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Abstract

The continued study of asymptomatic Ebolavirus infection is necessary to develop a
more complete understanding of Ebola transmission dynamics. This paper conducts a
meta-analysis of eight studies that measure seroprevalence (the number of subjects
that test positive for anti-Ebolavirus antibodies in their blood) in subjects with
household exposure or known case-contact with Ebola, but that have shown no
symptoms. In our two random effects Bayesian hierarchical models, we find estimated
seroprevalences of 8.76% and 9.72%, significantly higher than the 3.3% found by a
previous meta-analysis of these eight studies. We also produce a variation of this
meta-analysis where we exclude two of the eight studies. In this model, we find an
estimated seroprevalence of 4.4%, much lower than our first two Bayesian hierarchical
models. We believe a random effects model more accurately reflects the heterogeneity
between studies and thus asymptomatic Ebola is more seroprevalent than previously
believed among subjects with household exposure or known case-contact. However,
a strong conclusion cannot be reached on the seriousness of asymptomatic Ebola
without an international testing standard and more data collection using this adopted
standard.
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1 Introduction

Since its first outbreak in present day Democratic Republic of Congo, in 1976, Ebolavirus
Disease (Ebola) has been studied extensively. Research is relatively difficult because
outbreaks are rare and fatality rates from the virus are high. There have been roughly 29
outbreaks since the first in 1976 [3] and the mean fatality rate is 50% [1]. Yet, significant
progress has been made in understanding how Ebola originates, spreads, and affects its
hosts. More research is needed, however, in understanding asymptomatic Ebola infection,
or Ebola that manifests itself without symptoms. Previous studies have reached a wide
range of conclusions on the seriousness of asymptomatic Ebola. Because there is no
standard method to test for asymptomatic Ebola seropositivity, even though the World
Health Organization has stated that there is “an urgent need for one,” [7] there is often
criticism on the legitimacy of study results. During the recent outbreak in West Africa
between 2013 and 2016, asymptomatic Ebola was not an input into disease transmission
models or considered when projecting intervention effects [18]. Thus, the current general
consensus does not consider asymptomatic Ebola to be a serious or relevant issue when
considering how to deal with the diagnosis and spread of Ebola.

Conducting more research on asymptomatic Ebola is important because it has potentially
relevant effects on Ebolavirus transmission. A better understanding of the seroprevalence
of asymptomatic Ebola would improve mathematical models of disease transmission, could
be used to calculate a more accurate vaccination threshold, and would inform outbreak
management procedures [15] [11]. If asymptomatic Ebolavirus infection is sufficiently
uncommon, then it is not a major factor in the spread of the disease during outbreaks
and public health officials need not spend resources trying to identify it for outbreak
control. However, if it is more frequent than previously thought, then its omission in
transmission models is problematic and more resources need to be dedicated to identifying
asymptomatic infection. Further, the evidence is inconclusive on whether asymptomatic
Ebola is infectious to others or whether Ebolavirus remains in those with asymptomatic
Ebola for a long period after the outbreak [11]. The prevalence of asymptomatic Ebola
could also provoke the need for study in these areas.

This paper conducts a novel meta-analysis of asymptomatic Ebola through a Bayesian
framework. Using a variety of Bayesian hierarchical models, we build on a previous
meta-analysis done by Bower & Glynn [7]. The authors use eight studies in their
meta-analysis [18] [11] [2] [19] [14] [4] [9] [16]. All eight studies consist of data from
groups with household exposure or known case-contact, meaning each tested patient had
comparable exposure to someone diagnosed with Ebola. Furthermore, each study tested
for seroprevalence of Ebolavirus antibodies by ELISA (enzyme-linked immunosorbent
assay) or IFA (immunofluorescence antibody tests). Studies that tested by IFA had a
cut-off > 1:64, generally accepted as a rigorous threshold for serotesting. However, Bower
& Glynn admit “’there is no definitive evidence that this an appropriate threshold” [7].

This paper first explores the Bayesian statistical paradigm and Bayesian hierarchical



models to understand why they are powerful for meta-analyses. Then, it will replicate
the result of Bower & Glynn, compare this result to a fixed effects Bayesian model, and
extend this thinking to two random effects Bayesian hierarchical models. Next, we test the
sensitivity of these results to removing two questionable studies from the meta-analysis.
Finally, we do a deep dive into the model validation and convergence diagnostics for one
of our Bayesian hierarchical models and conclude with implications of our results.

2 The Bayesian Paradigm

2.1 Bayesian vs. Frequentist

There are two main schools of thought in statistical inference: Bayesian and Frequentist.
Frequentist statistics has traditionally dominated the field and is what students largely
learn in their first introduction to statistics. A typical calculus-based introductory statistics
course may explore Bayes’ theorem and credible intervals, but learning about Bayesian
inference often ends there. In recent years, however, rises in computing power and the
development of Markov Chain Monte Carlo (MCMC) techniques have allowed Bayesian
statisticians to build novel methods for inference. This has led to a revival of Bayesian
statistics as more people are exposed to these methods.

Bayesian statistics is grounded in Bayes’ Theorem:

P(A[B) = KBS
P(A|B) will be referred to as the posterior distribution, P(B|A) as the likelihood,
P(A) as the prior, and P(B) as the marginal likelihood. Intuitively, the posterior is the
probability of our hypothesis A given data B, the likelihood is the probability of observing
the data B given hypothesis A, the prior is the probability of our hypothesis A before
collecting any data, and the marginal normalizes the distribution with the probability of
observing the data B under all hypotheses.

It is helpful to understand the key differences between the two schools before probing
deeper into Bayesian methods. Philosophically, Bayesians seek to model uncertainty by
placing a probability distribution on hypotheses, while Frequentists do not. Bayesians see
outcomes as drawn from distributions, while Frequentists see them as fixed.

For example, suppose ten coins are flipped, and seven of them come up as heads.
We want to estimate A, the probability of flipping a head with this coin. A Frequentist
would look at the data and give a point estimate for A of 0.7, the mean. A Bayesian,
however, would but a prior on A, say beta(25,25). This encodes the relatively strong belief
of a fair coin, because the expectation of a beta distribution is a/(a + ).

We are interested in P(A|B) o< P(B|A)P(A). The likelihood is:
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And the density of the beta prior is:
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Combining these, we get:

(170)A7(1 _A)3%A24(1 —A)24

Pulling out the constants to focus on the kernel:
P(A|B) < A7(1 —A)3A%*(1 —A)**
And finally, combining like terms:
P(A[B) =< A31(1-A)%

With this prior and likelihood, we get a posterior distribution of A ~ beta(32,28).
This is a special case of calculating a posterior distribution because a beta prior is
conjugate with binomial data. This means that the likelihood and prior distribution match
up such that we do not have to calculate the marginal likelihood. After 10 flips, we
have a posterior mean estimate of 32/60, or approximately 0.53. Thus, the data moved
the posterior mean to 0.53 from a prior mean of 0.5 after seeing the data. Notice this
philosophical difference in that after 10 data points, the Frequentist estimates A = .7 and
the Bayesian estimates A to be drawn from a beta distribution with parameters o = 32 and

B =28.

There are two distinct eras of Bayesian statistics: pre-computation and computation.
Before the rise of computational power, Bayesian statistics was constrained to simple
examples like the one above with a conjugate prior and likelihood. However, with
the rise of computing power in recent decades, the development of MCMC techniques
has given Bayesian statistics tremendous inferential power. Bayesian statistics stalled
because you either had to use a conjugate prior to ignore the normalizing constant, or
do increasingly complex multidimensional integrations to find the normalizing constant
(because the denominator of Bayes’ theorem is [ p(0)p(x|0)d0). The development of
MCMC techniques such as Metropolis-Hastings and Gibbs Sampler allowed Bayesians to
sample from conditional posterior distributions in order to create a stationary distribution.
This stationary distribution hopefully converges to the posterior distribution of interest,
often referred to as the target distribution.

Finally, one notable feature that will be relevant when interpreting model results is
the difference between confidence intervals and credible intervals. A confidence interval
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seeks to describe a range of values that will contain the true effect at least a certain
percentage of the time. For example, we would hope a 95% confidence interval would
contain the true value at least 95% of the time. If we replicated the experiment 100 times,
then at least 95 of the experiments would contain the true value. This does not fit into the
Bayesian paradigm because Bayesians see parameters as drawn from some probability
distribution. A credible interval seeks to contain a certain percentage of the posterior
probability distribution. If we want a 95% credible interval, then we give a lower and
upper bound that contain 95% of the posterior distribution’s probability. If the credible
interval is equal-tailed, we can cut off 2.5% from either end. There are also variations such
as the highest density region that tries to capture that 95% of the posterior in the smallest
possible interval, but this can require a bit more work for complex posteriors.

2.2 Bayesian Hierarchical Models

One powerful method of Bayesian inference is the idea of Bayesian hierarchical modeling.
This method uses multiple levels in order to develop estimates for parameters of interest.
At their core, all hierarchical models do is draw from conditional probability distributions.
A two-layer hierarchical model with a beta prior distribution on the thetas and binomial
data can be visualized as follows:

hyperprior on & hyperprior on 3

\ /
beta(c, B)
6, 6,

1 1
bin(nl, 91) bin(nn, 9,1)
1 l
Y1 Yn

The only data observed is y; across i studies, where y; is the number of successes out
of n; trials. The only items that are manually inputted are the hyperpriors on ¢ and f3.
For example, if each o and B is drawn from an exponential distribution, then A; and A,
are inputted as the respective exponential distribution parameters. Each 6; that we are



estimating is considered to be independently drawn from the common beta distribution,
whose parameters we estimate by drawing from conditional distributions. Even though we
do not know the true theta values, we can estimate the parameters of the common beta
distribution using the observed data.

2.2.1 General Hierarchical Structure

The general structure of our Bayesian hierarchical model is as follows:

yi~ p(y]6:)
6, ~ p(6]9)

¢~ p(9)
In the Bayesian hierarchical models that follow, we define these variables as:
* y; are the number of patients that test seropositive in study i.
* 0; is the estimate of seroprevalence in study i.
* ¢ is the common distribution that the 8’s are drawn from.

* p(0) is the hyperprior we put on this common distribution.

2.2.2 Joint Posterior for General Hierarchical Structure

The joint posterior distribution in Bayesian hierarchical models can be decomposed to full
conditional distributions. This provides some intuition for why conditional distributions
are the building blocks for hierarchical models. These derivations are adapted from Jarad
Niemi’s lecture notes on Bayesian statistics [17].

We are interested in the joint posterior: p(6,@|y):

p(0,9[y) < p(y/6,9)p(0,9) = p(y|0)p(6]9)p(¢)

Looking across i studies and factoring out p(¢) because it does not change across the i’s,
we get:

p(y[0)p(8]0)p(d) = [TTi=; p(yil6:)p(6:]9)]p(9)

And connecting the two, we get:

p(0,9ly) o< [[Ti=; p(yil6:) p(6i|0)]p(¢)



Next, we want to break down this joint posterior distribution into separate components:

p(0,9ly) =p(6|9, y)p(9|y)

Taking p(0|¢, y), we can further decompose it to:

p(0]9,y) o< p(y|0)p(0|9) = TTi_; p(vi|6:)p(6i]¢) =< [T}, p(6ild,¥:)

And taking p(¢|y), we can first decompose it to:

p(P1y) =< p(yl9)p(9)
And break down p(y|¢) to:

p(ylo) = [ p(y|8)p(0]9)d6

Integrating over the thetas, we get:

[ JTTiZi [p(yil6:) p(6i]9)]d 61 ...d 6,

which is equivalent to:
iz1 J p(il6:)p(6:|9)d6;

=[TL, p(vil®) = p(y |9)

We see in this derivation that the joint posterior can be decomposed into dependencies
among the parameters, allowing parameter estimation using the hierarchical structure.

2.3 Meta-Analysis with Bayesian Hierarchical Models

A meta-analysis seeks to make statistical inferences by drawing on multiple studies of the
same or similar topics. The idea behind a meta-analysis is that more robust inferences can
be made when one aggregates information from multiple sources. There are many ways
to conduct a quantitative meta-analysis. A meta-analysis can be explored using a fixed
effects model or a random effects model. The key difference between these two types of
models is how they deal with heterogeneity. A fixed effects model assumes that an effect
is fixed across all the scientific studies, ignoring any heterogeneity between the studies. A
random effects model assumes that each study’s effect is drawn from the same distribution
for all the studies, accounting for the heterogeneity between the studies [6].

A meta-analysis can also be conducted on a spectrum, ranging from completely
separate to completely pooled, or somewhere in the middle. If the studies are completely
different, such that the outcomes from one do not inform the outcomes of the other, then
they need to be analyzed separately. If the studies are considered to be identical, then they
can be pooled and analyzed together to get one common effect. However, if the studies
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are similar (or, more specifically, exchangeable), then an analysis can borrow information
from the others without complete combining them. This is the case when utilizing a
Bayesian Hierarchical Model for meta-analysis.

Bayesian Hierarchical Models provide a natural framework to conduct a meta-analysis. It
allows for the borrowing of strength, allowing studies with a larger sample size to inform
the inference on smaller studies [10]. In the context of biostatistics, this is especially useful
because many studies are conducted with small sample sizes. In the eight studies we look
at in our meta-analysis, sample sizes range from 24 to 404, allowing the bigger studies to
inform the smaller studies. Furthermore, Bayesian hierarchical modeling is a compromise
between pooling all the data and running separate analyses, allowing for more flexible
inference. Pooling data implies that it is sampled from the same model, ignoring variation
among studies. Analyzing unpooled data does not allow for any borrowing of strength
between studies. Thus, Bayesian hierarchical models provides an ideal compromise of
partial pooling that addresses these concerns.

2.3.1 Exchangeability

A challenge in meta-analysis is choosing which studies to include and which to exclude.
One of the theoretical underpinnings for Bayesian hierarchical models is exchangeability.
In our model, we are trying to estimate 0;, the Ebolavirus seroprevalence in each of
our eight studies indexed by i. Intuitively, exchangeability means that there is no
prior knowledge to reason that 6; is different from 6, that 6, is different from s,
etc. Mathematically, following Gelman et al., we define the parameters 6y,...,0; as
exchangeable if the joint distribution p(6y,...,6;) is invariant to permutations of the
indexes (1,...,7) [10]. This is important because in hierarchical models, we claim that
the thetas are drawn independently from a common population distribution (or that the
thetas are independent, identically distributed random variables). All independently and
identically distributed random variables are exchangeable, so exchangeability is a necessary
assumption for hierarchical models.

3 Probabilistic Programming and Stan

This paper implements our hierarchical model using the probabilistic programming
language Stan. The goal of probabilistic programming languages is to allow a complex
statistical analysis to be conducted without the need for extensive programming [21].
With the emergence of extremely large datasets, fields such as machine learning have
exploded. However, it can often be burdensome to generate inferences from these large
datasets because of the need for highly efficient programming. Probabilistic programming
languages solve this problem because they are highly declarative and automate many of
the complex mathematical operations needed for complex statistical inference.

One of the probabilistic programming languages at the forefront of this movement



is Stan. Stan is an imperative programming language, making it more flexible than typical
declarative probabilistic programming languages such as BUGS and JAGS [8]. It uses
Hamiltonian Monte Carlo (or the No-U-Turn Sampler, abbreviated NUTS, an extension of
Hamiltonian Monte Carlo), a sampler that has been shown to be more efficient and robust
than Gibbs Sampling or Metropolis-Hastings for models with complex posteriors [12] [5].

The Stan language is organized into six code blocks: data, transformed data, parameters,
transformed parameters, model, and generated quantities. In the data block, the user
declares variables that are read in from the data. The transformed data block is similar
to the data block, but is used for variables that are transformed through some operation.
The parameters block allows the user to input the parameters that are sampled through
Hamiltonian Monte Carlo (or NUTS). In the transformed parameters block, the user can
generate new parameters through operations on the parameters declared in the parameters
block. The model block allows the user to make statements that define the model using the
inputted parameters. Finally, the purpose of the generated quantities block is to encode
options for posterior inference. It is not executed until after the sample has been generated,
and can be used to calculate posterior expectations, generate simulated data, and many
more useful methods of posterior inference.

Prior to Stan, Hamiltonian Monte Carlo was considered to be effective at exploring
high-dimensional probability spaces, but it was often difficult or inefficient to implement
computationally. Because Hamiltonian Monte Carlo is rooted in analytic and differential
geometry, it requires the computation of gradients and high-order derivatives [5]. As more
dimensions are added to a model, these operations can take a long time to compute. Stan
translates into C++ code before it is executed, allowing for quick and efficient model
estimation without the need for C++ knowledge. Stan has made Hamiltonian Monte Carlo
a practical and powerful Markov Chain Monte Carlo sampler.

3.1 Hamiltonian Monte Carlo

Much of the following information on Hamiltonian Monte Carlo (HMC) is adapted
from Betancourt’s, ”A Conceptual Introduction to Hamiltonian Monte Carlo” [5]. The
goal of MCMC is to approximate a posterior distribution from which we cannot sample
directly. Traditional MCMC algorithms such as Metropolis-Hastings are effective, but
have difficulty scaling as more dimensions are added to the model. With high-dimension
models, more computational resources are needed to sufficiently explore the probability
space and for the chain to converge. Metropolis-Hastings can reach a point where it is
prohibitively difficult to run the chain long enough for it to converge. This is one of the
main modeling improvements with the implementation of HMC through Stan.

The key to HMC’s efficiency is making informed jumps, in contrast to Metropolis
Hasting’s random walk. Hamiltonian Monte Carlo generates a vector field using the
probability space’s geometry. It then uses this vector field to explore the space in a more
deliberate manner than Metropolis Hastings. To build this vector field, the gradient of
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the target density and an auxiliary momentum variable have to be computed. Betancourt
develops an analogy where the target density’s mode is a planet, the gradient is a
gravitational force, and the space we want to explore is the orbit. Like gravity, the gradient
points toward the mode, but the momentum variable prevents the exploration from going
directly into the mode. Thus, exploration orbits around the mode in accordance with the
gradient and momentum, leading to precise and efficient exploration of the probability
space in an ideal model.

Before giving a general HMC algorithm, we need to define a few terms. In HMC,
each dimension 6; of the parameter space has an auxiliary momentum variable ¢;. By
standard practice, we define ¢ with a multivariate normal distribution, @ ~ N(0,M). Here,
M is a mass matrix of covariances that we input for the multivariate normal. Each iteration
requires us to update 0 and ¢ with L leapfrog steps. We also input &, the scaling factor for
the updates that affects step size. Each full update includes two half-updates of ¢, with a
full update of 6 in between. Each half-update of ¢ requires the calculation of the gradient
of the log-posterior density of 8 given y.

Following Gelman et al., [10] we define the steps of an HMC iteration as:
1. Draw ¢ ~ N(0,M)
2. Update (8,¢) L times:

» Make a first half-step for ¢: ¢ = ¢ + %E%W
» Update 0: 0 =60 + eM ¢

* Make a second half-step of ¢: ¢ = ¢ + %e%

3. Let 6/~! and ¢'~! be the values of 6 and ¢ before updating and let 6* and ¢* be

these values after updating. Calculate:
p(6*]y)p(9”)

T= 5o Ty)p(e 1)

4. Set 6; = 6* with probability min(r,1). Else, do not accept and let 6, = 8'~!

The Bayesian models in this paper use Stan to estimate our posterior distributions and the
RStan interface to implement these models in the R programming language. We choose
to use Stan’s No-U-Turn Sampler (NUTS). As shown in the algorithm above, Hamiltonian
Monte Carlo traditionally requires the statistician to input step size € and number of steps L.
Stan’s NUTS makes it possible not to input any parameters by estimating likely candidate
points across the target distribution (replacing the need to specify step size) and using
primal-dual averaging to strategically adjust € while the model explores the probability
space [12]. We provide our Stan Code where relevant, and show how Stan models can be
easily implemented directly in R.
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4 Models

Following Bower & Glynn, we include data from eight different studies. Three of the
studies are from the Democratic Republic of the Congo (DRC), two from Gabon, two from
Sierra Leone, and one from Uganda. Observed estimates of seroprevalence range from
1% in Uganda during the 2007 outbreak, to 46% in Gabon during the 1996 outbreak,
demonstrating significant heterogeneity between studies. Sample sizes range from 24
during the Gabon 1996 outbreak (the same study as the highest seroprevalence estimate)
to 404 during the 1976 DRC outbreak. We consider these 8 studies to be exchangeable
because all participants have household or known case-contact and because the varying
testing mechanisms have sufficient rigor to identify seropositive subjects. There may be
questions surrounding the two Gabon studies since they both took place during the same
year, in the same country, and have by far the highest estimates (46% and 21%). We will
address this in the last model when we remove these two studies and test how sensitive the
parameter estimations are to this removal.

Table 1: Data

samples seropositive  country start_year end_year perc
1 404 10 Congo (Democratic Republic of the) 1976 1976  0.02
2 101 4  Congo (Democratic Republic of the) 1995 1995 0.04
3 24 11 Gabon 1996 1996 0.46
4 56 12 Gabon 1996 1996 0.21
5 38 4 Congo (Democratic Republic of the) 2002 2002 0.11
6 210 2 Uganda 2007 2007 0.01
7 187 12 Sierra Leone 2015 2016 0.06
8 388 10 Sierra Leone 2015 2015 0.03

4.1 Replication of Bower & Glynn

We begin our analysis by replicating the results of Bower & Glynn’s paper, “A systematic
review and meta-analysis of seroprevalence surveys of Ebolavirus infection” [7].

replication <- metaprop(data$seropositive,data$samples,
sm="PFT",
comb.random=FALSE,
prediction=FALSE)

Table 2: Replication

estimate  95% confidence interval

1 0.0 [.024,.044]
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Bower & Glynn’s results show an overall estimate of seroprevalence in asymptomatic
people with known case-contact of 3.3% with a 95% confidence interval of [2.4,4.4]. This
fixed effects model uses the Freeman Tukey arcsine square root transformation method,
which we replicate using the R package, "Meta.” The authors also acknowledge the
“substantial heterogeneity due to three small studies with higher estimates™ [7]. With this
estimated seroprevalence of 3.3%, asymptomatic Ebola would not be a significant factor in
disease transmission outbreak control.

4.2 Non-Hierarchical Stan Model

Our first Stan model is a non-hierarchical fixed effects model that provides a global estimate
for 0, the estimate of seroprevalence. The main purpose of this model is to show that it is
possible to run a fixed effects model in Stan and to give a direct comparison to the fixed
effects model chosen by Bower & Glynn. We put a beta(1,19) prior on the 0 value, giving
a prior expectation for 8 of .05. However, there are likely enough observations in the
meta-analysis data such that this relatively weak prior will not hold much weight in the
posterior estimates.

a <-1
b <- 19

stan_model_non_hierarchical ="
data {
int<lower=0> N; // the number of studies
int<lower=0> samples[N]; // the number of samples in each of the N
studies
int<lower=0> seropositive[N]; // the number of seropositive samples
in each of the N studies
int a; // inputted parameter alpha of the beta hyperprior
int b; // inputted parameter beta of the beta hyperprior

}

parameters {
real theta; // the parameter of interest is the global estimate for
seroprevalence
¥

model {
theta = beta(a,b); // declares the theta parameter to be distributed
with a beta prior
for (n in 1:N) // loops over each study and declares the seropositive
count to be binomially distributed
seropositive[n] ~ binomial(samples[n], theta);
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Table 3: Non-Hierarchical Model

mean semean 2.5% 97.5%

theta 0.046 0.000 0.036  0.058

After running the model, we get a global estimate of seroprevalence of 4.6% with a 95%
credible interval of [3.6,5.8]. The posterior mean of 6 is slightly lower than our prior
expectation of 0.05, demonstrating that our data moved the posterior parameter estimates
lower than our prior expectation. Also note that we are now using a credible interval
because it is a Bayesian model. Thus, 95% of our posterior probability is captured between
3.6% and 5.8%. Again, we do not want to place too much emphasis on this model because
it is not our focus, but it is interesting to see the variation among fixed effects models.
These differences can be caused by the priors we set in a Bayesian setting, or by weighting
the studies differently to compute the fixed effects estimate.

4.3 Beta-Binomial with Natural Parameterization of « and 3

In our first random effects Bayesian hierarchical model, the population beta distribution
P(6]¢) is conjugate to the binomial likelihood P(y|6). We believe a random effects model
more accurately captures the situation because the true estimate of seroprevalence is
presumably different across studies. There are likely factors that affect seroprevalence
differently in each study, although they are not immediately known (not harming
exchangeability). We expect estimates of seroprevalence to be similar but not identical in
each study, which is captured in our model.

We parameterize the beta distribution in a natural way, with the prior expectation as
u and the prior sample size as 1. We put a hyperprior beta distribution on y and a
hyperprior exponential distribution on 1. So, our only chosen inputs to the model are the
hyperparameters o and [y that parameterize the hyperprior beta distribution and A that
parameterizes the hyperprior exponential distribution. We choose o = 1 and fy = 19, so
E[u] =.05and A = .05 so E[n] = 20.

In the Stan code, we include a transformed parameter block that computes o) and
Pi1 from 1 and pu. These ; and P are the parameters for the beta prior on the 6°s. The
expectation of a beta distribution is o /(& + f8). So, u = /(o + ). The prior sample
size of a beta distribution is a; + ;. We can substitute n to get 4 = a¢;/nora; = - 1.

Similarly, we get By = +B1—oy =1 +B1-(1—oy /(a1 +B1))=n-(1—u)
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Summarized, we have:

yi ~ bin(n;, 6;)
0; ~ beta(ocl,ﬁl)
@ =n-u
Br=n-(1-u)
u ~ beta(1,19)
n ~ exp(.05)

a =1
b =19
1 = .05

stan_model_natural = "
data {
// input data
int<lower=0> N;
int<lower=0> samples[N];
int<lower=0> seropositive[N];

// Inputted priors
real<lower=0> a; // hyperparameter alpha
real<lower=0> b; // hyperparameter beta
real<lower=0> 1; // hyperparameter lambda
¥
parameters {
real<lower=0,upper=1> mu; // prior expectation
real<lower=0> eta; // prior sample size
real<lower=0,upper=1> theta[N]; // estimate of seroprevalence
for each study
¥

transformed parameters{
real<lower=0> alpha;
real<lower=0> beta;
alpha = etax mu ; // calculates alpha
beta = etax(1-mu); // calculates beta
}
model {
mu ~ beta(a,b); // hyperprior on prior expectation
eta ~ exponential(l); // hyperprior on prior sample size
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theta ~ beta(alpha,beta); // thetas drawn from
beta distribution
seropositive ~ binomial (samples,theta); // seropositive number
isbinomially distributed

Table 4: Beta-Binomial Natural Parameterization

mean semean 2.5% 97.5% observed probability

mu  0.09 0.00  0.05 0.17 -

eta 10.62 0.03 3.13 2510 -

alpha  0.93 0.00 0.31 203 -

beta  9.69 0.03 270 2330 -
theta[1]  0.03 0.00 0.01 0.04 0.02
theta[2]  0.04 0.00 0.01 0.09 0.04
theta[3]  0.35 0.00 0.19 0.54 046

theta[4]  0.20 0.00 0.11 0.30 0.21
theta[5S]  0.10 0.00 0.03 020 0.11
theta[6]  0.01 0.00  0.00 0.03 0.01

theta[7]  0.07 0.00 0.04 0.10 0.06
theta[8]  0.03 0.00 0.01 0.05 0.03

Each of our Stan Models runs for 10,000 iterations, which includes a burn-in (referred
to as warmup in Stan) of 1,000 iterations. The purpose of the burn-in is to deal with the
situation where the Markov chain starts in a poor location. In this case, the chain may
initially explore a low probability area, leading to poorly representative samples. Thus, we
discard the burn-in iterations, then start collecting samples after the burn-in has ended and
the chain has neared its equilibrium distribution.

After running the model, we see shrinkage, or the pulling of estimates towards the
population mean. For example, in study 3, 46% of the study participants were seropositive.
However, our posterior mean for 65 is .35, demonstrating that the other studies informed the
estimate, resulting in a decreased estimate from the observed data. Posterior visualization
and credible intervals for the eight theta parameters can be viewed in Sections 8.1 and 8.2
of the appendix.

Furthermore, we estimate 0’s to be drawn from a common beta population distribution
with parameters & = .93 and 8 = 9.69, making E[6] = .93/(.9349.69) = .0876, or 8.76%
in this model. We see a significantly higher estimate than the 3.3% estimated by Bower
and Glynn and the 4.6% estimated by our fixed effects model. This is because the random
effects model gives more weight to the smaller sample size studies that have high observed
seroprevalence. Finally, our standard errors (posterior standard deviation divided by square
root of effective sample size) are all small, signaling that we expect our estimate to be
close to the true value.
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4.4 Beta-Binomial with Exponential Priors on o and 3

Here, we again have a conjugate population distribution and likelihood. However, we
now place exponential hyperpriors on @ and . Our only set inputs to this model are
the hyperparameters A; = 1 and A, = 19. With these hyperpriors, we get E[a] = 1 and E[S]
= 19. This gives the same prior expectation (.05) and sample size (20) for the population
distribution as the model in Section 4.3, but with a different hierarchical structure and no
transformed parameters.

lambdal
lambda?

1
1/19

n

stan_model_exponential =
data {

// input data
int<lower=0> N;
int<lower=0> samples[N];
int<lower=0> seropositive[N];

// Inputted priors

real<lower=0> lambdal; // hyperparameter input into
exponential hyperprior

real<lower=0> lambda2; // hyperparameter input into
exponential hyperprior

t

parameters {

real<lower=0> alpha;

real<lower=0> beta;

real<lower=0,upper=1> thetal[N];

ki

model {

alpha ~ exponential(lambdal); // exponential hyperprior on alpha
beta ~ exponential(lambda2); // exponential hyperprior on alpha

theta ~ beta(alpha,beta);
seropositive ~ binomial (samples,theta);

}

n
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Table 5: Beta-Binomial with Exponential Priors

mean semean 2.5% 97.5% observed probability

alpha  0.94 0.00 0.35 1.90 -

beta  8.73 003 220 21.00 -
theta[1]  0.03 0.00 0.01 0.04 0.02
theta[2]  0.04 0.00 0.01 0.09 0.04
theta[3]  0.36 0.00 0.19 0.55 046
theta[4]  0.20 0.00 0.11 031 0.21
theta[5]  0.10 0.00 0.03 021 0.11
theta[6]  0.01 0.00 0.00 0.03 0.01
theta[7]  0.07 0.00 0.04 0.10 0.06
theta[8]  0.03 0.00 0.01 0.05 0.03

We obtain very similar results to the previous model. The only change in the posterior
means for the thetas is 65 increasing from .35 to .36. The posterior means for the @ and 3
parameters are also similar, with o = .94 and B = 8.73. With an estimated population
distribution of beta(.94,8.73), we get E[0] = .0972, slightly higher than the previous
estimate of .0876. Again, our standard errors are low meaning we expect our estimates
to be close to the true value. These results demonstrate that changes to the hierarchical
structure do not significantly change the model results. Given expected seroprevalence
estimates of 8.76% in our previous model and 9.72% in this model, asymptomatic Ebola is
extremely relevant to disease transmission models.

4.5 Beta-Binomial Natural Parameterization without Gabon Data

In our final model, we remove two studies from the eight selected by Glynn & Bower. Both
of the removed studies took place during the 1996 outbreak in Gabon with the first having
45.9% seroprevalence [14] and the second having 21.4% seroprevalence [4]. These two
were much higher than the third highest calculation of 10.5%. Given that they were both
taken during the same outbreak, there may be a factor that would cause these estimates to
be so much higher and thus violate exchangeability One possible explanation for this could
be poor testing procedures that resulting in an unreasonably high observed seroprevalence.
However, given our lack of scientific background, we will not make any claims to predict
this factor.

If these two studies are not exchangeable with the other six, then they would be
ineligible for inclusion in the meta-analysis. Furthermore, both these studies have small
sample sizes, with 24 and 56 participants respectively. Since a random effects model gives
more weight to smaller studies than a fixed effects model, the decision to include or exclude
these studies is particularly relevant. We use the same natural hyperparameterization as the
model in Section 4.3, but test to see how removing these two studies affects the results.
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1
=19
1= .05

T w
1

stan_model_natural = "

// Same Stan Code as previous natural parameterization

different data inputted
data {
// input data
int<lower=0> N;
int<lower=0> samples[N];
int<lower=0> seropositive[N];

// Inputted priors
real<lower=0> a;
real<lower=0> b;
real<lower=0> 1;

}

parameters {
real<lower=0,upper=1> mu;
real<lower=0> eta;
real<lower=0,upper=1> theta[N];
¥

transformed parameters{
real<lower=0> alpha;
real<lower=0> beta;

alpha = etax mu ;

beta = eta*(1-mu);

¥

model {

mu ~ beta(a,b);

eta ~ exponential(l);

theta ™ beta(alpha,beta);

seropositive ~ binomial(samples, theta);

}

n
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Table 6: Natural Parameterization without Gabon Data

mean semean 2.5% 97.5% observed probability

mu  0.05 0.00 0.02 0.09 -

eta 38.60 0.14 850 97.16 -

alpha  1.70 0.01 046 4.02 -

beta 36.90 0.13 7.88 93.62 -
theta[1]  0.03 0.00 0.01 0.04 0.02
theta[2]  0.04 0.00 0.01 0.08 0.04
theta[3]  0.08 0.00 0.03 0.16 0.11
theta[4]  0.01 0.00 0.00 0.03 0.01
theta[5S]  0.06 0.00 0.03 0.10 0.06
theta[6]  0.03 0.00 0.01 0.04 0.03

In these model results, we see two of our parameter estimates change. First, 63 decreases
from .1 to .08. The observed probability is .11, so removing the two Gabon studies forced
this parameter to shrink to an even lower estimate. Second, 65 in this model decreased
from .07 to .06. In the model with Gabon data, it was actually forced upward from its
observed value of .06, but removing the Gabon data brought it back down to its observed
value of .06. Further, we estimate posterior means of 1.7 for & and 36.90 for 3. With these
values, the thetas have an expectation of 1.7/(1.7+36.9) = .044, significantly lower than our
previous two models. With the expected value of theta being 4.4% in this model, the results
are more in line with the two fixed effects models. With this estimate, if there is suitable
scientific rationale to remove the Gabon studies from the dataset, then asymptomatic Ebola
is a much less significant concern than estimated in our two random effects models.

S Model Validation
5.1 Testing Model on Simulated Data

Table 7: Credible Interval and True Value

mean 2.5% 97.5% true value

mu 0.055 0.030 0.093 0.054

eta 34.237 8543 82.361 25.372
alpha  1.814 0491 4423 1.361
beta 32423 7.879 78.321 24.011
theta[1]  0.049 0.028  0.076 0.047
theta[2]  0.033 0.015  0.058 0.031
theta[3] 0.012 0.000  0.039 0.004
theta[4]  0.103 0.067  0.146 0.110
theta[5S]  0.042 0.023  0.065 0.039
theta[6] 0.046 0.007  0.115 0.038
theta[7]  0.045 0.016  0.088 0.047
theta[8§] 0.079 0.052  0.112 0.082
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To test the robustness of our modeling, we run the model on simulated data in which
we know the true values. We choose the hierarchical model from Section 4.3, where we
parameterize the population beta distribution in a natural way, with the prior expectation as
u and the prior sample size as 7. We want to test our model’s ability to recover simulated
values. To do this, we calculate a 95% credible interval and see if it contains the true
parameter value.

After running the model on simulated data, we see that the 95% credible intervals
cover the true parameter value for the 12 parameters of interest. Since we successfully
covered these simulated values, the model passes the first test of model validation.

5.2 Model Diagnostics

Table 8: Beta-Binomial Natural Parameterization Full

mean se_mean sd X2.5. X97.5. n_eff Rhat

mu  0.09 0.00 0.03 0.05 0.17 36000.00 1.00

eta 10.62 0.03 579 3.13 25.10 29544.06 1.00
alpha  0.93 0.00 045 0.31 2.03  36000.00 1.00
beta  9.69 0.03 543 270 2330 27981.94 1.00
theta[ 1] 0.03 0.00 0.01 0.01 0.04 36000.00 1.00
theta[2] 0.04 0.00 0.02 0.01 0.09 36000.00 1.00
theta[3] 0.35 0.00 0.09 0.19 0.54 36000.00 1.00
theta[4] 0.20 0.00 0.05 0.11 0.30 36000.00 1.00
theta[5] 0.10 0.00 0.04 0.03 0.20 36000.00 1.00
theta[6] 0.01 0.00 0.01 0.00 0.03  36000.00 1.00
theta[7] 0.07 0.00 0.02 0.04 0.10 36000.00 1.00
theta[8] 0.03 0.00 0.01 0.01 0.05 36000.00 1.00

Here, we add in two model diagnostics to our output table: Rhat and n_eff. Following John
Howell’s definitions in his Stan Best Practices Guide, Rhat is a statistic that quantifies the
consistency of an ensemble of Markov chains [13]. An important distinction to make
is that Rhat identifies when there are problems with convergence. It does not confirm
that an MCMC algorithm has converged. Our models each run four Markov chains (the
default for Stan). Consistency means that each chain explores similar regions of the space
for each parameter. If there are inconsistencies among the space explored, then the Rhat
statistic will increase, signaling problems with the estimation of the respective parameter.
Generally, any Rhat < 1.1 signals a valid model in terms of consistent chains. The Rhat
statistics for the 12 parameters are all one, signaling the four chains are exploring similar
regions. This can be visualized in Section 8.3 of the appendix, where we display the
traceplots of the eight theta parameters. We include the burn-in iterations in these plots
to show that the initial movement is often far away from the typical space that the chains
explore.

The Stan Reference Manual defines effective sample size as the number of independent
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samples with the same estimation power as N autocorrelated samples, where N is the
number of iterations for which our chain runs [20]. This is why to calculate standard
errors, we divide posterior standard deviation by the square root of effective sample size, as
opposed to dividing it by the square root of N. Looking at the number of effective samples
is a measure of how efficiently a chain explores a parameter space. If a chain is slow, then
the number of effective samples is low, which becomes a problem as one adds dimensions
to a space because it requires more computation to explore. Generally, the statistic we
use to gauge a chain’s effectiveness is number of samples per iteration or N_eff / N. For
every parameter except for eta and beta, our number of effective samples equals 36,000,
the number of iterations (10,000 iterations per chain, 4 chains, minus 1,000 burn-in for
each chain). Generally, this means that our chain is exploring the parameter space very
rapidly. Although this is somewhat unusual, it is not sufficient reason to disregard the
model results.

6 Conclusion

Our three random effects models yield mixed results. When we include the Gabon data,
we have expected seroprevalence estimates of 8.76% in our previous model and 9.72%
(remembering that these are the expected values of the beta distributions that we consider
each 0 to be draw from). With these estimates, asymptomatic Ebola is a serious and
relevant issue. It provokes the need for more research to understand whether asymptomatic
Ebola is infectious to others and to determine how long Ebolavirus remains in those with
asymptomatic Ebola after the outbreak. This would further inform understanding in why
outbreaks may begin and also lead to more accurate transmission models to predict the
spread of Ebola. Once this is known, further research can be done for the best way to
prevent and contain Ebola outbreaks.

However, if the Gabon data is invalid, or at least not exchangeable, then our results
are significantly impacted. When we remove the Gabon data, we have an expected
seroprevalence estimate of 4.4%. This is more in line with previous estimates. And, given
those estimates, researchers have essentially decided to exclude asymptomatic Ebola from
their transmission dynamic models. Thus, if there is sufficient scientific reason to exclude
the Gabon data, asymptomatic Ebola is sufficiently negligible that it can continue to be
excluded.

Given these two scenarios, the next step needs to be developing an international standard
testing mechanism and using this mechanism for more data collection. This will prevent
or reduce disputes about the quality of the data. Ideally, data could be collected using
this new standard during outbreaks in different countries. Then, a future meta-analysis
could be conducted in which we could get a more accurate idea of asymptomatic Ebola
seroprevalence without the limitations stated in this paper. This will take time, effort, and
resources, but it is necessary to further our knowledge and understanding of Ebola.
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8 Appendix

8.1 Theta Posteriors from Section 4.3
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8.2 Theta 95% Credible Intervals from Section 4.3

## ci_level: 0.95 (95% intervals)
## outer_level: 0.95 (95% intervals)

theta[1] 1 =
theta[2] 1 e —
theta[3] 1 L
theta[4] - — ——
theta[5] 1 S e
theta[6] 1 o=
theta[7] A e
theta[8] A o=
0.0 0.2 0.4

8.3 Theta Markov Chain Traceplots from Section 5.2
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