
Claremont Colleges Claremont Colleges 

Scholarship @ Claremont Scholarship @ Claremont 

Scripps Senior Theses Scripps Student Scholarship 

2022 

Correlation Does Not Imply Correlation: A Thesis on Causal Correlation Does Not Imply Correlation: A Thesis on Causal 

Influence and Simpson’s Paradox Influence and Simpson’s Paradox 

Emily Naitoh 

Follow this and additional works at: https://scholarship.claremont.edu/scripps_theses 

 Part of the Data Science Commons, and the Other Applied Mathematics Commons 

Recommended Citation Recommended Citation 
Naitoh, Emily, "Correlation Does Not Imply Correlation: A Thesis on Causal Influence and Simpson’s 
Paradox" (2022). Scripps Senior Theses. 2002. 
https://scholarship.claremont.edu/scripps_theses/2002 

This Open Access Senior Thesis is brought to you for free and open access by the Scripps Student Scholarship at 
Scholarship @ Claremont. It has been accepted for inclusion in Scripps Senior Theses by an authorized 
administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu. 

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/scripps_theses
https://scholarship.claremont.edu/scripps_student
https://scholarship.claremont.edu/scripps_theses?utm_source=scholarship.claremont.edu%2Fscripps_theses%2F2002&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=scholarship.claremont.edu%2Fscripps_theses%2F2002&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/122?utm_source=scholarship.claremont.edu%2Fscripps_theses%2F2002&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/scripps_theses/2002?utm_source=scholarship.claremont.edu%2Fscripps_theses%2F2002&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu


Correlation Does Not Imply Correlation:
A Thesis on Causal Influence and

Simpson’s Paradox

Emily Naitoh

Christina Edholm, First Reader
Christopher Towse, Second Reader

Submitted to Scripps College in Partial Fulfillment
of the Degree of Bachelor of Arts

December 13, 2022

Department of Mathematics



Copyright © 2022 Emily Naitoh.

The author grants Scripps College and the Claremont Colleges Library the nonex-
clusive right to make this work available for noncommercial, educational purposes,
provided that this copyright statement appears on the reproduced materials and
notice is given that the copying is by permission of the author. To disseminate
otherwise or to republish requires written permission from the author.



Abstract

In our data-driven world, it has become commonplace to attempt to find
causal relationships. One of the themes of this thesis is to show methods of
determining causation. The second theme follows a saying in mathematics,
"correlation does not imply causation". We will also discuss situations where
correlation does not even imply correlation itself. These cases are described
by Simpson’s paradox in an exploration of different areas of mathematics
and computer coding.
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Chapter 1

Introduction

1.1 Importance

In this section we will go through an example of an issue caused by the
ignorance of Simpson’s paradox. The most famous incident of Simpson’s
paradox is from an instance at the University of California, Berkeley(20). The
problem here stemmed from the accusation that admissions to the University
had a gender bias. Overall, a greater percentage of males were accepted into
the school, however, in each facility the opposite was true. Table 1.1 shows
example data involved in this case.

Male Female Percent Male Percent FemaleAccept Reject Accept Reject
Facility A 820 80 680 20 0.91 0.97
Facility B 20 80 100 200 0.2 0.33
Combined 840 160 780 220 0.84 0.78

Table 1.1 Example Table of Berkeley Admissions (7)

In this case, we have the same total number of females and males applying
for the school overall. In both Facility A and Facility B there is a higher
percentage of females accepted. In aggregate, however, there is a higher
acceptance of males. The reasoning here is that female students choose the
more difficult facility (Facility B) at a high rate. Overall, the implications
here are that if Simpson’s paradox was not detected UC Berkeley would be at
risk of a lawsuit for gender discrimination (7). Such a lawsuit was attempted,
fortunately, before it occurred they were able to figure out the true cause
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of this supposed discrimination. This example is mathematically easy to
understand but cases further in this thesis become more complicated.

The thesis is organized as follows. We begin with a refresher on proba-
bility and statistics in Section 1.2. That is followed by Chapter 2 on causal
influence. This chapter is split into three subsections. First is an introductory
explanation on linear models in Section 2.1. The second section, Section 2.2,
defines causal structures graphically using directed acyclic graphs. Then
Section 2.3 goes through methods of intervention to find causality. Chapter 3
is on Simpson’s paradox. It’s first section, Section 3.1, defines Simpson’s
paradox through population and sub-population rates. Then Section 3.2 has
definitions through probability. The last section, Section 3.3, has graphical
examples of Simpson’s paradox. Chapter 4 includes two algorithms for
finding Simpson’s paradox in data sets. Conclusions and future work are in
Section 5.1 and Section 5.2 of Chapter 5. We then end the thesis with our
Appendix A including source code and a bibliography.

In this thesis, a literature review was conducted, but only so many
sources could be directly used and cited in the text. For further reading, we
suggest the sources below. If you are interested in code go to source (1). For
definitions of Simpson’s paradox by rates you can read sources (3), (9), (18),
and (20). Sources with probability include (4), (6), (9), (11), (13), (17), (18),
(19), and (20). Graphical source include (1), (11), (18), (19), and (21). Lastly,
here are sources using vectors for Simpsons’s paradox (8), (9), (13), and (21).
Other useful sources can be found by searching for Judea Pearl whose work
at UCLA has been an integral part of my research.

If you would like to follow along with the code it is posted on github at
https://github.com/emnaitoh/Simpsons-Paradox-Senior-Thesis.

1.2 Probability and Statistics

This section is a refresher on the statistics and probability needed to
understand some of the definitions in further chapters. The majority of this
section comes from ideas in Chapter 1 of the textbook "Causal inference in
statistics: A Primer" by Judea Pearl, et al. (12) Here, we will go through basic
probability. Probability is the mathematical way to describe uncertainty. For
this thesis, we will need to understand some core ideas in probability and
statistics. Let’s quickly go through some definitions.

https://github.com/emnaitoh/Simpsons-Paradox-Senior-Thesis
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1.2.1 Probability

This section is on probability. It will be useful for both Chapters 2 and 3.
It will be useful for rules and theorems in causality and our definitions of
Simpson’s paradox.

Definition 1.2.1 (Independence). Given two events, 𝐴 and 𝐵, if

𝑃(𝐴|𝐵) = 𝑃(𝐴)

and

𝑃(𝐴, 𝐵) = 𝑃(𝐴)𝑃(𝐵)

then 𝐴 and 𝐵 are independent.

Independence means that the observation of event 𝐵 does not change the
probability of event 𝐴. The opposite of independence is dependence.

Definition 1.2.2 (Conditional Independence). Given three events, 𝐴, 𝐵, and
𝐶, if

𝑃(𝐴|𝐵, 𝐶) = 𝑃(𝐴|𝐶)

and

𝑃(𝐵|𝐴, 𝐶) = 𝑃(𝐵|𝐶)

then 𝐴 and 𝐵 are conditionally independent given 𝐶.

Conditional Independence means that two dependent events become
independent when there is a third event. Another way to think of it is if you
only included data with event 𝐶 then if 𝐴 and 𝐵 are independent then they
are conditionally independent. Furthermore, if 𝐴 and 𝐵 are also independent
with the whole dataset then they are marginally independent. Marginal
probability is the probability of an even disregarding other outcomes of
another variable.

Definition 1.2.3 (Probability Distribution). A probability distribution is a
function (i.e. a curve or graph) that shows the probability of different values for a
variable.
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In other words, it is how the probability of different events is distributed.
Further, the sum of the probabilities is 1 and thus the area under the curve
given by the probability distribution is 1.
Density function is similar but it is for continuous functions and takes the
form of an integral. For multiple variables you can have joint distributions.

Definition 1.2.4 (Mutually Exclusive). Given 𝐴 and 𝐵 are mutually exclusive
events then;

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)

Another way to understand this is that they are sets that do not overlap.
For example, being a cat or a dog are mutually exclusive events since it is
not possible to be in both groups. This is clear since the probability of both
of them is the same as each individual combined i.e. 𝑃( 𝑓 𝑒𝑚𝑎𝑙𝑒 ∪ 𝑚𝑎𝑙𝑒) =
𝑃( 𝑓 𝑒𝑚𝑎𝑙𝑒) + 𝑃(𝑚𝑎𝑙𝑒).

The following definitions will help us understand the steps taken to get
to Bayes’ theorem (Definition 1.2.8).

Definition 1.2.5 (Partition). A partition of events, 𝐵1 , 𝐵2 , ...𝐵𝑛 , is a set events
that are mutually exclusive and include all probable outcomes.

Definition 1.2.6 (Law of Total Probability). For any two events 𝐴 and 𝐵;

𝑃(𝐴) = 𝑃(𝐴, 𝐵) + 𝑃(𝐴,¬𝐵)

Where ¬ means "not".
Furthermore, if we have a partition, 𝐵1 , 𝐵2 , ...𝐵𝑛 , then it is true that;

𝑃(𝐴) = 𝑃(𝐴, 𝐵1) + 𝑃(𝐴, 𝐵2) + ... + 𝑃(𝐴, 𝐵𝑛)

and

𝑃(𝐴) =
∑
𝑛

𝑃(𝐴|𝐵𝑛)𝑃(𝐵𝑛)

Through division we can get the following definition.

Definition 1.2.7 (Conditional Probability).

𝑃(𝐴|𝐵) = 𝑃(𝐴, 𝐵)
𝑃(𝐵)
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Putting the laws together we get Bayes’ rule.

Definition 1.2.8 (Bayes’ Rule).

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵)

Bayes’ rule is helpful for finding conditional probability given the re-
versed condition and the original probabilities.

Another important idea in probability is expected value or mean.

Definition 1.2.9 (Expected Value).

𝐸(𝑋) =
∑
𝑥

𝑥𝑃(𝑋 = 𝑥)

The expected value of a variable 𝑋 is the sum of values multiplied by their respective
probabilities.

The expected value is exactly how it sounds, it is the value that you
expect to get based on the outcomes and probabilities. An example is lets
say you are at an arcade and ask you dad for some money for a claw machine
that cost either 1 dollar or 50 cents. Claw machines are more likely to be 1
dollar than 50 cents, so lets say 75% to 25% respectively. Then the expected
value of the amount your dad gives you is 0.75 · 1 + 0.25 · 0.5 = 0.875, so
about 88 cents.
Here are some more cases of expected value.

Definition 1.2.10 (Expected Value of a Function). If 𝑔(𝑋) is a function of 𝑋
then,

𝐸[𝑔(𝑋)] =
∑
𝑥

𝑔(𝑥)𝑃(𝑥)

Definition 1.2.11 (Expected Value of Conditional). Lets say we have the
conditional probability 𝑃(𝑌 = 𝑦 |𝑋 = 𝑥) then the expected value is

𝐸(𝑌 |𝑋 = 𝑥) =
∑
𝑦

𝑦𝑃(𝑌 = 𝑦 |𝑋 = 𝑥)



6 Introduction

1.2.2 Statistics

Statistics is another necessary topic for this thesis. This subsection will
be a refresher of basic statistics. One main use of statistics is comparing
samples to populations. A population is an entire group that we are trying to
understand. The sample is a subgroup randomly chosen from the population.
A large part of statistics is trying to find information about the population
using just a sample.

Let’s begin with the simple concept of variance. Variance is a measure
that describes the spread of all data points. Variance can be for a population
or for a sample and there are more than one way to find variance.

Definition 1.2.12 (Population Variance). For population variance we have,

𝑉𝑎𝑟(𝑋) = 𝜎2
𝑋 = 𝐸((𝑋 − 𝜇)2) =

∑(𝑥𝑖 − 𝜇)2
𝑁

Where 𝜇 is the population mean and 𝑁 is the population size. Variance is always
positive.

Sample Variance is similar but with a slight change.

Definition 1.2.13 (Sample Variance). For sample variance we have,

𝑉𝑎𝑟(𝑋) = 𝑠2 =

∑(𝑥𝑖 − 𝑥̄)2
𝑛 − 1

Where 𝑛 − 1 is called the degrees of freedom.

Definition 1.2.14 (Standard Deviation). Standard deviation for a population is
denoted 𝜎𝑋 it is the square root of the variance, it has the same units as the variable
X and is always positive. Similarly, 𝑠 =

√
𝑠2 for the sample standard deviation.

Standard deviation is a very useful tool in statistics because it can show
an estimate of the distribution of a random variable 𝑋. It is known that in a
normal distribution, like the one shown in Figure1.1, we have about 68% of
the population within one standard deviation of the mean and 95% within
two standard deviations and the large majority of 99.7% are within three.
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Standard Deviation of the Normal Distribution

68%
95%

99.7%
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Fr
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nc

y

Figure 1.1 Frequency plotted by probability where 𝜇 is the mean and 𝜎 is the
standard deviation(5)

Next we have covariance, it shows the association of how two variables
X, Y vary together. The measure is how the variables linearly covary which
is how close their relationship is to linear.

Definition 1.2.15 (Covariance).

𝜎𝑋𝑌 = 𝐸[(𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌))]

A normalized covariance is the correlation coefficient.

Definition 1.2.16 (Correlation Coefficient).

𝜌𝑋𝑌 =
𝜎𝑋𝑌

𝜎𝑋𝜎𝑌

The value above is for the population. The correlation coefficient for a sample
is 𝑟. The correlation coefficient is between positive and negative 1 which is
the slope of a line representing X and Y. This line is in the simplest form,
𝑦 = 𝑎 + 𝑏𝑥. Here 𝑟 represents 𝑏 and the value 𝑎 is the intercept. The figures
below show example lines with differing correlation coefficients (𝑟).
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Figure 1.2 Positive Correlation 𝑟 = 1
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Figure 1.3 Negative Correlation 𝑟 = −1
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Figure 1.4 No Correlation 𝑟 = 0

Another way of thinking about correlation is the amount that the values
change together (i.e. do they both increase or decrease together, do they
grow or shrink opposite of each other, is there no relationship). An issue
with the correlation coefficient is that it is only useful for linear relationships.
Of course, there are many other important relationships that are not linear,
for example exponential which increases at a much faster rate. It is important
to recognize nonlinear relationships before using the correlation coefficient.

A multiple linear regression is a regression that takes multiple predictor
variables. It still returns a linear model but it is more complex. It still has
slopes (partial regression coefficients) multiplied by predictor variables (𝑋’s)
and an intercept (𝑟0).

Definition 1.2.17 (Partial Regression Coefficient). 𝑅𝑌𝑋 ·𝑍 is the slope of 𝑌 on 𝑋

when we hold constant 𝑍.
To compute the partial regression coefficient you can show 𝑌 as a linear
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combination of 𝑋s and add noise.

𝑌 = 𝑟0 + 𝑟1𝑋1 + 𝑟2𝑋2 + · · · + 𝑟𝑘𝑋𝑘 + 𝜖

𝜖 must be uncorrelated to the regressors 𝑋 to obtain the best least-square
coefficients (least squares is explained later in Chapter 2.1).

𝐶𝑜𝑣(𝜖, 𝑋𝑖) = 0 𝑓 𝑜𝑟 𝑖 = 1, 2 · · · , 𝑘

The orthogonality principle helps compute 𝑋 = 𝛼 + 𝛽𝑌 + 𝜖

𝐸[𝑋] = 𝛼 + 𝛽𝐸[𝑌]

𝐸[𝑋𝑌] = 𝛼𝐸[𝑌] + 𝛽𝐸[𝑌2] + 𝐸[𝑌𝜖]

Orthogonality principle says 𝐸[𝑌𝜖] = 0. These result in the equations for 𝛼
and 𝛽.

𝛼 = 𝐸(𝑋) − 𝐸(𝑌)𝜎𝑋𝑌

𝜎2
𝑌

𝛽 =
𝜎𝑋𝑌

𝜎2
𝑌

The next section will deal with models that are more directly relevant to
causality, including types of structural causal models(12).





Chapter 2

Casual Inference

This chapter goes through the theory of causal inference. Causality is an
important concept in this thesis because it will lead us into the understanding
that data can easily be misinterpreted. The chapter is based on chapters 2
and 3 of "Causal inference in statistics: A Primer" by Judea Pearl (12). Formulas
and equations are directly from the text but the contents are expanded and
reworded by me. We begin by introducing ideas in linear modeling. We then
move on to structural causal modeling and directed acyclic graphs. Further
on we look into d-separation. Lastly, we discuss intervention methods,
such as fixing variables, the ’do’ method, the backdoor criterion, and the
front-door criterion.

2.1 Linear Models

Before we go into causal inference we must discuss models. There are
many types of models, in this section, we will go into regression models,
structural causal models, and graphical models like directed acyclic graphs.
A useful statistical model is the linear regression model. It is a simple
yet powerful model that can create a line to show relations and predict
values. A basic linear model can be in the form 𝑦 = 𝑚𝑥 + 𝑏. In this 𝑦 is the
response, 𝑚 is the slope, 𝑥 is the predictor variable, and 𝑏 is the intercept.
The least-squared regression tries to minimize the residual sum of squares.

Definition 2.1.1 (Residual Sum of Squares).

𝑅𝑆𝑆 =
∑
(𝑦𝑖 − 𝑦̂)2
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Here 𝑦𝑖 is the 𝑦 value at 𝑖𝑡ℎ data point and 𝑦̂ is the value that the regression predicted.

The residual sum of squares shows the error between the real data points
and the regression line (10). Looking at Figure 2.1 you can get a general idea
of the graphical meaning of residual sum of squares. Here RSS is the sum of
vertical distance from the blue points to the orange regression line squared.
This distance is the error since it is the difference of our prediction and the
actual data. These error values are squared before summing together to
avoid them canceling out. So from the RSS we can get a general idea of
the error. This issues with RSS are that the magnitude relies on the sample
size and there is not a standardized unit for distance. Overall, this can still
be useful for creating models. Minimizing RSS is used in the least-squares
criterion. BY minimizing RSS you reduce the distance of the points to the
regression line and end up with the line of best fit.

Figure 2.1 Graph of RSS: Orange diagonal line is Regression, blue vertical lines
are residuals, blue points are data

While this value is helpful it can be used to calculate a much more useful
value. First note that RSS or 𝑆𝑆𝑅𝑒𝑠 represents error meaning it is the variation
of the data that is not explained by the model. The opposite of this is the
regression sum of squares, 𝑆𝑆𝑅𝑒𝑔 . This value is the variation explained by
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the model. The equation for it is 𝑅𝑆𝑆 =
∑(𝑦̂ − 𝑦̄)2 where 𝑦̄ is the mean.

Together we get 𝑆𝑆𝑡𝑜𝑡 = 𝑆𝑆𝑅𝑒𝑔 + 𝑆𝑆𝑅𝑒𝑠 =
∑(𝑦𝑖 − 𝑦̄)2 this value represents the

total variation i.e. how far the data is from the mean. From these values you
get one of the most important concepts in linear modeling, the coefficient of
determination or 𝑅2. Where 𝑅2 =

𝑆𝑆𝑅𝑒𝑔
𝑆𝑆𝑡𝑜𝑡

. 𝑅2 is a measure that tells you how
well your model fits the observed data. Now that we explained 𝑅2 we can
continue with other definitions.

2.2 Causality

Structural causal models, or SCMs, are models that attempt to describe
the causal influences in a system. Here by system, we mean a group of
interacting variables which may have causal relations. SCMs separate
variables into two categories. Exogenous variables, U, are external to the
system and endogenous variables, V, are internal. Endogenous variables are
descendants of exogenous variables. A descendant of a variable is one that
is further down the path of that variable in the direction of the arrows. Since
exogenous variables have no ancestors they are root nodes.

Graphical causal models are graphical representations of SCMs. The
nodes and edges are representations of variables and functions. Directed
acyclic graphs (DAGs) can show causation. A child of a variable is directly
caused by that variable. A descendant is potentially caused by the ancestor
except for intransitive cases which will be explained later.

2.2.1 Chains

In this subsection we will go through the directed acyclic graphs of chains,
forks, and colliders (12). First, chains can generally be shown as three (or
more) nodes connected to each other by two edges that follow the same
direction. A chain is shown in Figure 2.2.

𝑈𝑋

X

𝑈𝑌

Y

𝑈𝑍

Z

Figure 2.2 Chain Diagram With Exogenous Variables

Below are some rules for likely dependencies in chains (Figure 2.2) between
variables 𝑋,𝑌, 𝑍.
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• Z and Y, are likely dependent for 𝑧, 𝑦 values
𝑃(𝑍 = 𝑧 |𝑌 = 𝑦) ≠ 𝑃(𝑍 = 𝑧)

• Y and X, are likely dependent for 𝑦, 𝑥 values
𝑃(𝑌 = 𝑦 |𝑋 = 𝑥) ≠ 𝑃(𝑌 = 𝑦)

• Z and X, are likely dependent for 𝑧, 𝑥 values
𝑃(𝑍 = 𝑧 |𝑋 = 𝑥) ≠ 𝑃(𝑍 = 𝑧)

• Z and X are conditionally independent on Y if for all 𝑥, 𝑦, 𝑧
𝑃(𝑍 = 𝑧 |𝑋 = 𝑥, 𝑌 = 𝑦) = 𝑃(𝑍 = 𝑧 |𝑌 = 𝑦)

In a chain, all of the variables are likely dependent when not conditioned.
The likely dependency between 𝑍 and 𝑋 is because 𝑍 depends on 𝑌 which
depends on 𝑋. The reason 𝑍 and 𝑋 are only likely dependent and not
certainly is because of exogenous variables. In Figure 2.2 these are shown as
𝑈𝑋 , 𝑈𝑌 , 𝑈𝑍 . An example of an exogenous variable is something that cannot
be measured.

Definition 2.2.1 (The Case of Intransitive Dependence). 𝑉 = {𝑋,𝑌, 𝑋},
𝑈 = {𝑈𝑋 , 𝑈𝑌 , 𝑈𝑍}, 𝐹 = { 𝑓𝑥 , 𝑓𝑌 , 𝑓𝑍}.
𝑓𝑋 : 𝑋 = 𝑈𝑋

𝑓𝑌 : 𝑌 =


𝑎 if 𝑋 = 1 and 𝑈𝑌 = 1
𝑏 if 𝑋 = 2 and 𝑈𝑌 = 1
𝑐 if 𝑈𝑍 = 2

𝑓𝑍 : 𝑍 =

{
𝑖 if 𝑌 = 𝑐 or 𝑈𝑍 = 1
𝑗 if 𝑈𝑍 = 2

In the intransitive case above, 𝑋 does not affect 𝑍 regardless of the
exogenous variables. Only the values of 𝑎, 𝑏 for 𝑌 depend on 𝑋 and 𝑌 only
affects 𝑍 if 𝑌 = 𝑐. So 𝑋 and 𝑍 are independent since any changes to 𝑋 do
not change 𝑍.

Furthermore, if we look at the cases where 𝑌 = 𝑎 is held constant. Then
we can have 𝑋 and 𝑍 as independent since changing 𝑋 does not change𝑌 and
thus does not affect 𝑍. This means that 𝑋 is independent of 𝑍 conditional
on 𝑌.

2.2.2 Forks

Next, we have forks. These are graphically shown as three nodes connected
by two edges, however, here we have two directions. The figure (2.3) below
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shows a fork.

𝑈𝑋

𝑈𝑍𝑈𝑌

X

Y Z

Figure 2.3 Fork Diagram With Exogenous Variables

The likely dependencies for Figure 2.3 are shown below.
• X and Y, are likely dependent for 𝑥, 𝑦 values

𝑃(𝑋 = 𝑥 |𝑌 = 𝑦) ≠ 𝑃(𝑋 = 𝑥)

• X and Z, are likely dependent for 𝑥, 𝑧 values
𝑃(𝑋 = 𝑥 |𝑍 = 𝑧) ≠ 𝑃(𝑋 = 𝑥)

• Z and Y, are likely dependent for 𝑧, 𝑦 values
𝑃(𝑍 = 𝑧 |𝑌 = 𝑦) ≠ 𝑃(𝑍 = 𝑧)

• Y and Z are conditionally independent on X for all 𝑥, 𝑦, 𝑧
𝑃(𝑌 = 𝑦 |𝑍 = 𝑧, 𝑋 = 𝑥) = 𝑃(𝑌 = 𝑦 |𝑋 = 𝑥)

Theorem 2.1 (Conditional Independence of Forks). If 𝑋 is a variable that causes
both 𝑌 and 𝑍 and the only path goes through 𝑋, then 𝑌 and 𝑍 are conditionally
independent on 𝑋.

This causes an issue in causality. If 𝑋 is unobserved then we may make
false assumptions that 𝑍 and 𝑌 are dependent on each other in the way of
causality. Given 𝑋 causes 𝑌 and 𝑍 it is clear that the changes in 𝑌 and 𝑍 are
not from causation. In real data, however, you often don’t get all the causes
of each variable, and thus you may end up not realizing that there exists an
𝑋 variable that creates a path between 𝑍 and 𝑌. So without the knowledge
of 𝑋, you cannot find the conditional independence, and the variables may
look dependent on each other.

2.2.3 Colliders

This subsection is about colliders. Colliders look similar to forks but
backward. They can have three nodes and two edges that connect in the
opposite way as forks. The figure below shows a general collider.
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𝑈𝑋

𝑈𝑍𝑈𝑌

X

Y Z

Figure 2.4 Collider Diagram With Exogenous Variables

The likely dependencies are quite different from the previous. They are
shown below.

• Z and X, are likely dependent for 𝑧, 𝑥 values
𝑃(𝑍 = 𝑧 |𝑋 = 𝑥) ≠ 𝑃(𝑍 = 𝑧)

• Y and X, are likely dependent for 𝑦, 𝑥 values
𝑃(𝑌 = 𝑦 |𝑋 = 𝑥) ≠ 𝑃(𝑌 = 𝑦)

• Z and Y, are likely independent for 𝑧, 𝑦 values
𝑃(𝑍 = 𝑧 |𝑌 = 𝑦) = 𝑃(𝑍 = 𝑧)

• Z and Y are likely conditionally dependent on X for 𝑥, 𝑦, 𝑧
𝑃(𝑍 = 𝑧 |𝑌 = 𝑦, 𝑋 = 𝑥) ≠ 𝑃(𝑍 = 𝑧 |𝑋 = 𝑥)

The last item in this can create confusion. It is clear that 𝑍 and 𝑌 are
independent in this system since one is not a descendant of the other and
they are not the descendant of a shared ancestor. The confusion comes from
the fact that they can be made dependent on each other.

A simple way of looking at this is a situation in which 𝑋 = 𝑌 + 𝑍. If we
know the value of 𝑋 it tells us nothing about the values of 𝑌 and 𝑍, but if we
are given the value of 𝑌 beforehand then the information of 𝑋 tells us what
𝑍 is. So we know 𝑍 = 𝑋 −𝑌 which makes 𝑍 dependent on 𝑌 conditional on
𝑋.

Theorem 2.2 (Conditional Independence in Colliders). If a variable 𝑍 is the
collision node between two variables 𝑋 and𝑌, and there is only one path between 𝑋

and𝑌, then𝑋 and𝑌 are unconditionally independent but are dependent conditional
on 𝑍 and any descendants of 𝑍.

This theorem is the result of the ideas before it and shows why colliders
are an interesting topic for dependence.
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2.2.4 d-separation

Real-world casualty is usually much more complicated than these three
node systems. In this subsection, we will take a look at d-separation and
d-connection which helps with the understanding of independence.

Definition 2.2.2 (d-separation and d-connection). d-separated variables, 𝑋 and
𝑌, are nodes with either no paths or only blocked paths. If the nodes have any paths
they are d-connected.

Paths can be blocked by nodes such as colliders, chains, and forks. d-
separation and d-connection can tell us about the dependencies of variables.

Theorem 2.3 (d-separation). A path is blocked by a set of nodes, 𝑍, if and only if
either of the below conditions are met

1. The path contains a chain or fork where the middle node is in the set 𝑍 (the
middle node is conditioned on)

2. The path contains a collider where the collision node and its descendants are
not in set 𝑍.

The importance of this is to tell dependence and independence. Variables
that are d-separated are definitely independent and d-connected are most
likely dependent. Furthermore, d-separation can be conditional; if every
path between two nodes 𝑋 and 𝑌 are blocked by 𝑍, then 𝑋 and 𝑌 are
d-separated and independent conditional on 𝑍.

2.3 Interventions

This section is based on Chapter 3 of "Causal inference in statistics: A
Primer" by Judea Pearl (12). Here we will look into interventions that can
help us understand causality. The real world has aspects that are impossible
to randomize for experiments. Even if it is possible to control a variable it
may be too expensive or difficult to be reasonable. Instead of controlling
variables in circumstances like these, it is more beneficial to just record data
than to create an experiment to analyze for causation. The issue this brings
is the difficulty in determining if a relation is causal or only correlative.

Experimentation is usually the most reliable way of showing causation.
With experimentation, we have the ability to compare control groups with
one or more treatment groups made up of randomly selected individuals. In
a model based on pre-collected data, we are not able to control any factors,
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so intervention on a variable is done by fixing its value and considering the
corresponding data of the remaining variables. Fixing the value of a variable
works to basically remove it from the system.

Let’s look at an example system: there appears to be a correlation between
trending searches of snickerdoodle cookies and the movie franchise Home
Alone. This is shown in Figure 2.5.

Figure 2.5 Google Search Trends Of Snickerdoodle and Home Alone Overtime

Snickerdoodles are not a core part of any of the Home Alone movies so
the logic of causation is not clear. If you think a little harder you may come
up with the third variable of Christmas. Many people watch Home Alone
during the holidays and snickerdoodles are a sweet holiday treat. Of course,
there may be some people who just need to eat snickerdoodles when they
watch holiday-related films but the relationship with this is not obvious.

Z

X Y
?

Figure 2.6 Unknown Causation Between X and Y
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We can apply Figure 2.6 to our snickerdoodle/Home Alone example.
Here we have variable 𝑋 as Home Alone, 𝑌 as snickerdoodles, and 𝑍 as
Christmas. With our example, we can see an obvious correlation but without
our prior knowledge, it would be difficult to determine the actual relation
shown in Figure 2.6. When we fix the variable 𝑋 (Home Alone) we get a
completely different directed acyclic graph shown in the figure. The new
DAG does not have an edge between 𝑋 and 𝑌. The reasoning for this is that
if you fix variable 𝑋 then any changes in 𝑌 do not affect 𝑋.

Z

X=x Y

Figure 2.7 Modified DAG With Fixed X

In an experiment, we could fix the variable by banning Home Alone, but
this is not reasonable in real life. Instead, we can just condition the data we
already have. The next section will show us a method that we can use to do
this.

2.3.1 Fixing Variables with ’do’

Continuing with chapter 3 of Pearl’s book, "Causal inference in statistics: A
Primer" (12), we now look into fixing variables using the method ’do’. For
notation, we will use 𝑑𝑜(𝑋 = 𝑥) to denote cases where we fix variable 𝑋 with
value 𝑥. So the probability that when we intervene on 𝑋 we get outcome 𝑌 is
𝑃(𝑌 = 𝑦 |𝑑𝑜(𝑋 = 𝑥)). This is different than our original probability because
it represents the entire population if their 𝑋 variable was fixed with value 𝑥.
The probability 𝑃(𝑌 = 𝑦 |𝑋 = 𝑥) on the other hand, only includes individuals
that naturally have 𝑋 = 𝑥.

As an example, if we have a population we can hypothetically intervene
by uniformly applying treatment 𝑑𝑜(𝑋 = 1) (such as giving a drug) or not
applying treatment 𝑑𝑜(𝑋 = 0) (giving a placebo). When we estimate the
difference between these interventions we get the average causal effect (ACE),
𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1)) − 𝑃(𝑌 = 1|𝑑𝑜(𝑋 + 0)) (difference between outcomes i.e.
recovery). If 𝑋 and 𝑌 take on more values we call this the general causal
effect.

Let’s say we have the relation shown below in Figure 2.9.
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Z

X Y

Figure 2.8 DAG of Mediator 𝑋

Here we have the variable 𝑋 is called a mediator variable. In this, 𝑌
responds to both 𝑋 and 𝑍 while 𝑋 also is influenced by 𝑍. By intervening
𝑃(𝑌 = 𝑦 |𝑑𝑜(𝑋 = 𝑥))we can modify the relation to become a fork structure
like that of Figure 2.7. This DAG is the manipulated model representing the
intervention. The manipulated conditional probability 𝑃𝑚(𝑌 = 𝑦 |𝑋 = 𝑥) is
equal to the causal effect 𝑃(𝑌 = 𝑦 |𝑑𝑜(𝑋 = 𝑥)).

Our original probability has two properties shared with this manipu-
lated probability. One is that the marginal probability does not change with
intervention. This means that 𝑃(𝑍 = 𝑧) is not changed by removing the
arrow between 𝑍 and 𝑋. The other shared property is that the conditional
probability 𝑃(𝑌 = 𝑦 |𝑍 = 𝑧, 𝑋 = 𝑥) is unchanged. This means that manipula-
tion of 𝑋 does not change the way that 𝑌 responds to both variables 𝑋 and
𝑍. These properties can be shown by the equations below.

𝑃𝑚(𝑍 = 𝑧) = 𝑃(𝑍 = 𝑧)
and

𝑃𝑚(𝑌 = 𝑦 |𝑍 = 𝑧, 𝑋 = 𝑥) = 𝑃(𝑌 = 𝑦 |𝑍 = 𝑧, 𝑋 = 𝑥)

Since our manipulated model no longer has the causal connection
between𝑋 and𝑍 they are now d-separated. This means they are independent
and thus 𝑃𝑚(𝑍 = 𝑧 |𝑋 = 𝑥) = 𝑃𝑚(𝑍 = 𝑧) = 𝑃(𝑍 = 𝑧). Next, we have the
adjustment formula shown below.

Definition 2.3.1 (Adjustment Formula).

𝑃(𝑌 = 𝑦 |𝑑𝑜(𝑋 = 𝑥)) =
∑
𝑧

𝑃(𝑌 = 𝑦 |𝑋 = 𝑥, 𝑍 = 𝑧)𝑃(𝑍 = 𝑧)

This equation calculates the association of 𝑋 and 𝑌 for all 𝑧 values of
variable 𝑍. This is called adjusting/controlling for 𝑍. It now is possible to
solve for 𝑃(𝑌 = 𝑦 |𝑑𝑜(𝑋 = 𝑥)) using the data since the right-hand side can be
calculated with only conditional probabilities! In a controlled experiment
this adjusting is unnecessary however in many cases it is unreasonable to
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do experimentation. Experimenters may use adjustment for minimizing
variations in samples but this is not needed.

To show adjustment we will use a generic example. Let 𝑋 = 1 be
treatment, 𝑍 = 1 be subgroup 1, and 𝑌 = 1 be success. Then we get

𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1)) = 𝑃(𝑌 = 1|𝑋 = 1, 𝑍 = 1)𝑃(𝑍 = 1)+𝑃(𝑌 = 1|𝑋 = 1, 𝑍 = 0)𝑃(𝑍 = 0)

and

𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 0)) = 𝑃(𝑌 = 1|𝑋 = 0, 𝑍 = 1)𝑃(𝑍 = 1)+𝑃(𝑌 = 1|𝑋 = 0, 𝑍 = 0)𝑃(𝑍 = 0)

Note that the above equations look quite similar to the expected value.
With these, the effect of the treatment is as follows:

𝐴𝐶𝐸 = 𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1)) − 𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 0))

In the next chapter, we will use this to show Simpson’s paradox.

Theorem 2.4 (Causal Effect Rule). Given the variable parents of 𝑋 called 𝑃𝐴,
the causal effect of 𝑋 on 𝑌 is shown below.

𝑃(𝑌 = 𝑦 |𝑑𝑜(𝑋 = 𝑥)) =
∑
𝑧

𝑃(𝑌 = 𝑦 |𝑋 = 𝑥, 𝑃𝐴 = 𝑧)𝑃(𝑃𝐴 = 𝑧)

where 𝑧 is the set of all combinations of values of 𝑃𝐴

From this we can get a different equation.

𝑃(𝑌 = 𝑦 |𝑑𝑜(𝑋 = 𝑥)) =
∑
𝑧

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦, 𝑃𝐴 = 𝑧)
𝑃(𝑋 = 𝑥 |𝑃𝐴 = 𝑧)

For the next part, we first need to know the rule of product decomposition.

Theorem 2.5. For any acyclic graph, the joint distribution of variables can be
found by the product of the conditional probabilities of children given parents
𝑃(𝑐ℎ𝑖𝑙𝑑 |𝑝𝑎𝑟𝑒𝑛𝑡𝑠). This rule is given by the equation below.

𝑃(𝑥1 , 𝑥2 , ..., 𝑥𝑛) =
∏
𝑖

𝑃(𝑥𝑖 |𝑝𝑎𝑖)

𝑋𝑖 is the child variable and 𝑝𝑎𝑖 is the parent.
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An example of this from a chain of three variables is below.

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧) = 𝑃(𝑋 = 𝑥)𝑃(𝑌 = 𝑦 |𝑋 = 𝑥)𝑃(𝑍 = 𝑧 |𝑌 = 𝑦)

To break this down, the first part 𝑃(𝑋 = 𝑥) is the first node with no parents.
Then𝑃(𝑌 = 𝑦 |𝑋 = 𝑥) is the child𝑌 given the parent𝑋. Lastly𝑃(𝑍 = 𝑧 |𝑌 = 𝑦)
is the child 𝑍 given the parent 𝑌.

Now that we have this we can see that before the intervention of our
original DAG we get

𝑃(𝑥, 𝑦, 𝑧) = 𝑃(𝑧)𝑃(𝑥 |𝑧)𝑃(𝑦 |𝑥, 𝑧)

and after intervention

𝑃(𝑧, 𝑦 |𝑑𝑜(𝑥)) = 𝑃𝑚(𝑧)𝑃𝑚(𝑦 |𝑥, 𝑧) = 𝑃(𝑧)𝑃(𝑦 |𝑥, 𝑧)

The reason that we don’t have 𝑃(𝑥 |𝑧) after the intervention is because we fix
𝑋 = 𝑥. If we want 𝑦 given multiple values of 𝑧 we use

𝑃(𝑦 |𝑑𝑜(𝑥)) =
∑
𝑧

𝑃(𝑧)𝑃(𝑦 |𝑥, 𝑧)

Further, we can get the truncated product formula (g-formula)

𝑃(𝑥1 , 𝑥2 , ..., 𝑥𝑛 |𝑑𝑜(𝑥)) =
∏
𝑖

𝑃(𝑥𝑖 |𝑝𝑎𝑖) for all 𝑖 where 𝑋𝑖 ∉ 𝑋

Finally, the relationship between pre-intervention and post-intervention is

𝑃(𝑧, 𝑦 |𝑑𝑜(𝑥)) =
𝑃(𝑥, 𝑦, 𝑧)
𝑃(𝑥 |𝑧)

This is really important because it means that with non-experimental data
we can find the effect of intervention 𝑑𝑜(𝑥) by using conditional probability
𝑃(𝑥 |𝑧) (i.e. the effect of the treatment on the recovery).

2.3.2 Backdoor Criterion

This subsection will go over the backdoor criterion. Let’s start with a
definition.

Definition 2.3.2 (The Backdoor Criterion). Given a DAG with (𝑋,𝑌) as an
ordered pair of variables, then a set of variables 𝑍 satisfies the backdoor criterion if
𝑍 blocks all (if any) paths from 𝑌 to 𝑋 and no node in 𝑍 is a descendant of 𝑋.
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Figure 2.9 shows an example where 𝑍 satisfies the backdoor criterion.

Theorem 2.6. If the backdoor criterion is satisfied by the set of variables 𝑍 the
causal effect of 𝑋 on 𝑌 is

𝑃(𝑦 |𝑑𝑜(𝑥)) =
∑
𝑧

𝑃(𝑦 |𝑥, 𝑧)𝑃(𝑧)

The logic here is that we block erroneous paths between 𝑋 and 𝑌 while
leaving the direct pathways from 𝑋 to 𝑌. To find the causal effect of 𝑋 on 𝑌

we need the set of backdoor variables 𝑍 to be conditioned so that no variable
in 𝑍 has an arrow into 𝑋. Meaning 𝑍 cannot be an ancestor of 𝑋. This is to
ensure 𝑋 and 𝑌 are independent and not confounded. We must be careful
to not condition descendants of 𝑋 so as to not affect 𝑌 by blocking the path
between 𝑋 and 𝑌. For this requirement, we cannot condition on colliders
that may unblock a path between 𝑋 and 𝑌.

A generic example is shown in the DAG below.

Z

X Y

Figure 2.9 DAG of Mediator 𝑋

In Figure 2.9 we want to determine the causal effect of treatment 𝑋 on
success 𝑌 with a backdoor 𝑍 relative to (𝑋,𝑌), where 𝑍 is an ancestor to
variable 𝑊 which also affects the success 𝑌. We can see that 𝑍 is a backdoor
that affects both 𝑋 and 𝑊 directly and is an ancestor to 𝑌. In actual data, we
may not have the variable 𝑍 (Christmas from Figure 2.5). but since we are
given 𝑊 that can also work as a backdoor since it also satisfies the backdoor
criterion. Now we can use the adjustment formula to come to a conclusion.

𝑃(𝑌 = 𝑦 |𝑑𝑜(𝑋 = 𝑥)) =
∑
𝑤

𝑃(𝑌 = 𝑦 |𝑋 = 𝑥,𝑊 = 𝑤)𝑃(𝑊 = 𝑤)

If we have a case with no backdoor variables then we simply have the empty
set satisfying the backdoor criterion and thus our result is 𝑃(𝑦 |𝑑𝑜(𝑥)) =
𝑃(𝑦 |𝑥). In the case where we want a specific 𝑊 value, we would need to
change this a bit. Let’s say we have the example below.
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T

Z Y

W

X

Figure 2.10 Backdoor Example

Here we would have to condition on 𝑇 to remove the path (𝑍 ← 𝑇 → 𝑌).
The result would be

𝑃(𝑦 |𝑑𝑜(𝑥), 𝑤) =
∑
𝑇

𝑃(𝑦 |𝑥, 𝑤, 𝑡)𝑃(𝑡 |𝑥, 𝑤)

Using this we can do a method called moderation or effect modification. Here
we can compare different values of 𝑊 . It would be the simple comparison of
𝑃(𝑦 |𝑑𝑜(𝑥), 𝑤) and 𝑃(𝑦 |𝑑𝑜(𝑥), 𝑤′).

2.3.3 Front-Door Criterion

In cases with unobserved confounders, you may not be able to use the
backdoor criterion. Unobserved variables cannot block erroneous paths and
thus are not able to be used for this. With hidden confounders (unobserved),
we may be unable to determine the causality between 𝑋 and 𝑌 since this
confounder could potentially be the main reason for causality. To fix this we
can use an intermediate variable. Figures 2.11 and 2.12 show a generic case
of this.

U

X Y

Figure 2.11 DAG where U is unobserved
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U

ZX Y

Figure 2.12 Front-Door Criterion: Modified Figure 2.11

Figure 2.12 shows that there is no backdoor from 𝑋 to 𝑍 because 𝑈 is
unobserved, thus the effect of 𝑋 on 𝑍 is able to be identified. We can also
identify the effect of 𝑍 on 𝑌 by conditioning on 𝑋. Now from the adjustment
formula, we have the two equations below.

𝑃(𝑍 = 𝑧 |𝑑𝑜(𝑋 = 𝑥)) = 𝑃(𝑍 = 𝑧 |𝑋 = 𝑥)

and

𝑃(𝑌 = 𝑦 |𝑑𝑜(𝑍 = 𝑧)) =
∑
𝑥

𝑃(𝑌 = 𝑦 |𝑍 = 𝑧, 𝑋 = 𝑥)𝑃(𝑋 = 𝑥)

Since we want to know how 𝑋 affects 𝑌 we can combine the effects above.
The probability we want to find is 𝑃(𝑦 |𝑑𝑜(𝑥)) so we must start with setting
𝑋 = 𝑥. Here we get 𝑃(𝑧 |𝑑𝑜(𝑥)) = 𝑃(𝑧 |𝑥) since there is no backdoor path.
From this, we need to look at the arrow between 𝑍 and 𝑌. To get this we
must condition on 𝑋. We end up with

𝑃(𝑦 |𝑑𝑜(𝑧)) =
∑
𝑥

𝑃(𝑦 |𝑧, 𝑥)𝑃(𝑥)

Now we join the effects together, so we get

𝑃(𝑦 |𝑑𝑜(𝑥)) =
∑
𝑧

𝑃(𝑦 |𝑑𝑜(𝑧))𝑃(𝑧 |𝑑𝑜(𝑋))

Lastly, we plug in the equations using the notation 𝑥′ for the summation.
We finally get

𝑃(𝑦 |𝑑𝑜(𝑥)) =
∑
𝑧

∑
𝑥′

𝑃(𝑦 |𝑧, 𝑥′)𝑃(𝑥′)𝑃(𝑧 |𝑥)

This result is called the front-door formula and is extremely useful since we
can use it to find causal effect when the backdoor method is not possible.
Similarly to the backdoor formula, there are criteria that must be met.
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Definition 2.3.3 (Front-Door Criterion). The set of variables 𝑍 satisfies the
front-door criterion relative to (𝑋,𝑌) an ordered pair of variables if the following
are true.

1. All paths from 𝑋 to 𝑌 are intercepted by a variable in 𝑍

2. 𝑋 has no backdoor paths to 𝑍

3. All (if any) backdoor paths from 𝑍 to 𝑌 are blocked by 𝑋

Now that we defined the front-door criterion we can look at one more
important theorem.

Theorem 2.7 (Front-Door Adjustment). If 𝑃(𝑥, 𝑧) > 0 and 𝑍 satisfies the front-
door criterion in respect to (𝑋,𝑌) then the causal effect of 𝑋 on 𝑌 is identifiable by
the formula below

𝑃(𝑦 |𝑑𝑥(𝑥)) =
∑
𝑧

𝑃(𝑧 |𝑥)
∑
𝑥′

𝑃(𝑧 |𝑥′, 𝑧)𝑃(𝑥′)

With that theorem we can now finish this chapter with the tools necessary
to manipulate data to show causal relations. If you would like to go further
into causality I suggest looking into do-calculus which is beyond the scope of
this thesis.



Chapter 3

Simpson’s Paradox

This chapter discusses different definitions of Simpson’s paradox. We
begin with a definition by rates. There we look at the differences between an
aggregate rate of an entire population and the rates of individual subgroups.
Next, we define Simpson’s paradox through probability. Lastly, we look at
graphical examples.

3.1 Population and Sub-population Rates

In this chapter (Chapter 3), we will look at definitions of Simpson’s paradox
from the perspectives of different areas of mathematics. We will start with
an example case involving adoption rates.

Consider two animal shelters trying to get people to adopt their animals.
Below are their adoption rates for cats, dogs, and in total.

Shelter 1 Shelter 2
Dog Adopted 9 31
Dog Not Adopted 4 16
Cat Adopted 94 70
Cat Not Adopted 76 60
Dog Adopted Percent 69.2% 66.0%
Cat Adopted Percent 55.3% 53.8%
Total Adopted Percent 56.3% 57.1%

Table 3.1 Adoption Rates for Two Shelters
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Figure 3.1 Bar Chart of Adoption Rates for Two Shelters

For total adoptions shelter 2 has a higher percentage but separately
Shelter 1 has more dog adoptions and cat adoptions. Basic arithmetic says

that 0.6923 =
9
13 >

31
47 = 0.6596 and 0.5529 =

94
170 >

70
130 = 0.5385, but

we also have 0.5628 =
9 + 94

13 + 170 <
31 + 70
47 + 130 = 0.5706. As you can see the

left side of the equation is greater for the first two equations which are the
subgroups but it is less for the last equation which is the aggregate.

This case is not very extreme and the implications are minimal but in
the real world there are cases that are more dramatic and have significant
implications.

In more mathematical terms, consider [𝐴, 𝐵] mutually exclusive and
jointly exhaustive populations with rates [𝛼, 𝛽] (rates for two populations)
when partitioned we get rates [𝐴1 , 𝐴2 , 𝐵1 , 𝐵2] (rates for two populations
subdivided) so the overall rates are 𝛼 = 𝐴1 + 𝐴2 and 𝛽 = 𝐵1 + 𝐵2.(2)
We define

𝐶1 ≡ 𝐴1 ≥ 𝐵1

𝐶2 ≡ 𝐴2 ≥ 𝐵2

𝐶3 ≡ 𝛽 ≥ 𝛼
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𝐶 ≡ (𝐶1&𝐶2&𝐶3)

Let 𝜃 = (𝐴1 − 𝐵1) + (𝐴2 − 𝐵2) + (𝛽 − 𝛼), then Simpson’s paradox occurs when

i) 𝐶 ≡ (𝐶1&𝐶2&𝐶3) and

ii) 𝐶4 ≡ 𝜃 > 0

Going through the conditions we can see that condition i) implies
Simpson’s directly except for the case (𝐴1 = 𝐵1 &𝐴2 = 𝐵2 &𝛽 = 𝛼).
To fix this we need condition ii) to remove this case, so we have 𝜃 =

(𝐴1 − 𝐵1) + (𝐴2 − 𝐵2) + (𝛽 − 𝛼) > 0. This means the values can’t all be equal,
thus combined the conditions suffice in the i)→ ii) direction.

Next we must show that condition ii) must also include condition i).
Conversely, 𝐴1 > 𝐵1, 𝐵2 > 𝐴2, 𝛽 > 𝛼 satisfies ii) but is not Simpson’s paradox.
So we need the i) condition. Now since 𝐴2 must be greater than or equal to
𝐵2 we remove this case. Thus, the conditions suffice in the ii)→ i) direction.

Now that we showed that both conditions are necessary and sufficient to
show Simpson’s paradox we can go through a few theorems.

Theorem 3.1. Simpson’s Paradox requires 𝐴1 ≠ 𝐴2(2)

Proof Using the notation above we can find a contradiction in the case
where 𝐴1 = 𝐴2. Let 𝑎 =

members of A in partition 1
total members of A . Then we have the rate

𝛼 = 𝑎𝐴1 + (1 − 𝑎)𝐴2

Since 𝐴1 = 𝐴2 we get

𝑎𝐴1 + (1 − 𝑎)𝐴2 = 𝑎𝐴1 + (1 − 𝑎)𝐴1 = 𝑎𝐴1 + 𝐴1 − 𝑎𝐴1 = 𝐴1

So 𝛼 = 𝐴1, but by definition 𝛼 = 𝐴1 +𝐴2 so for 𝛼 = 𝐴1 we need 𝐴2 = 0. That
implies that 𝐴1 = 0 as well. So now we have 𝛼 = 𝐴1 = 𝐴2 = 0. From our
original condition, we need 𝐴1 ≥ 𝐵1, 𝐴2 ≥ 𝐵2, and 𝛽 ≥ 𝛼. Since the values
are rates they must be non-negative. Together we have 0 = 𝐴1 ≥ 𝐵1 ≥ 0 so 𝐵1
must be 0. Similarly, 𝐵2 must be 0. So now 𝐵1 = 𝐵2 = 0, thus 𝛽 = 𝐵1 + 𝐵2 = 0.
Finally this violates condition ii) since 𝜃 = (0 − 0) + (0 − 0) + (0 − 0) ≯ 0■

Theorem 3.2. Simpson’s Paradox requires 𝐵1 ≠ 𝐵2(2)

Proof If 𝐵1 = 𝐵2 then 𝛽−𝐵1−𝐵2 = 0. Since 𝜃 = (𝐴1−𝐵1)+(𝐴2−𝐵2)+(𝛽−𝛼)
we get𝜃 = 𝐴1+𝐴2−𝛼−0. By definition 𝛼 = 𝐴1+𝐴2 so𝜃 = 0. This contradicts
condition ii) since it requires 𝜃 > 0■
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Next, we will look at another way we can define Simpson’s Paradox. This
definition looks at successes and failures of two sub-populations.

Consider a population 𝐷 with sub-populations 𝐷1 and 𝐷2. Let sub-
population 𝐷1 have 𝐴𝑖 trials with 𝑎𝑖 successes and 𝐷2 have 𝐵𝑖 trials with 𝑏𝑖
successes. Then Simpson’s paradox occurs if

𝑎𝑖

𝐴𝑖
≥ 𝑏𝑖

𝐵𝑖
for all 𝑖 = 1, 2, ..., 𝑛 and

∑
𝑎𝑖∑
𝐴𝑖
≤

∑
𝑏𝑖∑
𝐵𝑖
(16)

An example of this is shown at the beginning of the section (3.1). This is
one of the simplest ways of showing Simpson’s paradox and my favorite of
the non-graphical explanations .

3.2 Definition by Probability

In this section, we will define Simpson’s paradox through probability. Let
𝑇 = 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡, ¬𝑇 = 𝑛𝑜 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡, 𝑆 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, ¬𝑆 = 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒, 𝑀 = 𝑚𝑎𝑙𝑒,
and ¬𝑀 = 𝑓 𝑒𝑚𝑎𝑙𝑒. In this definition, treatment is not in the sense of
medicine but as a treatment in an experiment (no treatment is control).
Further, success only means a desired outcome. As well, male and female
can be substituted by other sub-groupings. With this notation, we have
Simpson’s paradox if

i) 𝑃(𝑆 |𝑇) ≤ 𝑃(𝑆 |¬𝑇)

ii) 𝑃(𝑆 |𝑇, 𝑀) > 𝑃(𝑆 |¬𝑇, 𝑀)

iii) 𝑃(𝑆 |𝑇,¬𝑀) > 𝑃(𝑆 |¬𝑇,¬𝑀)(16)

Condition i) means that overall success is more probable without treatment.
Condition ii) means success for male participants is more probable with
treatment. Condition iii) means success for female participants is more
probable with treatment. The paradox comes from the fact that the treatment
is less than or equally successful as no treatment in aggregate but for
each sub-population the treatment has more successes. The example at
the beginning of this chapter (3.1) can be seen from this perspective since
the percent adopted can represent the probability of adoption. Success is
adoption, treatment is shelter, and the sub-populations are cats and dogs.
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3.3 Graphics of Simpson’s Paradox

This last section will go through graphical representations of Simpson’s
paradox. The first data set we will look at is the iris dataset(15). This dataset
is a classic dataset used in many data science and machine learning classes.
The iris data frame has 150 observations (rows) of individual iris flowers with
5 variables (columns) recorded. These variables include the sepal length
and width, petal length and width, and species. When looking at data we
often like to try and see relationships and correlations. A great way to start
with this is graphically. In Figure 3.2 we graphed sepal width and sepal
length for the aggregate data.

Figure 3.2 Graph of Aggregate Data

The linear regression line shown in blue has a slightly negative slope
(-0.1176) but is close enough to 0 to say it is possibly not correlated. When
we look at the data separated by species we get a different result. This is
shown in Figure 3.3 below.
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Figure 3.3 Graph of Subgroups

Here we have positive correlations for each species. This change in
correlation is a great visualization of Simpson’s paradox. The aggregate data
has opposing results from the divided group data. Without the regression
lines it is still possible to visually see the reversed trends in this graph. This
is not always the case. Some data sets have much more overlaps in the data
that may make it difficult to tell. The next chapter (4) will attempt to help
with this issue.

Now we will go through randomly generated data in order to see how
we can create Simpson’s paradox. Before we begin, you can find the code to
follow along in both the appendix and the GitHub. Do note that running
this code will give different results every time due to randomness. Starting
with an example of non-Simpson’s paradox data, we have the figure below.
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Figure 3.4 Generated Data Without Simpson’s

This data was generated in a way that did not cause Simpson’s paradox.
This was done by keeping the clusters close enough and with the same
general trend so that the aggregate regression would just become like an
average. We generated another graph with Simpson’s paradox shown
somewhat but not extremely.
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Figure 3.5 Generated Data with Moderate Simpson’s

Here we have a subgroup that is more condensed on the x-axis and
another that is spread out. The vertical distance between the regressions has
spread further away and the result is a graph that shows Simpson’s paradox
somewhat. Our last graph is an obvious example.
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Figure 3.6 Generated Data with Obvious Simpson’s

This last example of generated data has two subgroups that are densely
clustered relative to the scale. These clusters are far apart to the point that
Simpson’s paradox occurs. The regression line of the aggregate becomes
Simpson’s paradox since the subgroups are so distant that the regression is
more accurate with a reversed slope than one in between the two subgroups.
This last example makes it clear what graphically causes Simpson’s paradox.
In this chapter, we learned how to define Simpson’s paradox by rates, with
probability, and visually. The next chapter (4) will look into determining
Simpson’s with code.





Chapter 4

Coding Examples

4.1 Population and Sub-population Correlation

This chapter (4) will go through the creation of code to detect Simpson’s
paradox. When you have a large set of data it may seem impossible to
determine if Simpson’s paradox takes place. This code will attempt to
automate the process of checking for Simpson’s paradox. The code is in the
appendix and on GitHub if you would like to follow along.

4.2 Function 1

In this first function, the detection method is through analysis of correlation
(14). For this, you will need to have a data set with a predictor variable,
𝑥𝑉𝑎𝑟, and a response variable, 𝑦𝑉𝑎𝑟. The process starts by calculating
the correlation of the aggregated data. That means the correlation using
the entire columns. From here you go through each column that are
not the predictor or response columns. Then you must check the values
in each column to see if they are categorical. In general, that means
they are non-numeric values. Next, you split the data into subsets of the
categories. Then you calculate the correlation of the predictor and response
values of just the data of each subgroup. Lastly, you need to compare the
aggregated correlation to the subgroups correlations. Below is pseudo-code
that describes this process.
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Algorithm 1 Detection by Correlation of Categorical Subgroups
Input: data, xVar, yVar
/* data is a dataset and xVar and yVar are string values of the column names for the
predictor and response variables*/

Algorithm:
xData = data [xVar] /* Column data of x values*/
yData = data [yVar] /* Column data of y values*/
aggCor = Correlation(xData,yData)/* Pearson’s correlation of x and y values*/
print("Aggregated Correlation", aggCor) /* Prints the aggregated correlation*/
cols = data[data columns not xVar, yVar] /* data frame without x and y variables*/

/*Initializing lists*/
corCoef = empty list
allSubgroups = empty list

/*Find the correlation of subgroups of categorical variables*/
for each column in cols do: /*Go through each column*/

if class of column is factordo: /*factor class is categorical data*/
subgroups = unique values of column
for each sub in subgroups do: /*Go through each subgroup*/

allSubgroups = allSubgroups + sub /*Add sub to the list of subgroups*/
subdf = filter data /*Keep only values in subgroup*/
subX = subdf [xVar] /*x values only in subgroup*/
subY = subdf [yVar] /*y values only in subgroup*/
subCor = cor(subX,subY) /*correlation in subgroup*/
corCoef = corCoef + subCor /*Add subCor to the list*/
end

end
end

/*Test subgroup correlations for reversal*/
ind = 1 /*index to keep track of location in list*/
sp = FALSE/*Default value Simpsonś paradox is false*/

if length of corCoef > 0 do: /*Test for reversal of items in the list*/
if aggCor > 0 do: /*Checking the sign of aggregate correlation*/

for each cc in corCoef do: /*Goes through all subgroup correlations*/
if cc < 0 do: /*Checks for reversal*/

print("Simpson’s Paradox", corCoef[ind], allSub[ind])/*Results*/
sp = TRUE/*Saves SP result*/

end
end

end
/*Test for negative aggCor*/
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if aggCor < 0 do: /*Checking the sign of aggregate correlation*/
for each cc in corCoef do: /*Goes through all subgroup correlations*/

if cc > 0 do: /*Checks for reversal*/
print("Simpson’s Paradox", corCoef[ind], allSub[ind])/*Results*/
sp = TRUE/*Saves SP result*/

end
end

end
if sp = FALSE do:

print("Simpson’s not detected") end

Assumptions in this algorithm are that all categorical variables are in the
type factor. This however is not the case. Numerical values can be used as a
replacement for categorical values. For example, a car has a certain number
of cylinders; these cylinders are numeric but they represent subgroups. In
order to fix this we can create a new algorithm that determines if a variable
is a hidden factor by testing if it is an integer with an arbitrary number of
levels or subgroups.

4.3 Function 2

The code in this second function itself is similar however the input also
includes a value for the arbitrary max number of subgroups. This max
number will help determine if a column has subgroups or if the labels are
most likely names or discrete numerical values. This issue is also in the
common case where values are labeled with IDs. This edited code goes
through the ways subgroups can be contained by variable type to make sure
all cases of subgroups are tested. The pseudo-code is below.
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Algorithm 2 Detection by Correlation of All Subgroups
Input: data, xVar, yVar, maxSubs
/* data is a dataset and xVar and yVar are string values of the column names for the
predictor and response variables maxSubs is an integer value*/

Algorithm:
xData = data [xVar] /* Column data of x values*/
yData = data [yVar] /* Column data of y values*/
aggCor = Correlation(xData,yData)/* Pearson’s correlation of x and y values*/
print("Aggregated Correlation", aggCor) /* Prints the aggregated correlation*/
cols = data[data columns not xVar, yVar] /* data frame without x and y variables*/

cNamesAll = names of columns/*Keeps the names of each column*/
/*Initializing lists*/
corCoef = empty list
allSubgroups = empty list indName = 1 /*Keeps track of column name*/ corName
= empty list

/*Find the correlation of subgroups of categorical variables*/
for each column in cols do: /*Go through each column*/

subgroups = unique values of column
continue = FALSE/*Default FALSE becomes true if the current col is grouped*/
if class of column is factordo:

continue = TRUE/*Change continue to true to continue to correlation stage*/
end
if class of column is integer AND number of subgroups < maxSubsdo:

continue = TRUE/*Change continue to true to continue to correlation stage*/
end
if class of column is character AND number of subgroups < maxSubsdo:

continue = TRUE/*Change continue to true to continue to correlation stage*/
end
if continue = TRUE

for each sub in subgroups do: /*Go through each subgroup*/
allSubgroups = allSubgroups + sub /*Add sub to the list of subgroups*/
subdf = filter data /*Keep only values in subgroup*/
subX = subdf [xVar] /*x values only in subgroup*/
subY = subdf [yVar] /*y values only in subgroup*/
subCor = cor(subX,subY) /*correlation in subgroup*/
corCoef = corCoef + subCor /*Add subCor to the list*/
end

end
end

/*Test subgroup correlations for reversal*/
ind = 1 /*index to keep track of location in list*/
sp = FALSE/*Default value Simpsonś paradox is false*/
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if length of corCoef > 0 do: /*Test for reversal of items in the list*/
if aggCor > 0 do: /*Checking the sign of aggregate correlation*/

for each cc in corCoef do: /*Goes through all subgroup correlations*/
if cc < 0 do: /*Checks for reversal*/

print("Simpson’s Paradox", corCoef[ind], allSub[ind])/*Results*/
sp = TRUE/*Saves SP result*/

end
end

end
/*Test for negative aggCor*/
if aggCor < 0 do: /*Checking the sign of aggregate correlation*/

for each cc in corCoef do: /*Goes through all subgroup correlations*/
if cc > 0 do: /*Checks for reversal*/

print("Simpson’s Paradox", corCoef[ind], allSub[ind])/*Results*/
sp = TRUE/*Saves SP result*/

end
end

end
if sp = FALSE do:

print("Simpson’s not detected")

This second algorithm did a better job of detecting Simpson’s paradox.
It removed the issue of hidden categorical data. Overall, these algorithms
are useful in detecting Simpson’s paradox but still need human supervision.
Of course, there will be edge cases that we have not considered which will
not be found by these algorithms. Nonetheless, this is a good start. In the
end, it must be the job of a data scientist or someone similar to check for
themselves if the results make sense.





Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis we went through the ideas of causal influence and Simpson’s
paradox. We used basic probability and statistics along with graph theory to
understand issues in causality. We used directed acyclic graphs to visualize
structural causal models. We used probability to manipulate data structures
to show causality in precollected data. We went through definitions of
Simpson’s paradox from the perspectives of differing mathematical subjects.

In Chapter one, we looked at one example of Simpson’s paradox in the
real world. We also went through the basic probability and statistics needed
to understand the following chapters. In the second chapter, we discussed
causal influence to understand problems and solutions to working with
pre-collected data. We looked at linear models, structural causal models,
and directed acyclic graphs. We defined d-separation to better understand
dependence and independence. Then we discussed intervention methods,
like fixing variables in the ’do’ method, and the backdoor and the front-door
criteria. In chapter three, we defined Simpson’s paradox using different
methods. These methods included definitions by rates, probability, and
graphical exploration. Lastly, in chapter four, we created two algorithms
that worked to help determine if a data set has Simpson’s paradox. This
code was limited, however, it can still be a useful tool for data scientists.

5.2 Future Work

Future work may include creating more code methods to determine if a
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dataset satisfies the conditions of Simpson’s paradox. It may be graphically
or using statistics or probability. For causality, we may want to look further
into ’do’ calculus from the end of Chapter 2. Further research may also be
done about the implications of these results in the real world.



Appendix A

Source Code

---
title: "Senior Thesis"
author: "Emily Naitoh"
date: "2022-11-02"
output: html_document
---
# Code language R

library(ggplot2)
library(tidyverse)
library(ascentTraining)

n = 15
b0 = 0
b1 = 1.3
x.rss = runif(n,min=0,max=5)
e = rnorm(n, mean = 0, sd =1)
y.rss = b0 + b1*x.rss + e
d.rss = data.frame(cbind(x.rss,y.rss))
fit=lm(y.rss~x.rss,d.rss)
d.rss$p.rss = predict(fit)
d.rss$r.rss = residuals(fit)
dsave = d.rss
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plt = ggplot(dsave, aes(x.rss,y.rss)) +
geom_point(color="deepskyblue3")

plt +
geom_smooth(se=FALSE,method='lm',color="Orange")+
geom_segment(aes(x=x.rss,y=y.rss,xend = x.rss, yend = p.rss),

data = dsave,color="cyan3")+
xlab("Predictor")+ylab("Response")+
ggtitle("Response and Predictor with Regression and Residuals")+
theme(plot.title = element_text(hjust = 0.5))

# a is adopted
# n is not adopted
# t is total

#shelter 1
dog1a = 9
dog1n = 4
dog1t = dog1a+dog1n
cat1a = 94
cat1n = 76
cat1t = cat1a+cat1n
shelter1a = dog1a+cat1a
shelter1n = dog1n+cat1n
shelter1t = shelter1a+shelter1n

#shelter 2
dog2a =31
dog2n =16
dog2t =dog2a+dog2n
cat2a =70
cat2n =60
cat2t =cat2a+cat2n
shelter2a =dog2a+cat2a
shelter2n =dog2n+cat2n
shelter2t =shelter2a+shelter2n

# percent adopted
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d1 = 100*(dog1a/dog1t)
c1 = 100*(cat1a/cat1t)
t1 = 100*(shelter1a/shelter1t)

d2 = 100*(dog2a/dog2t)
c2 = 100*(cat2a/cat2t)
t2 = 100*(shelter2a/shelter2t)

shelter = c(rep("shelter 1" , 3) , rep("shelter 2" , 3))
type = rep(c("dog" , "cat", 'total') , 2)
percent_adopted= c(d1,c1,t1,d2,c2,t2)
adoptdata = data.frame(shelter,type,percent_adopted)

# group bar chart
ggplot(adoptdata, aes(fill=type, y=percent_adopted, x=shelter)) +

geom_col(width = 0.5, position = 'dodge')+
geom_text(label=round(percent_adopted),vjust = 1.5,

position = position_dodge(.5))

data(iris)
head(iris)
ggplot(iris,aes(x=Sepal.Length,y=Sepal.Width))+

geom_point()+
geom_smooth(method='lm',se=FALSE)

ggplot(iris,aes(x=Sepal.Length,y=Sepal.Width,color=Species))+
geom_point()+
geom_smooth(method='lm',se=FALSE,linetype="twodash")+
geom_smooth(aes(x=Sepal.Length,y=Sepal.Width),method='lm',

se=FALSE,color="Orange")

## Not SP Random Data
# Subgroup A
nA = 250
beta0A = 30
beta1A = -18
XA = runif(nA,min=8,max=14)
epsilonA = rnorm(nA, mean = 0, sd =60)
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YA = beta0A + beta1A*XA + epsilonA
dfA = data.frame(cbind(XA,YA))

# Subgroup B
nB = 150
beta0B = 5
beta1B = -20
XB = runif(nB,min=5,max=15)
epsilonB = rnorm(nB, mean = 2, sd =52)
YB = beta0B + beta1B*XB + epsilonB
dfB = data.frame(cbind(XB,YB))

# Together
XAB = append(XA,XB)
YAB = append(YA,YB)
dfAB = data.frame(cbind(XAB,YAB))

# Plot
ggplot(data=dfA,aes(x=XA,y=YA))+

geom_point(color='deepskyblue',size=1)+
geom_smooth(method='lm',se=FALSE,color="cornflowerblue")+
geom_point(data=dfB,aes(x=XB,y=YB),color='seagreen3',size=1)+
geom_smooth(data=dfB,aes(x=XB,y=YB),method='lm',se=FALSE,

color='limegreen')+
geom_smooth(data=dfAB,aes(x=XAB,y=YAB),method='lm',se=FALSE,

color='violet',linetype="twodash")+
xlab('x')+ylab('y')

## SP Random Data
# Subgroup A
nA = 250
beta0A = 2000
beta1A = -150
XA = runif(nA,min=4,max=20)
epsilonA = rnorm(nA, mean = 0, sd =500)
YA = beta0A + beta1A*XA + epsilonA
dfA = data.frame(cbind(XA,YA))

# Subgroup B
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nB = 300
beta0B = -1
beta1B = -230
XB = runif(nB,min=5,max=10)
epsilonB = rnorm(nB, mean = -10, sd =750)
YB = beta0B + beta1B*XB + epsilonB
dfB = data.frame(cbind(XB,YB))

# Together
XAB = append(XA,XB)
YAB = append(YA,YB)
dfAB = data.frame(cbind(XAB,YAB))

# Plot
ggplot(data=dfA,aes(x=XA,y=YA))+

geom_point(color='deepskyblue',size=1)+
geom_smooth(method='lm',se=FALSE,color="cornflowerblue")+
geom_point(data=dfB,aes(x=XB,y=YB),color='seagreen3',size=1)+
geom_smooth(data=dfB,aes(x=XB,y=YB),method='lm',se=FALSE,

color='limegreen')+
geom_smooth(data=dfAB,aes(x=XAB,y=YAB),method='lm',se=FALSE,

color='violet',linetype="twodash")+
xlab('x')+ylab('y')

## Obvious SP Random Data
# Subgroup A
nA = 250
beta0A = 7000
beta1A = -150
XA = runif(nA,min=50,max=70)
epsilonA = rnorm(nA, mean = 100, sd =1500)
YA = beta0A + beta1A*XA + epsilonA
dfA = data.frame(cbind(XA,YA))

# Subgroup B
nB = 150
beta0B = -5000
beta1B = -500
XB = runif(nB,min=15,max=30)
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epsilonB = rnorm(nB, mean = -50, sd =4300)
YB = beta0B + beta1B*XB + epsilonB
dfB = data.frame(cbind(XB,YB))

# Together
XAB = append(XA,XB)
YAB = append(YA,YB)
dfAB = data.frame(cbind(XAB,YAB))

# Plot
ggplot(data=dfA,aes(x=XA,y=YA))+

geom_point(color='deepskyblue',size=1)+
geom_smooth(method='lm',se=FALSE,color="cornflowerblue")+
geom_point(data=dfB,aes(x=XB,y=YB),color='seagreen3',size=1)+
geom_smooth(data=dfB,aes(x=XB,y=YB),method='lm',se=FALSE,

color='limegreen')+
geom_smooth(data=dfAB,aes(x=XAB,y=YAB),method='lm',se=FALSE,

color='violet',linetype="twodash")+
xlab('x')+ylab('y')

simpDetector = function(data,xVar,yVar){
data = na.omit(data) # remove NA values

## Determine Aggregated Correlation
a=data[[xVar]]
b=data[[yVar]]
aggCor = cor(a,b)
print(paste0('Aggregated Correlation: ',aggCor))
cs = data[names(data) %in% c(xVar,yVar)== FALSE] # data frame

# Find correlation of subgroups with categorical variables
corCoefs = list() # initialize list]
allSub = list() # initialize list
for (currentCol in cs){

if (class(currentCol)=="factor"){
subs = unique(currentCol)
for (s in subs){

allSub=c(allSub,s)
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subDf = data %>% filter(currentCol == s)
subx=subDf[[xVar]]
suby=subDf[[yVar]]
subCor = cor(subx,suby)
corCoefs = c(corCoefs, subCor)

}
}

}

# Test if reversal
ind = 1 # index to find string
sp = FALSE
if (length(corCoefs>0)){
if (aggCor > 0){

for (cc in corCoefs){
if(cc<0){

print(paste0(paste0(paste0("Simpson\'s Paradox detected: ",
corCoefs[[ind]]),", "),allSub[[ind]]))

sp=TRUE
}

ind = ind+1
}

}
else if (aggCor < 0){
for (cc in corCoefs){

if(cc>0){
print(paste0(paste0(paste0("Simpson\'s Paradox detected: ",

corCoefs[[ind]]),", "),allSub[[ind]]))
sp=TRUE

}
ind = ind+1

}
}

}
if (sp == FALSE){

print("Simpson\'s Paradox is not detected.")
}

}
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# test
data(iris)
simpDetector(iris,'Sepal.Length','Sepal.Width')
simpDetector(auto_mpg,'mpg','acceleration')#false b/c numeric subs

simpDetector2 = function(data,xVar,yVar,maxSubs){
data = na.omit(data) # remove NA values

## Determine Aggregated Correlation
a=na.omit(data[[xVar]])
b=na.omit(data[[yVar]])
aggCor = cor(a,b)
print(paste0('Aggregated Correlation: ',aggCor))
cs = data[names(data) %in% c(xVar,yVar)== FALSE] # data frame
cNamesAll = names(cs)

# Find correlation of subgroups with categorical variables
corCoefs = list() # initialize list
allSub = list() # initialize list
indName = 1
corName = list()

for (currentCol in cs){
continue = FALSE
currentCol = na.omit(currentCol)
subs = unique(currentCol) # unique values in column
if (class(subs)=="integer"){

if (length(subs) < maxSubs){
continue = TRUE

}
}else if (class(currentCol)=="factor"){

continue = TRUE
}else if (class(currentCol)=="character"){

if (length(subs) < maxSubs){
continue = TRUE

}
}else if (class(currentCol)=="numeric"){

if (length(subs) < maxSubs){
if (all(floor(currentCol)== currentCol)){
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continue = TRUE
}

}
}
if (continue){

for (s in subs){
allSub=c(allSub,s)
subDf = data %>% filter(currentCol == s)
subx=subDf[[xVar]]
suby=subDf[[yVar]]
subCor = cor(subx,suby)
corCoefs = c(corCoefs, subCor)
corName = c(corName, cNamesAll[indName])

}
}
indName = indName + 1

}

# Test if reversal
ind = 1 # index to find string
sp = FALSE
if (length(corCoefs>0)){

if (aggCor > 0){
for (cc in corCoefs){

if(!is.na(cc < 0) && cc<0){
print(paste0(paste0(paste0(paste0(paste0("Simpson\'s Paradox

detected: ",corCoefs[[ind]]),", "),allSub[[ind]])," "),
corName[ind]))

sp=TRUE
}
ind = ind+1

}
}else if (aggCor < 0){
for (cc in corCoefs){

if(!is.na(cc > 0) && cc>0){
print(paste0(paste0(paste0(paste0(paste0("Simpson\'s Paradox

detected: ",corCoefs[[ind]]),", "),allSub[[ind]])," "),
corName[ind]))

sp=TRUE
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}
ind = ind+1

}
}

}

# not SP
if (sp == FALSE){

print("Simpson\'s Paradox is not detected.")
}

}

# test
data(auto_mpg)
simpDetector2(auto_mpg,'acceleration','mpg',15)
data(iris)
simpDetector2(iris,'Sepal.Length','Sepal.Width',1)
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