓 𝜇.

Proof. Consider the sequence of Riemann sums {𝑆𝑁 }. We can show that this
sequence is Cauchy. Since ℚ𝑝 is complete, that means {𝑆𝑁 } converges.

We cannot always directly take the measure of 𝑋 because 𝑋 might not
be connected. Consequently, we break 𝑋 up into compact-open sets𝑈 .

The measure on 𝑋 must be bounded so that the integral can converge.
In general, by definition, a 𝑝-adic measure is bounded, so there exists
some 𝐵𝑖 ∈ ℝ such that 𝜇(𝑈) ≤ 𝐵𝑖 for a compact-open 𝑈 ⊂ 𝑋. Let 𝐵1 be
the bounding constant for the first compact-open set, 𝐵2 for the second
compact-open set, and so on. Because 𝑋 is compact, it can be covered by a
finite number of these𝑈 sets. Thus, there will be a maximum constant. Let
𝐵 = max{𝐵1 , 𝐵2 , . . . }. Then 𝜇(𝑈) ≤ 𝐵 for every𝑈 ⊂ 𝑋.

Let𝑈 = 𝐵(𝑎, 𝑝−𝑁 ), or disjoint balls of the form 𝑎 + (𝑝𝑁 ).
Next, fix 𝜀 > 0.By compactness, the continuous function 𝑓 (𝑥) is uniformly

continuous. By definition, there is some 𝑁0 ∈ ℕ such that 𝑁 > 𝑁0 implies

| 𝑓 (𝑎) − 𝑓 (𝑎̂)|𝑝 <
𝜀
𝐵

when 𝑎 ≡ 𝑎̂ (mod 𝑝𝑁 ).

Let 𝑀 > 𝑁 > 𝑁0. To prove that the series of 𝑆𝑁 is Cauchy, we want to
prove that |𝑆𝑁 − 𝑆𝑀 |𝑝 < 𝜀.

Let 𝑈 be of the form 𝑎 + (𝑝𝑁 ). Choose 𝑁 large enough so that every
𝑎 + (𝑝𝑁 ) ball is either contained in 𝑋 or disjoint from it. In other words, pick
a covering which is small enough to cover 𝑋 entirely without going over.

Recall from Section 3.4 that we can define the balls so that 𝑎 ∈ {0, . . . , 𝑝𝑁−
1}. Further, for each term in 𝑆𝑁 , let the representative from 𝑎 + (𝑝𝑁 ) be
𝑥𝑎,𝑁 = 𝑎. Now is a good time to relate 𝑆𝑁 to 𝑆𝑀 via 𝑎 + (𝑝𝑁 ).
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By Lemma 3.4.2, we can write

𝑎 + (𝑝𝑁 ) =
⊔

0≤ 𝑎̂≤𝑝𝑀−1

𝑎̂ + (𝑝𝑀).

Substitute the prior equation into 𝑆𝑁 :

𝑆𝑛 =
∑

𝑎̂+(𝑝𝑀 )⊂𝑋
𝑓 (𝑎)𝜇(𝑎̂ + (𝑝𝑀)).

By construction, the representatives for 𝑆𝑀 will be 𝑥𝑎,𝑀 = 𝑎̂. Accordingly,

|𝑆𝑁 − 𝑆𝑀 |𝑝 =

������ ∑
𝑎̂+(𝑝𝑀 )⊂𝑋

[ 𝑓 (𝑎) − 𝑓 (𝑎̂)]𝜇(𝑎̂ + (𝑝𝑀))

������
𝑝

≤
∑

𝑎̂+(𝑝𝑀 )⊂𝑋
| 𝑓 (𝑎) − 𝑓 (𝑎̂)|𝑝 · |𝜇(𝑎̂ + (𝑝𝑀))|𝑝

and by the non-Archimedean property,
≤ max{| 𝑓 (𝑎) − 𝑓 (𝑎̂)|𝑝 · |𝜇(𝑎̂ + (𝑝𝑀))|𝑝}

< max
{ 𝜀
𝐵
· 𝐵

}
= 𝜀.

Thus, {𝑆𝑁 } is Cauchy. By completeness, {𝑆𝑁 } converges.
It remains to show that {𝑆𝑁 } converges independent of the choice of

𝑥𝑎,𝑁 . However, as discussed in Section 3.4, any representative from 𝑎 + (𝑝𝑁 )
will be congruent to 𝑎 (mod 𝑝𝑁 ). By the same argument, any representative
from 𝑎̂ + (𝑝𝑀) will be congruent to 𝑎̂ (mod 𝑝𝑀). All we needed for the
sum to converge was | 𝑓 (𝑎) − 𝑓 (𝑎̂)|𝑝 < 𝜀

𝐵 . This inequality stems from 𝑎 ≡ 𝑎̂

(mod 𝑝𝑁 ).
Let 𝑥 𝑎̂ ,𝑀 such that 𝑐 ∈ 𝐵(𝑎̂ , 𝑝−𝑀). Then 𝑐 ≡ 𝑎̂ (mod 𝑝𝑀). By definition of

mod, 𝑐 = 𝑎̂ + 𝑘𝑝𝑀 for some integer 𝑘. Since 𝑀 > 𝑁, that last equation can
be rewritten as 𝑐 = 𝑎̂ + 𝑘(𝑝𝑁 )(𝑝𝑀−𝑁 ). When reduced, we see that

𝑐 ≡ 𝑎̂ (mod 𝑝𝑁 ).

Since 𝑎̂ ≡ 𝑎 (mod 𝑁), the transitive property says

𝑐 ≡ 𝑎 (mod 𝑝𝑁 ).



The Mellin-Mazur Integral 47

Thus, we also have | 𝑓 (𝑎) − 𝑓 (𝑐)|𝑝 < 𝜀
𝐵 , and everything else will progress

the same.
If we change the representative for 𝑥𝑎,𝑁 , the same argument applies. In

all cases, 𝑥𝑎,𝑁 ≡ 𝑥 𝑎̂ ,𝑀 (mod 𝑝𝑁 ).
Therefore, the sequence converges independent of the choice of repre-

sentative. □

Like any self-respecting integral, the 𝑝-adic version has bounding prop-
erties.

Proposition 4.4.1. If 𝑓 : 𝑋 → ℚ𝑝 is a continuous function, | 𝑓 (𝑥)|𝑝 ≤ 𝐴 for all
𝑥 ∈ 𝑋, and 𝜇(𝑈) ≤ 𝐵 for all compact-open𝑈 ⊂ 𝑋, then����∫

𝑋

𝑓 𝜇

����
𝑝

≤ 𝐴𝐵.

Proof. We defined
∫
𝑋
𝑓 𝜇 to be the limit of sums∑

𝑓 (𝑥)𝜇(𝑥),

and by the non-Archimedean property,���∑ 𝑓 (𝑥)𝜇(𝑥)
���
𝑝
≤ max{| 𝑓 (𝑥)|𝑝 · |𝜇|𝑝} ≤ 𝐴𝐵.

□

Corollary 4.4.1.1. If 𝑓 , 𝑔 : 𝑋 → ℚ𝑝 are two continuous functions and | 𝑓 (𝑥) −
𝑔(𝑥)|𝑝 ≤ 𝜀 for all 𝑥 ∈ 𝑋, and 𝜇(𝑈) ≤ 𝐵 for all compact-open sets𝑈 ⊂ 𝑋, then����∫

𝑋

𝑓 𝜇 −
∫
𝑋

𝑔𝜇

����
𝑝

≤ 𝜀𝐵.

Proof. This follows directly from Proposition 4.4.1. □

4.5 The Mellin-Mazur Integral

At long last, we can return to the main task: interpolating −𝐵𝑘/𝑘. As shown
in the previous section, 𝜇𝑘(ℤ𝑝) = 𝐵𝑘 . When we integrate 1 over an area, we
get the measure of that area. In other words,∫

ℤ𝑝

𝜇𝑘 = 𝐵𝑘 .
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Therefore,
−𝐵𝑘
𝑘

= −1
𝑘

∫
ℤ𝑝

𝜇𝑘 .

Unfortunately, 𝜇𝑘 is a distribution, not a measure, so it is not integrable. It
is, however, possible to relate 𝜇𝑘 to 𝜇𝑘,𝛼 given that one is built off the other,
so we can continue to work with regularized measures with the knowledge
that things will connect back to Bernoulli numbers.
Theorem 4.5.1. For compact-open subset 𝑋 ⊂ ℤ𝑝 ,∫

𝑋

1𝜇𝑘,𝛼(𝑥) = 𝑘

∫
𝑋

𝑥𝑘−1𝜇1,𝛼(𝑥).

Proof. By definition,∫
𝑋

𝜇𝑘,𝛼 = lim
𝑁→∞

∑
𝑎+(𝑝𝑁 )⊂𝑋

𝜇𝑘,𝛼(𝑎 + (𝑝𝑁 )).

Lemma 4.3.2 says that

𝑑𝑘𝜇𝑘,𝛼(𝑎 + (𝑝𝑛)) = 𝑑𝑘 𝑘𝑎
𝑘−1𝜇1,𝛼(𝑎 + (𝑝𝑛)) + 𝐴𝑝𝑁

for some 𝐴 ∈ ℤ. Thus,

𝑑𝑘

∑
𝑎+(𝑝𝑁 )⊂𝑋

𝜇𝑘,𝛼(𝑎 + (𝑝𝑁 )) =
∑

𝑎+(𝑝𝑁 )⊂𝑋
(𝑑𝑘 𝑘𝑎𝑘−1𝜇1,𝛼 + 𝐴𝑝𝑁 )

= 𝑑𝑘 𝑘
∑

𝑎+(𝑝𝑁 )⊂𝑋
𝑎𝑘−1𝜇1,𝛼 + 𝑝𝑁

∑
𝑎+(𝑝𝑁 )⊂𝑋

𝐴.

Because 𝐴 ∈ ℤ𝑝 , it does not have any factors of 𝑝 in its denominator.
Therefore, 𝑝𝑁 cannot be cancelled out by 𝐴. As 𝑁 goes to infinity, 𝑝𝑁 → 0.
Thus, the

lim
𝑁→∞

𝑝𝑁
∑

𝑎+(𝑝𝑁 )⊂𝑋
𝐴 = 0.

Then

𝑑𝑘 lim
𝑁→∞

∑
𝑎+(𝑝𝑁 )⊂𝑋

𝜇𝑘,𝛼(𝑎 + (𝑝𝑁 )) = 𝑑𝑘 𝑘 lim
𝑁→∞

∑
𝑎+(𝑝𝑁 )⊂𝑋

𝑎𝑘−1𝜇1,𝛼 .

Since 𝑑𝑘 is nonzero, we divide it out. Let 𝑥 ∈ 𝐵(𝑎, 𝑝𝑁 ). Then, letting
𝑥𝑎,𝑁 = 𝑥 in the Riemann sum, we see

lim
𝑁→∞

∑
𝑎+(𝑝𝑁 )⊂𝑋

𝜇𝑘,𝛼(𝑎 + (𝑝𝑁 )) = 𝑘 · lim
𝑁→∞

∑
𝑎+(𝑝𝑁 )⊂𝑋

𝑥𝑘−1𝜇1,𝛼 .
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Equivalently, ∫
𝑋

𝜇𝑘,𝛼 = 𝑘

∫
𝑋

𝑥𝑘−1𝜇1,𝛼 .

□

As we know from Section 4.1, 𝑥𝑠 is interpolatable so long as 𝑝 ∤ 𝑥.
Consequently, let the integral interval be ℤ×

𝑝 .

Then we can show that
∫
ℤ×
𝑝
𝑥𝑘−1𝜇1,𝛼 is continuous for certain 𝑘 values.

By Lemma 4.3.1
|𝜇1,𝛼(𝑈)| ≤ 1.

Let 𝑓 (𝑥) = 𝑥𝑘
′−1 where 𝑘′ ≡ 𝑘 mod 𝑝𝑁 (𝑝 − 1). As per our earlier work,

by uniform continuity of 𝑓 ,

|𝑥𝑘−1 − 𝑥𝑘′−1 |𝑝 ≤ 1
𝑝𝑁 + 1

.

Then Corollary 4.4.1.1 says that�����∫ℤ×
𝑝

𝑥𝑘−1𝜇1,𝛼 −
∫
ℤ×
𝑝

𝑥𝑘
′−1𝜇1,𝛼

�����
𝑝

≤ 1
𝑝𝑁+1 .

So if we fix 𝑠0 ∈ {0, 1, . . . , 𝑝 − 2} and define 𝑆 to be the set of all positive
integers congruent to 𝑠0 mod 𝑝 − 1, we can interpolate

∫
ℤ×
𝑝
𝑥𝑘−1𝜇1,𝛼 as a

continuous function where 𝑘 runs through 𝑆. Explicitly, we have∫
ℤ×
𝑝

𝑥𝑠0+𝑠(𝑝−1)−1𝜇1,𝛼 .

Hold onto the 𝑠0 interpretation of the integral, because it will be useful
for generalizing the Kubota-Leopoldt function later.

Definition 4.5.1 (Kubota-Leopoldt Zeta Function). The Kubota-Leopoldt 𝑝-adic
zeta function is the continuous map 𝜁𝑝 : ℤ → ℤ𝑝 defined as

𝜁𝑝(1 − 𝑘) = (1 − 𝑝𝑘−1)
(
−𝐵𝑘
𝑘

)
.

Theorem 4.5.2. The Kubota-Leopoldt zeta function is equivalent to a Mellin-
Mazur integral:

𝜁𝑝(1 − 𝑘) = 1
𝛼−𝑘 − 1

∫
ℤ×
𝑝

𝑥𝑘−1𝜇1,𝛼
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for 𝛼 ∈ ℤ×
𝑝 and 𝑘 a positive integer. The equality holds for any choice of 𝛼 so long

as 𝛼 ≠ 1.

Proof. By Theorem 4.5.1, we know∫
ℤ×
𝑝

𝑥𝑘−1𝜇1,𝛼 =
1
𝑘

∫
ℤ×
𝑝

𝜇𝑘,𝛼 .

Section 4.3 established that

𝜇𝑘,𝛼(ℤ×
𝑝 ) = (1 − 𝑝𝑘−1)(1 − 𝛼−𝑘)(𝐵𝑘).

Some manipulation finally gets us what we want:
1
𝑘

∫
ℤ×
𝑝

𝜇𝑘,𝛼 =
1
𝑘
𝜇𝑘,𝛼(ℤ×

𝑝 )

=
1
𝑘
(1 − 𝛼−𝑘)(1 − 𝑝𝑘−1)𝐵𝑘

= (𝛼−𝑘 − 1)(1 − 𝑝𝑘−1)
(
−𝐵𝑘
𝑘

)
.

Combined with Theorem 4.5.1,∫
ℤ×
𝑝

𝑥𝑘−1𝜇1,𝛼 = (𝛼−𝑘 − 1)(1 − 𝑝𝑘−1)
(
−𝐵𝑘
𝑘

)
(1 − 𝑝𝑘−1)

(
−𝐵𝑘
𝑘

)
=

1
(𝛼−𝑘 − 1)

∫
ℤ×
𝑝

𝑥𝑘−1𝜇1,𝛼 .

The Kubota-Leopoldt zeta function is defined to be the left side,

𝜁𝑝(1 − 𝑘) = (1 − 𝑝𝑘−1)
(
−𝐵𝑘
𝑘

)
.

Remember when we pulled out a factor of 1− 𝑝−𝑠? Here we see the same
thing, but for 𝑠 = 1 − 𝑘. This is why we define the function at 1 − 𝑘 rather
than at 𝑘 itself.

Consider the right side of the equation, what is called a Mellin-Mazur
integral transform. If 𝛼 = 1, then 1/(𝛼−𝑘 − 1) = 1/0. Accordingly, we restrict
to 𝛼 ≠ 1. The last thing to note is that, outside of the pole, 𝛼 does not really
matter because 𝜁𝑝(1− 𝑘) does not depend on 𝛼. The two functions are equal,
as already proven, so any choice of 𝛼 should get the same answer for the
same 𝑘.

All our knowledge concludes in the final equivalent relations seen in the
theorem. □
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We interpolated a special form of the Riemann zeta function, but we can
be confident that we have actually made a function analogous to Riemann
zeta. This is because, even though they may not look incredibly similar in
all forms, the two are closely related.

Proposition 4.5.1. At positive integer 𝑘,

𝜁𝑝(1 − 𝑘) = (1 − 𝑝𝑘−1)𝜁(1 − 𝑘).

Proof. Classical Riemann zeta analysis establishes that

𝜁(1 − 𝑘) = −𝐵𝑘
𝑘

for integers 𝑘 > 1, and thus by substitution,

𝜁𝑝(1 − 𝑘) = (1 − 𝑝𝑘−1)𝜁(1 − 𝑘).

□

We defined the 𝑝-adic zeta function to look like the normal zeta function
in its Bernoulli form, but that definition brought with it two extra forms of
the 𝑝-adic zeta: one in terms of the ordinary Riemann zeta function, and
another in the form of a Mellin-Mazur integral.

The Mellin-Mazur form becomes undefined when 𝛼 = 1 or when 𝑘 = 0,
because then

1
𝛼−𝑘 − 1

=
1
0 .

As already noted, the requirement on 𝛼 means that if we want to use the
integral version, we must specifiy 𝛼 ≠ 1. The restriction on 𝑘 means that 𝜁𝑝
has a simple pole at 1, or 𝜁𝑝(1 − 0).

There is, in fact, a more general 𝑝-adic zeta function in its integral form
which allows for 𝑝-adic inputs rather than just integer inputs.

Definition 4.5.2 (Generalized 𝑝-adic Zeta Function). For a fixed 𝑠0 such that
0 ≤ 𝑠0 ≤ 𝑝 − 1, and 𝑠 ∈ ℤ𝑝 ,

𝜁𝑝,𝑠0(𝑠) =
1

𝛼−(𝑠0+𝑠(𝑝−1)) − 1

∫
ℤ×
𝑝

𝑥𝑠0+𝑠(𝑝−1)−1𝜇1,𝛼 .

Recall from Section 4.1 that 𝑥𝑠 is only defined for 𝑠 ≡ 𝑠0 (mod 𝑝 − 1),
so 𝜁𝑝,𝑠0 is really a family of functions: one for each 𝑠0. Whenever 𝑘 ≡ 𝑠0
(mod 𝑝 − 1), say, 𝑘 = 𝑠0 + 𝑘1(𝑝 − 1),

𝜁𝑝,𝑠0(𝑘1) = 𝜁𝑝(1 − 𝑘).
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Exactly like its integer counterpart, 𝜁𝑝,𝑠0 has a simple pole when 𝑘 or
𝑠0 + 𝑠(𝑝 − 1) = 0. Thus, if 𝑠0 = 0, we restrict 𝑠 ≠ 0.

We can finish up by plugging some values into the interpolated functions.
After all the hard work and backbreaking analysis, finding some values

of the 𝑝-adic Riemann zeta function is quite simple. Take the equation

𝜁𝑝(1 − 𝑘) = (1 − 𝑝𝑘−1) − 𝐵𝑘
𝑘
.

Let 𝑝 = 7 and 𝑘 = 10. Then

𝐵10 =
5
66

giving us

𝜁7(1 − 10) = (1 − 710−1)
(
− 5

66 · 10

)
= (−40353606)

(
− 1

132

)
𝜁7(−9) = 6725601

22 .

The 7-adic expansion of 6725601 is 1 + (1 · 7) + (1 · 72) + · · · + (1 · 78). The
coefficients are 1 all the way through. Also,

22 = 1 + 3 · 7.

When we divide, we see that

𝜁7(−9) = 1 + (5 · 7) + (6 · 72) + (1 · 73) + . . . .



Chapter 5

Finale

We turn our attention to what comes after the Kubota-Leopoldt zeta function.
How is it useful? What was the point of all this?

It turns out that the Kubota-Leopoldt zeta function is a special case of
the Kubota-Leopoldt L-function. This 𝑝-adic L-function is a topic of much
study in modern number theory, particularly throughout Iwasawa theory
and the Langlands program.

Before the advent of the 𝑝-adics, L-functions were created as a way to
generalize the Riemann zeta function. Like the Riemann zeta function, they
have Euler products, functional equations, sums, and analytic continuations.

5.1 Dirichlet Characters

To explore L-functions, we will need a type of function from number theory
called a Dirichlet character.

Definition 5.1.1 (Dirichlet character). A Dirichlet character, 𝜒 mod 𝑛, is a
multiplicative operation

𝜒 : (ℤ/𝑛ℤ)× → ℂ\{0}.

If 𝑘 reduces to 𝑚 mod 𝑛, then 𝜒(𝑘) = 𝜒(𝑚).
The symbol (ℤ/𝑛ℤ) means the integers mod 𝑛, so the “×" in the corner

means we are looking at every number with an inverse mod 𝑛. Number
theory tells us that invertible numbers mod 𝑛 are those which are relatively
prime to 𝑛.
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A multiplicative function is one which respects multiplication mod 𝑛. In
other words,

𝜒(𝑎𝑏) = 𝜒(𝑎)𝜒(𝑏).

This property allows us to identify how 𝜒 maps the identity element:

𝜒(1 · 𝑎) = 𝜒(1)𝜒(𝑎)
𝜒(𝑎) = 𝜒(1)𝜒(𝑎)

and we conclude that 𝜒(1) = 1 always.
One last important property of 𝜒 is about its output, concerning Euler’s

phi function 𝜙(𝑛).
Proposition 5.1.1. Dirichlet character 𝜒 maps (ℤ/𝑛ℤ)× to the 𝜙(𝑛)𝑡ℎ roots of 1.

Proof. By Euler’s Theorem, 𝑎𝜙(𝑛) ≡ 1 mod 𝑛when 𝑛 ∤ 𝑎. Every 𝑎 ∈ (ℤ/𝑛ℤ)×
is indivisible by 𝑛. Hence,

𝜒(𝑎𝜙(𝑛)) = 𝜒(1)
𝜒(𝑎 · 𝑎 · · · · · 𝑎) = 1

𝜒(𝑎) · 𝜒(𝑎) · · · · · 𝜒(𝑎) = 1
𝜒(𝑎)𝜙(𝑛) = 1

𝜒(𝑎) = 𝜙(𝑛)√1.

That last line says that 𝜒 maps arbitrary element 𝑎 to a 𝜙(𝑛)𝑡ℎ root of 1. □

One way to define a Dirichlet character is to let 𝜒(𝑎) = 1 for every 𝑎 such
that gcd(𝑎, 𝑛) = 1. This way, 𝜒(𝑎) always maps to a root of 1. We call this the
trivial character.

Another typical Dirichlet character is the Legendre symbol. Let 𝑎 ∈
ℤ/𝑝ℤ. We define the Legendre symbol via(

𝑎

𝑝

)
=

{
1 if 𝑎 ≡ 1 mod 4,
−1 if 𝑎 ≡ 3 mod 4.

Since we are not diving too deeply into Dirichlet characters, we can
imagine them sending every input to either 1 or −1, like the Legendre
symbol does.
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5.2 p-adic L-functions

Dirichlet characters play a central role in L-functions. Essentially, 𝜒 takes
the place of 1 since it already maps inputs to the roots of 1.

Definition 5.2.1 (Dirichlet L-function). The Dirichlet L-function for Dirichlet
character 𝜒 mod 𝑛 and for Re(𝑠) > 1 is

𝐿(𝑠, 𝜒) =
∞∑
𝑘=1

𝜒(𝑘)
𝑘𝑠

.

Its Euler product form is

𝐿(𝑠, 𝜒) =
∞∏

prime 𝑝

1
1 − 𝜒(𝑝)𝑝−𝑠 .

Like the Riemann zeta function, L-functions have continuations to the
rest of the complex plane, and they have poles at 𝑠 = 1.

While we are generalizing things, we may as well introduce the gen-
eralized Bernoulli numbers, written 𝐵𝑘,𝜒 . They require concepts far more
sophisticated than what we can discuss here. For more information, and for
a proof of the following equation, consult Ireland and Rosen (1990: p.264).

For positive integer 𝑘,

𝐿(1 − 𝑘, 𝜒) = −
𝐵𝑘,𝜒

𝑘
.

Look familiar?
There is a 𝑝-adic interpolation of L-functions, of which the 𝑝-adic

Riemann zeta is a special case. In the 𝑝-adics, we use a specific Dirichlet
character called the Teichmüller character, denoted 𝜔.

Definition 5.2.2 (Kubota-Leopoldt 𝑝-adic L-function). For positive integer 𝑘
and 𝑝-adic integer 𝑠, there exists a meromorphic function 𝐿𝑝(𝑠, 𝜒) such that

𝐿𝑝(1 − 𝑘, 𝜒) = 𝐿(1 − 𝑘, 𝜒𝜔−𝑘).

Additionally, if 𝑝 is odd,

𝐿𝑝(1 − 𝑘, 𝜒) = −
𝐵𝑘,𝜒

𝑘
.
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The explicit integral version of L𝑝 is rather complicated, but it too bears
resemblance to the Kubota-Leopoldt zeta function. More information can be
found in Jacinto and Williams (2017).

Certain inputs of various L-functions, including 𝑝-adic ones, reveal
information about arithmetic sequences, elliptic curves, and more.

To learn about L-functions in general, try Davenport (1982), which
discusses arithmetic progressions of prime numbers, Siegel’s theorem, and
Dedekind zeta functions.

Elliptic curves and their relations to L-functions culminate in the Birch
and Swinnerton-Dyer conjecture, one of the Millenium problems from the
Clay Institute of Mathematics. These problems are famously unsolved, and
whoever proves or disproves one will win a million dollars. A write-up on
the Birch and Swinnerton-Dyer conjecture can be found in Wiles (2006).

For a slightly different path, try cyclotomic fields. The Dirichlet character
mapped elements to various roots of 1. The study of these roots of unity,
as they are called, proves to be a rich one. A popular avenue of research in
modern number theory is cyclotomic fields, which are the rational numbers
adjoined with certain roots of unity. More information can be found in
Washington (1997).

Cyclotomic fields and 𝑝-adic L-functions are united by Iwasawa theory,
an area of number theory which requires many prerequisites. Iwasawa
theory is based around the publications of Kenkichi Iwasawa in the 1950s.
Much of the background knowledge required can be found in Cassels and
Fröhlich (1986) including class number theory, cohomologies, and Galois
groups. The foundational, and more advanced, work of Iwasawa Theory is
Iwasawa (1973).

One step more abstract is the Langlands program, an overarching sum-
mary of modern number theory which combines many different regions of
study via L-functions. The Langlands program is considered ill-understood
by many modern mathematicians, but it is a popular topic of research. Look
at Bump et al. (2003) for further information.

The L-functions of Langlands or Birch and Swinnerton-Dyer are abstract
and notation-heavy, requiring years of research to understand. Yet they are
not so far removed from the 𝑝-adic Riemann zeta function. The beauty of
analytic number theory is how it builds on itself in a million different ways.
There are countless directions to go in, many of which are still unknown,
unexplored, unimagined.
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