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ABSTRACT 

 

In this paper, I analyze how firm attributes such as their age, industry, nature of industry, 

spinoff status and debt ratio influence venture-capital financing decision. I look at a 

sample of 280 firms that went public in the United States between 2015- 2019. This paper 

finds that firm age and debt are negatively related to the likelihood of being venture-

capital backed. It also finds that firms in technology and biotechnology industries are 

more likely to be backed by a venture-capitalist.  
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1) Introduction 

 

 The sky-high valuations and initial public offerings of venture-capital backed 

firms have been making headlines. Venture-backed firms such as Uber, Airbnb, Slack 

and Palantir are likely to go public this year. In fact, levels of VC investment in the U.S 

economy have remained strong with $32.6 billion invested during Q1 of 2019 and are 

expected to continue this way due to the scheduled IPO’s of unicorns later in the year 

(Settles, 2019). The We Company and Flexport closed the largest deals in terms of 

investment size in Q1 of 2019 (Settles, 2019). Last year, the highest number of VC-

backed firms went public, breaking the record of 2014 (Rooney, 2019). Furthermore, the 

spend on private companies by VC’s hit a new record in 2018 (Rooney, 2019).  

These robust trends in the venture-capital sector coupled with my interest in the 

financial markets, inspired me to study this topic in depth. I am interested in 

understanding how company and industry attributes influence the likelihood of venture-

capital financing for firms that have gone public in recent years. The purpose of this 

paper is to investigate different aspects of a firm such as its debt ratio, age, industry, 

number of industries and whether it is a spinoff or not, to understand the effect of these 

attributes on the firm’s choice of opting or not opting for venture-capital backing. I think 

this analysis is valuable because it enables firms to ascertain whether venture-capital 

financing is suited to them based on their characteristics and also helps venture-capitalists 

understand the aspects they are looking for when choosing which firms to finance.  

The venture-capital space, equity markets and the intersection of the two have 

been widely studied over the years. In their work, Lowry, Michaely and Volkova (2017) 
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provide an overview of IPO literature since 2000. They analyze things such as reasons for 

going public, the IPO process, role of intermediaries, and post-IPO returns. This paper 

makes interesting points about IPO’s that are venture-capital financed. Their findings 

indicate that venture-capital backed firms tend to be younger, more underpriced, and 

more likely to be in the technology industry. In their work, Gompers and Lerner attribute 

the increased demand of venture-capital financing to the unique value they provide firms 

that have uncertain futures. The recent survey of 885 VC’s conducted by Gompers, 

Gornall, Kaplan and Strebulaev (2016) finds evidence for specific industry preferences 

that guide venture-capitalist decisions. Additionally, in their work, Audertsch and 

Lehmann (2004) test the impact the amount of debt a firm has on its likelihood of being 

venture-financed. A firm with a higher amount of debt is less likely to receive venture-

capital backing as per their analysis.  

Common themes have emerged in existing literature that have led me to study 

specific variables in my analysis. Therefore, I choose to focus on specific firm attributes 

such as age, industry, number of industries, spinoff status and debt ratios to ascertain 

their likelihood of being venture-financed. To do so, I run a logit regression on 280 IPO’s 

between 2015-2019. My analysis finds that younger firms and firms in either the 

technology or biotechnology industry are more likely to be venture-capital backed. The 

debt ratio also seems to be negatively related to likelihood of being VC-financed. 

However, I am unable to find evidence for the relation between spinoff status and number 

of industries, but I attribute this deficiency to the small size of my sample.  
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My paper formulates hypotheses based on existing research and makes important 

contributions. First, it uses more recent data (2015 to 2019) which enables my analysis to 

capture current trends. Second, I restrict my study to the characteristics of venture-backed 

IPO’s to firms that went public in the U.S. This eliminates the potential effect of 

geographical factors. Third, my analysis focusses on specific features of firms that went 

public (age, spinoff, number of industries, nature of industry, debt ratio) holistically. 

Together, these relevant factors enable me to arrive at meaningful conclusions related to 

what VC’s look for in firms and what firms look for in their financing choices.  

The remainder of this paper is organized as follows. I begin Section 2 by 

conducting a literature review. Having looked at existing research and the gaps this paper 

fills, in Section 3 I describe the data I used in my analysis. In Section 4, I explain my 

empirical strategy to analyze this data and the corresponding results of the analysis. 

Lastly, I conclude in Section 5.  
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2) Literature Review 

 

 Venture-backed IPO research has analyzed different aspects of the VC decision 

making process and firm outcomes. There have been interesting hypotheses that have 

emerged as a result of this research and that people have attempted to test. For instance, 

hypotheses such as certification, monitoring and market power have been postulated to 

understand the specific role that VC’s play in IPO’s (Chemmanur and Loutskina, 2005). 

Furthermore, venture-capitalist investment preferences in terms of industry, age, 

ownership structure, size, accounting system, and debt profiles have been subjects of 

study.  

The tendency of younger firms to be venture-backed has been supported by 

existing literature. In their work, Lowry, Michaely and Volkova (2017) assert that “young 

age and membership in a technology industry are associated with higher information 

asymmetry”. VC’s role in screening, monitoring and advising firms should reduce this 

asymmetry (Lowry, Michaely and Volkova, 2017). Lowry, Michaely and Volkova use 

initial returns and underpricing as metrics to explain this. Although they suggest that VC 

backing did decrease first day returns earlier, recent studies have shown the opposite 

trend. In fact, they mention research which finds IPO underpricing to be 5-10% higher in 

VC-backed firms as opposed to non-VC backed firms (Lowry, Michaely and Volkova). 

As a result, these metrics seem to be incomplete measures of VC preferences. 
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 A lot of VC-decision making is also likely to be guided by who demands their 

services. Gompers and Lerner (2001) look at the kinds of firms that require the speclized 

services of VC’s which in turn drive the kinds of firms VC’s invest in. They allude to the 

lack of appropriate alternate financing options for young firms in specific lines of 

business. For instance, they say a young high-technology firm that raises equity from 

outside investors will be at risk of manager’s making wasteful expenditures that benefit 

the manager and hurt the firm (Gompers and Lerner, 2001). Similarly, in the case of this 

firm being debt financed, a manager can make decisions that put the firm undesirable 

risk. They say that this issue with alternate financing sources is further aggravated when 

firms have intangible assets such as heavy R&D and human capital. For instance, 

“entrepreneurs may invest in strategies, research, or projects that have high personal 

returns but low monetary payoffs” (Gompers and Lerner, 2001).  Furthermore, these 

financing alternatives do not work because “if all the entrepreneurial outcomes of the 

firm cannot be foreseen, the effort of the entrepreneur cannot be ascertained with 

complete confidence, it may be difficult to write a contract governing the financing of the 

firm” (Gompers and Lerner, 2001).  

Therefore, external financing options seem sub-optimal for firms with such 

profiles. It is these unique set of problems that specialized financial intermediaries like 

venture-capitalists solve by utilizing tools such as due-diligence, allocating capital based 

on stages, taking board seats to control or influence firm outcomes and structuring 

atypical compensation arrangements such as stock options (Gompers and Lerner, 2001).  
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 The above research helps conceptualize financing decisions as a two-way model. 

Specific types of firms with certain types of profiles need venture-capitalist financing and 

at the same time venture-capitalist financing is suitable to firms with specific features and 

attributes. Their services are also most valuable to these firms. For instance, monitoring a 

well-established firm that has been doing the same type of business for decades and has a 

more predictable growth trajectory doesn’t create as much value as doing the same for a 

young, uncertain firm in a high-growth industry with an uncertain trajectory.  

 Furthermore, research seems to support the hypothesis that VC firms are more 

likely to invest in firms operating within fewer industries. Gompers, Gornall, Kaplan and 

Strebluaev’s survey of VC’s finds that “62% specialize in a particular stage, 61% in a 

particular industry and 50% in a particular geography”. In fact, 20% of VC’s they 

surveyed indicated they specialize in the IT industry which encompasses software, IT and 

consumer internet. Similarly, 13% indicated they specialize in healthcare. Specialization 

here means VC’s who stated that the only invest in these sectors and none other. This is 

further supported by the work of Barry (1994). He says, “a number of venture-capitalists 

specialize by emphasizing a particular industry, such as biotechnology” (Barry, 1994). 

This feature of specialization seems fundamental to the venture-capital industry as they 

are “assumed to have a higher technological expertise that makes it possible for them to 

better identify projects” (Auderstch and Lehmann, 2004). 

 Auderstch and Lehmann empirically test the relationship between the amount of 

debt a firm has to its likelihood of being venture-capital financed. They formulate two 

contradicting hypotheses to test this theory. Firstly, they hypothesize that “the higher the 
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amount of debt, the lower the likelihood that the firm will receive venture-capital” 

(Auderstch and Lehmann, 2004). This hypothesis is rooted in theory that debt and 

venture capital act as substitutes to one another. On the other hand, they hypothesize that 

debt and venture capital act as complements and “venture-capitalists might see the 

entrepreneur’s levels of debt as a quality signal and invest in the company” (Auderstch 

and Lehmann, 2004). To test these hypotheses, they run probit regressions on 341 firms 

that were listed on the German Neuer Market between 1997-2002. Their results show that 

the likelihood of receiving venture-capital is negatively related to the amount of debt the 

firm has.  

Therefore, it can be seen that the role of venture-capital firms in IPO’s along with 

their functioning and decision-making criteria has been widely studied. A lot of work has 

emphasized the role of venture-capitalists in dealing with firms that tend to have 

informational asymmetry. This points towards the fact that young firms and firms in 

technology and biotechnology industries are more likely to be venture-backed. 

Furthermore, the intangible nature of assets of firms in these industries (technology and 

biotechnology) and their heavy reliance on R&D supports the hypothesis that their 

likelihood of being venture financed is negatively related to the amount of debt they 

have.  

Additionally, the unique services of specialized financial intermediaries like 

venture-capitalists which seem to look for very specific attributes in their investee 

companies incline me to believe that firms operating in a fewer number of industries are 

more likely to be venture-backed. This is because the specific selection criteria of 
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venture-capitalists narrow down the scope of business. Also, while collecting data on 

venture-backed IPO’s, I came across some firms that were spun out of larger 

corporations. I included these firms in my analysis and hypothesized that they would be 

less likely to be venture-backed. I expect that spinoffs would have access to some form of 

financing through their parent company which would act as a substitute and reduce the 

likelihood of venture-financing. This is an extension of the substitute financing 

hypothesis postulated by Auderstch and Lehmann which suggested that firms with access 

to non-venture financing such as debt reduces their likelihood of being venture-backed. 
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3) Data  

 

I used data recommended by Jay Ritter from the website IPOScoop which has been 

rating all IPO’s since the year 2000. This dataset contains information about firms that 

have gone public since 2000 in chronological order. It contains the name of the IPO, the 

name of the underwriter, offer price, closing price, etc. I chose this dataset because it 

provided me with a reliable record of firms that have gone public in a date-organized 

format.  

I restrict this dataset to only analyze firms that have gone public in the past 5 years, 

including the current year (2015-2019). I chose this constraint so that I could look closely 

at current trends. In my analysis, I placed restrictions on firms that have gone public 

within this period. First, I eliminated firms that are penny stocks wherein I define penny 

stocks as firms that have offer prices of $5.00 and below (Ritter, 2018). This omitted 28 

observations. Then, I excluded firms that were blank check companies, special purpose 

finance vehicles and REIT’s. I defined blank check companies as companies “formed for 

the purpose of entering into a merger, share exchange, asset acquisition, stock purchase, 

recapitalization, reorganization or other similar business combination” (U.S Securities 

and Exchange Commission, 2019). This restriction led to the omission of 102 

observations. Special finance vehicles are similar to blank check companies in that they 

have no tangible operating business but serve as mere legal entities to carry out 

transactions. I excluded 2 observations based on this definition of finance vehicles. A 

firm is a REIT (Real Estate Investment Trust) in my analysis if it either explicitly defines 

itself as being one in its S-1 SEC filings or if Pitchbook’s database lists it as being one. I 
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identified 11 REIT firms in my data and dropped them. These exclusions led to a total of 

144 omissions from my dataset. 

After imposing these restrictions on the data, I analyzed every alternate firm in the 

dataset (which is arranged date-wise). I did this to maintain a random sample and ended 

up with 280 observations. For each of these 280 firms, the dependent variable is if it is 

VC-backed or not. On the other hand, the independent variables were the industry of the 

firm, number of industries it is in, debt ratio, age of firm, and whether it is a spinoff. The 

specific variable definitions that I used to maintain consistency are as follows:  

 

Dependent Variable 

 VC-Backed (Yes or No):    In my analysis, I used a binary variable for my dependent 

variable. I define a firm as being VC-Backed if on Pitchbook its financing round history 

section contains even one round of financing listed as a venture capital round. I also look 

at the Deal Type section on Pitchbook which classifies deals as PIPE, IPO, VC, etc. If 

any deal is listed as a VC deal, then I assigned a value of “Yes” or “1” to it in my analysis 

and classified the firm as being VC-backed. If there is no such round or deal 

classification mentioned in Pitchbook’s database, then I attributed a value of “No” or “0” 

to the variable.  

Independent Variables 

Age of Firm:   I defined the age of the firm according to the year Pitchbook listed it was 

founded. The aim of including this variable was to confirm the hypothesis that venture-

capital backed firms are likely to be younger than ones that are not venture-backed.  
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Spinoff (Yes or No): I looked at whether the firm is a spin off or not. This information is 

specifically mentioned in Pitchbook. If a firm was a spinoff then I assigned a value of 

“Yes” or 1 to it and if there is no such information, then I recorded it as “No” or 0. One 

would imagine that firms that have been spun out of other companies are less likely to be 

venture-capital financed since they have the option of utilizing the financial resources of 

their parent organization.  

 

Industry:  I classified the firms into three broad categories of industry- Technology, 

Biotechnology or Other. To maintain a standard and consistent method of classification, I 

used SIC (Standard Industrial Classification) codes. I defined a Biotechnology company 

as one whose nature of business corresponds to SIC codes used by Jay Ritter1. Similarly, 

Technology firms are defined as those whose nature of business corresponds to the SIC 

codes by Jay Ritter2. For firms that did not fall under the above two categories and 

corresponded to different SIC codes, I classified them as Other. One would imagine a 

larger proportion of firms in technology and biotechnology industries to be venture-

capital financed.  

 

Number of Industries:  I assigned a numerical value to each firm depending on how many 

distinct SIC codes that corresponded to its business. For instance, a firm in a very specific 

                                                           
1 SIC codes for Biotechnology: 2830 (Drugs), 2833 (Medicinal Chemicals and Botanical Products), 2834 

(Pharmaceutical Preparations), 2835 (In Vitro and in Vivo Diagnostic Substances), 2836 (Biological 

Products, except Diagnostic Substances) and 8731(Commercial Physical and Biological Research) 
2 SIC codes for Technology: 3571, 3572, 3575, 3577, 3578 (computer hardware), 3661, 3663, 3669 

(communications equipment), 3823, 3825, 3826, 3827, 3829 (measuring and controlling devices), 3841, 

3845 (medical instruments), 4812, 4813 (telephone equipment), 4899 (communication services), and 7370, 

7371, 7372, 7373, 7374, 7375, 7378, and 7389 (software) 
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line of work would correspond to only 1 industry. On the other hand, for a conglomerate 

this value would be greater than 1. These codes were also explicitly listed on Pitchbook. 

The fact that venture-capitalists tend to specialize in specific industries would incline one 

to believe that firms operating in a lower number of industries are more likely to be 

venture-backed.  

 

Debt Ratio: To calculate the debt ratio, I used the simple formula of Total Liabilities / 

Total Assets. I obtained the data from Pitchbook’s Financials section and used the ratio 

for the most current fiscal year. I used the most current debt ratio because it is 

representative of the firm’s current status of business and state of affairs. In some cases, 

where the data was unavailable on Pitchbook, I directly calculated the ratio from the 

firm’s SEC S-1A filing’s Consolidated Financial Statements section. Due to the nature of 

venture-capital financing one would expect firms with lower debt ratios to be more likely 

to be venture-capital backed.  
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4) Empirical Strategy & Results 

 

To determine the role of VC-backing in firms depending on their age, industry, number 

of industries, debt ratio and spinoff status, I used the following logit equation:   

𝒀𝒊 =  𝜷𝟎 +  𝜷𝟏(𝑨𝒈𝒆) +  𝜷𝟐(𝑺𝒑𝒊𝒏𝒐𝒇𝒇𝒋) +  𝜷𝟑(𝑰𝒏𝒅𝒖𝒔𝒕𝒓𝒚𝒌) +  𝜷𝟒(𝑵𝒐. 𝒐𝒇 𝑰𝒏𝒅𝒖𝒔𝒕𝒓𝒊𝒆𝒔) +

           𝜷𝟓(𝑫𝒆𝒃𝒕 𝑹𝒂𝒕𝒊𝒐) +  𝜺  

 

The variable 𝒀𝒊  represents if a firm was VC-backed or not where i= “Yes/1” or “No/0”. 

Similarly, for 𝑺𝒑𝒊𝒏𝒐𝒇𝒇𝒋,  j= “Yes/1” or “No/0”. Lastly, for 𝑰𝒏𝒅𝒖𝒔𝒕𝒓𝒚𝒌 , k= 

Technology, Biotechnology or Other. The age variable is also computed in logarithmic 

form. Table 6 shows the results of the logit regression and the odds ratio3.  

 

VC-Backing and Age of the Firm 

The firm age values ranged from 2 years to 161 years in the sample. The summary 

statistics show that the mean age for a venture-backed firm is 11.71 years with a standard 

deviation of 10.03. On the other hand, the mean age for a non-venture-backed firm is 

28.13 years, 16.42 years higher than that of a venture-backed firm. Similarly, the standard 

deviation is 32.11 which is 22.08 higher than that of a venture-backed firm. The results 

indicate sizeable differences in age between both categories of firms. The results for 

“Age of Firm” are statistically significant. The regression shows that younger firms are 

more likely to be VC-backed as can be seen by the coefficient -.04 in the regression. The 

odds ratio of 0.96 suggests that for each additional year of age, the likelihood of a firm 

                                                           
3 All variables included in this equation are defined in Section 3 (Data) 
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being VC-backed decreases by 0.96. However, the standard deviation of this variable 

indicates a skewed distribution (shown in Table 3). Therefore, I ran an alternate 

regression using the logarithmic value of the age variable to even out the effects of this 

skewed distribution. The results for “Log (Age of Firm)” are also statistically significant 

and have a corresponding negative coefficient and an odds ratio of 0.52. This is 

consistent with my hypothesis that younger firms are more likely to be VC-financed.  

VC-Backing and Spinoff 

The small size of the sample (280 observations) and corresponding few values for firms 

that are spinoffs (22 observations) resulted in no statistical significance. However, 

63.63% of spinoffs in the sample were VC-backed and 36.36% were not. Spinoffs in 

biotechnology and technology industries such as Arlo Technologies, Magenta 

Therapeutics, and Autolus Therapeutics were VC-backed. On the other hand, spinoffs in 

other industries such as 360 Finance, Lantheus Holdings, and Studio City Holdings were 

not backed by venture-capital. The hypothesis of spinoffs being less likely to be VC-

financed due to existing support from their parent company can be explored further with 

a larger dataset. Additionally, the data suggests the role of other factors such as nature of 

industry influencing this variable.  

VC-Backing and Industry of Firm 

The results for nature of industry of firm yielded statistically significant results. 

Biotechnology firms are more likely to be VC-financed as shown by the coefficient 3.11. 

The odds ratio suggests that as opposed to other industries their likelihood of being VC-

financed is 22.31 times higher. This is further supported by the fact that 89.77% of 

biotechnology firms in the sample had received venture-capital financing and only 
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10.22% had not. Similarly, Technology firms are more likely to be VC-financed as 

shown by the coefficient 2.48. The odds ratio suggests that as opposed to other industries 

their likelihood of being VC-financed is 11.92 times higher. Again, 82.01% of 

technology firms in the sample were venture-backed as opposed to 17.91% that were not. 

On the other hand, out of the firms categorized as being in “Other” industries, only 25.6% 

had received venture-capital backing and the other 74.4% were financed via other 

methods. These results uphold the hypothesis that technology and biotechnology firms 

are more suited to VC-financing and more sought after by VC’s as opposed to firms 

operating in other industries.  

VC-Backing and Number of Industries 

Summary statistics indicate that the number of industries ranged from 1 to 4 in the 

sample. The mean value for number of industries for venture-backed firms was 1.37, 0.21 

lower than that of non-venture-backed firms which had a mean of 1.58. Additionally, the 

standard deviation was 0.50 for venture-backed firms as opposed to 0.66 for firms that 

are not VC-backed resulting in a difference of 0.16. The regression yielded a coefficient 

of -0.45 suggesting that the lower the number of industries, the higher the likelihood of 

being VC-backed. Similarly, the odds ratio of 0.64 suggests that each additional industry 

reduces the likelihood of VC-financing by 36%. Although this is consistent with my 

hypothesis, the results were not statistically significant.  

VC-Backing and Debt Ratio  

The debt ratios, measured as Total Liabilities / Total Assets, ranged from 0.02 to 10.7 in 

the sample. Summary statistics indicate that the average debt ratio for a venture-backed 

firm is 0.50 with a standard deviation of 0.66. Whereas the debt ratio of a non-VC-
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financed firm is 0.76 with a standard deviation of 1.01. This results in a difference of 0.26 

in the average debt ratio and 0.35 in the standard deviation of debt ratios. The coefficient 

of -0.344 in the logit regression supports the hypothesis that lower debt ratios are more 

conducive to VC-financing. Furthermore, the odds ratio of 0.71 indicates that the 

likelihood of VC-financing reduces by 0.29 with every 1 unit increase in the debt ratio. 

The results support the fact that since debt is considered a cheaper alternative to equity, 

firms that can raise debt (have higher debt ratios) are not likely to opt for venture-capital 

financing. The findings are consistent with my hypothesis.  
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5) Conclusion 

 

 Venture-capital financing has emerged as an important financing method whose 

dominance is continuing to grow in the financial markets as can be seen in my analysis. 

A lot of existing literature has investigated venture-capitalist decision making and various 

venture-backed IPO metrics to gain insights into the VC-space.  

My analysis of 280 firms that went public in the U.S in the years 2015-2019 

indicates that technology and biotechnology firms are more likely to be VC-financed. I 

also discovered that the debt ratio and age of the firm bear a negative relation with the 

likelihood of it being financed by a VC. This is relevant in that if helps identify key 

metrics that drive venture-capital decisions. It is helpful to firms in that it can help them 

understand the method of financing best suited to them. Moreover, the study can serve as 

a guide to venture-capitalists and help them better define their selection criteria.  

The small sample size did not yield definitive results for the relationship between 

venture-financing and spinoff firms as well as venture-financing and number of industries 

a firm operates in. I think that by analyzing IPO’s over a larger time frame, future 

research can establish relationships between the effect of these factors on venture-

backing. Additionally, there exist a lot of other important determinants such as strength 

of team, business model and competitive landscape that are fundamental to the way 

venture-capitalists make decisions. An in-depth study into these can lead to meaningful 

conclusions.  
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Table 1) Summary Statistics 

Summary Statistics of venture-backed versus non-venture-backed firms in my analysis 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable VC-Backed (1) Not VC-Backed (2) Difference in Means (1-2) 

 Mean, Standard Deviation Mean, Standard Deviation  

Debt Ratio 0.50, 0.66 0.76, 1.01 -0.26*** 

No. of Industries  1.37, 0.50 1.58, 0.66 -0.21*** 

Age of Firm 11.71, 10.03 28.13, 32.11 -16.42*** 
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Table 2) Range of Variables (Min.-Max) 

Range of dependent and independent variables used in the analysis 

Variable  Range (Minimum- Maximum) 

VC-Backed 0 – 1  

Debt Ratio 0.02 – 10.7 

No. of Industries  1 – 4 

Age of Firm 2 – 1614 

Spinoff (Y/N)  0 – 1  

Biotech 0 – 1  

Technology 0 – 1  

Other  0 – 1  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
4 The age variable is not normally distributed 
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Table 3) Distribution of Age Variable 

Distribution of the age variable 

Age of Firm (in years) Number of Firms 

0-25 239 

25-50 21 

50-75 11 

75 and above 9 
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Table 4) Percentage Distributions 

Percentage of total firms and spinoffs venture-backed versus non-venture-backed as well 

as firms in each industry venture-backed versus non venture-backed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable  VC-Backed (%)  Not VC-Backed (%)  

IPO’s 59.29 40.71 

Biotech 89.77 10.22 

Technology 82.01 17.91 

Other 25.6 74.4 

Spinoff 63.63 36.36 
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Table 5) OLS Regression 

OLS regression results using dependent variable (VC-backed) and independent variables 

(age of firm, spinoff status, industry, and debt ratio) for both models (age and log(age)) 

 (1)  (2)          
VARIABLES VC-Backed VC-Backed 

   

Age of Firm -0.00327***  

 (0.00103)  

 

Log (Age of Firm)  

 

  

-0.09038*** 

(0.298917) 

 

Spinoff (Y/N) -0.107 -0.114 

 (0.0856) (0.0858) 

Biotech 0.577*** 0.572*** 

 (0.0566) (0.0574) 

Technology 0.519*** 0.539*** 

 (0.0584) (0.0575) 

Debt Ratio -0.0622** -0.0558** 

 (0.0273) (0.0277) 

No. of Industries -0.0671* -0.0700* 

 (0.0400) (0.0400) 

Constant 0.492*** 0.656*** 

 (0.0750) (0.1060) 

   

Observations 280 280 

R-squared 0.428 0.426 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

 

 



24 
 

Table 6) Logit Regression 

Logit regression results and odds ratios using dependent variable (VC-backed) and 

independent variables (age of firm, spinoff status, industry, and debt ratio) for both 

models with and without the log (age of firm) 

 (1) (2)            (3)            (4)            

VARIABLES VC-Backed Odds Ratio VC-Backed Odds Ratio 

     

AGE OF FIRM -0.0382*** 0.96   

 

 

LOG (AGE OF 

FIRM)                                

 

(0.0144) 

 

 

 

  

 

 

 

 

    -0.6418*** 

      (0.2280) 

 

 

        0.53 

 

SPINOFF (Y/N)   -0.950 0.39      -0.995 0.37 

    (0.673)        (0.671)  

BIOTECH   3.105*** 22.31      3.136*** 23.02 

    (0.463)        (0.462)  

TECHNOLOGY   2.479*** 11.92   2.613*** 13.64 

    (0.394)   (0.395)  

DEBT RATIO   -0.344*         0.71      -0.325*            0.72 

    (0.178)   (0.177)  

NO. OF 

INDUSTRIES 

  -0.454    

   (0.303)            

        0.64       -0.517* 

       (0.298) 

       0.60 

                                 

CONSTANT    0.572        1.619  

    (0.519)    (0.751)  

     

OBSERVATIONS 280 280 280 280 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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