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Abstract 

Over the past decade, numerous engineered credit events and cases of market 
participants manipulating bond prices to influence CDS auction payouts have occurred. 
These cases have become increasingly common, and the CFTC has stated they may 
constitute market manipulation and undermine not only the CDS market but also the credit 
derivative and default markets. Although there is a plethora of news and media coverage 
on publicized cases, there is no previous empirical research on evidence of these practices. 
This paper is motivated by the desire to determine if there is indirect evidence of bond price 
manipulation around default and of market participants’ attempts to favorably move CDS’s 
underlying bond prices to achieve more profitable positions around default and emerging 
from CDS auctions. The analysis is performed by analyzing the effect of a bonds’ inclusion 
in CDS auctions on bond return volatility around the time of default while controlling for 
credit risk, illiquidity, firm fundamentals, and other bond-level controls. I find that bond 
return volatility around default is much higher as a result of a bond’s inclusion in a CDS 
auction, which serves as indirect evidence of bond price manipulation around default as 
market participants strive for more profitable CDS auction outcomes and possibly of 
manufactured credit events. Consistent with previous literature, I also find that bond 
illiquidity significantly impacts bond return volatility. My results are robust to propensity 
score matching, implementing double-robust estimators, and controlling for any time-
varying cross-sectionally-invariant fluctuations in bond return volatility.  
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1. Introduction

“The gambit is fiendlishly clever. It is the debt equivalent of a controlled explosion: 
offering a struggling company favourable financing … to convince it to intentionally 
default in a way that will trigger payouts on CDS contracts, but without bringing down the 
whole company.” 

- Financial Times (June 2018)1

Credit default swaps (CDS) are default insurance contracts that aim to transfer the 

credit exposure of bonds and other fixed income products between buyers of protection 

(CDS buyers) and sellers of protection (CDS sellers). CDS are one of the most significant 

financial product developments in the past 25 years, gaining not only pervasiveness but 

also regulation and policy scrutiny since creation. Since their creation in 1994 by JPM, 

CDS have been used by investors for a variety of purposes, ranging from insurance and 

hedging to speculation and arbitrage. Although originally intended as a method of 

insurance and default risk mitigation for banks, CDS have increasingly become used in 

speculation and arbitrage by banks, hedge funds, and other financial institutions. According 

to the Bank of International Settlements (BIS), as of December 2017, global CDS markets 

have a notional amount outstanding of $9.354 trillion and a gross market value of $304 

billion. This is down from $61.2 trillion notional outstanding at the end of 2007 before the 

Great Financial Crisis.2 

The Great Financial Crisis drew significant attention to CDS and other credit 

derivatives after the high number of large-scale incidents in 2008, beginning with the 

collapse of Bear Stearns. In 2008, CDS trades were executed over the counter (OTC), 

1 The Financial Times, 2018, “Debt equivalent of a controlled explosion helped Blackstone edge out 
rivals,” Jun 5. 
2 See the semiannual OTC derivatives statistics, Bank for International Settlements, December 2017. 
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because a central exchange or clearing house did not exist. This prompted the Depository 

Trust & Clearing Corporation (DTCC) to publish information on CDS trades on a weekly 

basis (DTCC (2008)).3 Previously, in 2001, data provider Markit had also made pricing 

and other information available on CDS contracts. In addition to increased transparency, 

the CDS market experienced several other fundamental changes to address concerns about 

the product’s risk after 2008, accommodate market growth, and improve efficiency. More 

specifically, the International Swaps and Derivatives Association (ISDA) introduced (1) 

central clearing houses (the counterparty to both sides of a CDS transaction) operated by 

the InterContinental Exchange (ICE) to reduce the counterparty risk faced by both buyers 

and sellers, and (2) the international standardization of CDS contracts (known as the “CDS 

Big Bang”) to improve the infrastructure of the CDS market and improve efficiency 

(Markit (2009)).  Ultimately, the industry experienced consequential change in market size 

and structure over the course of several months, and even greater change over the last 

decade (Aldasoro and Ehlers (2018)). 

The success of these reforms to decrease risk and increase transparency and 

regulation relies on understanding how the CDS market operates and the efficiency of the 

market (Chernov, Gorbenko, Makarov (2013)). As a result, there has been significant 

research on CDS premia and spreads (Longstaff, Mithal, and Neis (2005)), default and 

recovery from the term structure of CDS spreads (Jaskowski and McAleer (2012), Pan and 

Singleton (2008)), CDS valuation (Duffie (1999)), insider trading (Acharya and Johnson 

(2007)), counterparty risk (Arora, Gandhi, and Longstaff (2009); Duffie and Zhu (2011)), 

and other topics on the CDS market. More recently, some research has been devoted to 

3 See DTCC, 2008, Global Trade Repository, OTC Derivative Reporting. 
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understanding CDS auctions and settlements and their possible biases and inefficiencies. 

Specifically, Chernov, Gorbenko, and Makarov (2013) and Du and Zhu (2016) analyze the 

two-stage CDS auction design theoretically and empirically and determine that the current 

auction design results in biased bond prices and inefficient allocations. 

Despite the targeted CDS market reforms and research on CDS auctions and 

settlement procedures, there remains inefficiencies, biases, and manipulations. Since 2009, 

there have been several cases of bond price manipulation influencing CDS payouts and 

“engineered credit events.” In an engineered credit event, a market participant synthetically 

triggers (manufactured credit event) or prevents (debt orphaning or other CDS 

manipulation) the payout of a company’s CDS to benefit one or more financial institutions 

and/or the company. There are also cases where market participants, usually CDS buyers 

or sellers, push for better positions emerging from CDS auctions, namely by moving bond 

prices favorably before the auction. For example, in Goldman’s duel with GSO (Blackstone 

Group’s credit hedge fund unit), it tried to push up the bond price to reduce its payout on 

Hovnanian CDS after GSO helped manufacture Hovnanian’s credit event. 

Although these manipulation cases have become more common, with three public 

cases in the past twelve months (Hovnanian, Sears, and McClatchy), they are neither 

explicitly fair market activity nor using CDS for the way in which it was designed. 

According to the Commodity Futures Trading Commission (CFTC), they may constitute 

market manipulation and undermine not only the CDS market but also the credit derivative 

and default markets.4 Following the Hovnanian credit event, Simon Firth, a partner at 

                                                           
4 Doran, Josh, 2018, “Manufactured Credit Events May ‘Damage’ CDS Market: CFTC,” IFRe, Apr 25. 

8



Linklaters, said to IFR (International Financing Review), “it is significant because if 

manufactured defaults were to happen left, right and center, that could cause a collapse of 

confidence in the credit derivative market.”5 Further conversation and casual empiricism 

suggest that the ramifications of engineered credit events and bond price manipulation 

could lead to decreased confidence in the CDS market, lower levels of trading activity, 

increased hedging risk, greater marketplace inefficiencies, and reduced market 

transparency. 

This paper is motivated by the desire to determine if there is indirect evidence of 

bond price manipulation around default and of market participants’ attempts to favorably 

move CDS’s underlying bond prices to achieve more profitable positions around default 

and emerging from CDS auctions. This paper fills the gap in existing literature on the study 

of empirical evidence of such manipulation and will be the first to examine bond return 

volatility around the time of default. Previous research into direct evidence of these 

practices is sparse because of the limited data and small number of revealed cases 

(Hovnanian, Sears, McClatchy, etc.), but CDS’s reference securities provide more data that 

can be used to investigate possible evidence of market participants manipulating the 

market.  

This paper aims to determine if there is indirect evidence of the manipulation of 

CDS’s underlying bond prices by comparing the volatility of bond returns around the time 

of default for bonds that are included in CDS auctions (either because they have CDS 

written on them or their reference entity does). This analysis is performed by computing 

                                                           
5 Scigliuzzo, Davide, 2018, “CFTC Steps into Debate on Voluntary Defaults,” Thomson Reuters, Apr 27. 
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bond return volatility from before default to when a CDS auction would typically occur 

and running regressions motivated by Bao and Pan (2013), with controls for credit risk, 

illiquidity, firm fundamentals, and other bond-level controls. Propensity score matching, 

double robust estimators, and regressions with time fixed-effects are then used to further 

determine the effect of CDS auction on bond return volatility and as robustness tests. 

Looking at bond return volatility rather than just abnormal bond returns is 

motivated by Goldman and GSO’s duel in which both firms tried to manipulate bond prices 

before the CDS auction but in opposite directions. Thus, for each reference security, it is 

unknown what hedge funds’ net CDS or bond positions are at the time of default, and 

therefore which direction they are attempting to move prices. Further, because there are 

participants on both sides of the trade, there are likely efforts to move prices in both 

directions, thus creating abnormal return volatility but not necessarily net abnormal returns. 

I hypothesize that if bond price manipulation and/or manufactured credit events are 

present, the bond return volatility will be higher for bonds that are included in CDS auctions 

than their counterparts that are not because of market participants’ attempts to move prices 

favorably both prior to auction and prior to default. The bond default data and bond pricing 

data for this paper are collected from Moody’s Default and Recovery Database (DRD) and 

FINRA’s TRACE (Transaction Reporting and Compliance Engine), respectively. The 

bond data is matched to Compustat to obtain firm fundamental data. The CDS data is 

obtained from Markit and the other data is collected from regular data sources, such as 

CRSP, U.S. Treasury's Constant Maturity Treasury (CMT) series, and Bloomberg. 

First, this paper contributes to the increasing evidence of and debate over 

manufactured credit events. To my knowledge, this paper is the first to make a rigorous 
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attempt to uncover evidence of market participants manipulating bond prices around 

default and in CDS auctions. Notably, this paper finds indirect empirical evidence of the 

manipulation of bond returns for bonds in CDS auctions and therefore possibly 

manufactured credit events. I use bond return volatility as a measure of indirect evidence 

of market participants manipulating bond returns before default and from default to auction 

to achieve more profitable positions emerging from CDS auctions. The average annual 

bond return volatility across all bonds around the time of default is 99.6% to 139.8%. After 

controlling for bond illiquidity, credit risk, firm fundamentals, and other bond-level 

controls using baseline regressions, I find that a bond included in a CDS auction is 

associated with a higher bond return volatility of 31.2 to 63.8 percentage points around the 

time of default, with the highest CDS auction bond volatility in the six months prior to 

default.  

These results are robust to propensity score matching (PSM), in which a CDS 

auction is associated with a greater annual volatility of 26.2 to 114.0 percentage points.6 

Using PSM, I measure the average treatment effect on the treated (ATET or ATT) and 

average treatment effect (ATE). I estimate that the average bond return volatility for a CDS 

auction bond is 75.4 to 157.5 percentage points higher than if it is not in a CDS auction 

(ATET) and that the bond return volatility around the time of default is 63.7 to 191.1 

percentage points higher when a bond is included in a CDS auction (ATE), depending on 

the time period around default. Furthermore, these results persist when using double-robust 

estimators. The ATE calculated using double-robust estimators of CDS auction on bond 

6 Measured using the PSM matched sample based on bonds’ propensity to be included in CDS auction and 
running the same baseline regressions as done with the unmatched sample.  
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return volatility estimates that bond return volatility around the time of default is 14.6 to 

75.7 percentage points higher when a bond is in a CDS auction. Lastly, to control for any 

time-varying cross-sectionally-invariant variations in bond return volatility that are 

potentially unexplained by my controls, such as market-wide fluctuations, I run my 

baseline regressions with time fixed-effects. I find that CDS auction is significantly 

positively related to bond return volatility with time fixed-effects and positively related to 

bond return volatility with time fixed effects and standard errors clustered by distinct 

default event. This paper therefore finds that bond return volatility around default is higher 

as a result of a bond’s inclusion in a CDS auction, serving as indirect evidence of bond 

price manipulation around default as market participants strive for more profitable CDS 

auction outcomes and possibly manufactured credit events.  

Second, this paper contributes to the growing literature on CDS pricing and trading, 

ties between CDS auctions and bond pricing at default, and corporate bond return volatility. 

Although there has been a large amount of studies on the CDS auction settlement procedure 

(Chernov, Gorbenko, and Makarov (2013); Du and Zhu (2016); Gupta and Sundaram 

(2011); and Peivandi (2015)) and structural models of default (Jones, Mason, and 

Rosenfeld (1984); Eom, Helwege, and Huang (2004)), and the credit spread puzzle (Huang 

and Huang (2003); Elias, Hellwig, and Tsyvinski (2014), Bhar and Handzic (2008); and 

Feldhutter and Schaefer (2018); Bao and Pan (2013); and Chen, Lesmond, and Wei 

(2007)), there is only one paper to my knowledge connecting CDS auctions and bond 

pricing at default (Helwege et al. (2009)). Thus, this paper is the first to model factors 

influencing bond return volatility around the time of default and investigate the effect of a 

bond’s inclusion in a CDS auction on bond return volatility before and after default. The 
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results of this paper suggest bond illiquidity and a bond’s inclusion in a CDS auction have 

the greatest significant impact on bond return volatility around the time of default. Only 

some firm fundamentals are significantly related to bond return volatility for the two of the 

time periods around default. However, the firms I am analyzing are all near default, and so 

there is not a wide range of firm attributes as there is in Bao and Pan (2013).  

Although there is little research examining bond returns and volatility around the 

time of default, there is extensive research on corporate bond returns and volatility, return 

and volatility factors, and credit spreads. Significant research focuses on structural models 

of default; Jones, Mason, and Rosenfeld (1984) and Eom, Helwege, and Huang (2004) find 

that these structural models do not match the magnitudes of credit spreads. Specifically, 

Huang and Huang (2003) determine that numerous structural models underestimate 

corporate bond yield spreads when matched to historical default probabilities. This 

dislocation, named “the credit spread puzzle,” has attracted significant research since 

Huang and Huang (2003).  This research endeavors to explain the credit spread puzzle, 

particularly through model dynamics, see for example Elias, Hellwig, and Tsyvinski 

(2014), Bhar and Handzic (2008), and Feldhutter and Schaefer (2018). Alternative 

literature suggests an illiquidity component, such as in Bao and Pan (2013) and Chen, 

Lesmond, and Wei (2007). 

The remainder of the paper is organized as follows. Section 2 offers a review of the 

literature on CDS auction settlement structure, inefficiencies, and biases; structural models 

of default; and measuring excess price volatility and its determinants. Section 3 presents a 

review of the news stories on publicized manufactured and engineered credit events while 

Section 4 provides a detailed description of the current CDS auction structure. Section 5 
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describes the databases used, the creation of the dataset, variable construction, and the 

dataset, and Section 6 provides the empirical strategy used in this paper. Section 7 presents 

and explains the empirical results using baseline regressions, propensity score matching, 

and double-robust estimators, and Section 8 concludes and offers future research 

opportunities. 

2. Literature Review

While empirical and quantitative research on engineered credit events and bond 

return volatility is limited, CDS market structure, trading, valuation, and settlement have 

been studied extensively, see, for example, Longstaff, Mithal, and Neis (2005), Jaskowski 

and McAleer (2012), Pan and Singleton (2008), Duffie (1999), Acharya and Johnson 

(2007), Arora, Gandhi, and Longstaff (2009), and Duffie and Zhu (2011). More 

specifically, Chernov, Gorbenko, and Makarov (2013), Du and Zhu (2016), Gupta and 

Sundaram (2011), and Peivandi (2015) examine CDS auctions and determine biases and 

inefficiencies resulting from the auction structure. In their seminal paper, Chernov, 

Gorbenko, and Makarov (2013) (CGM), analyze CDS settlement auctions theoretically and 

evaluate them empirically. To conduct their analysis, they extend the strategic bidding 

models of Wilson (1979) and Back and Zender (1993). CGM (2013) determine that, 

because of strategic bidding from participants holding CDS, the final auction price may be 

above or below the fair bond price. They calculate undervaluation to occur most 

commonly, with auctions undervaluing bonds by an average of 6% on the auction day. 
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Similar to CGM (2013), Gupta and Sundaram (2011) (GS) also find a V-shaped 

price pattern, where final prices from CDS auctions are lower than bond prices before and 

after auction dates. GS (2011) also determine that information from the auction, 

particularly the auction’s final price, is integral to price formation after the auction and that 

bond return volatility typically increases after the auction (compared to pre-auction). They 

hypothesize that this is due to the entrance of new, informed investors post-auction. 

CGM (2013) also shares several common features with Peivandi (2015), but 

Peivandi (2015) uses a different theoretical model of a mechanism-design approach with 

emphasis on auction participation. Both CGM (2013) and Peivandi (2015) find price 

impact in the second stage of the CDS auction, but, Peivandi (2015) also shows the only 

way to guarantee full participation in CDS auctions is through a fixed price. Thus, full 

participation and price discovery cannot both be accomplished. Du and Zhu (2016) (DZ) 

offer complementary results to CGM (2013) and Peivandi (2015), evaluating CDS auctions 

with both a theoretical and market design perspective. DZ (2016) determine an additional 

cause of biased prices and inefficient allocations in CDS auctions: specific types of traders 

are unable to participate due to certain restrictions. DZ (2016) also find that, because a 

greater CDS position (in absolute value) relieves CDS auction’s first stage participation 

constraints, traders have excessive CDS positions before defaults. Ultimately, CGM, 

(2013), GS (2011), Peivandi (2015), and DZ (2016) all agree the current design of CDS 

auctions can lead to biased prices and inefficient allocations. 

While the aforementioned papers evaluate the design of CDS auctions, Helwege et 

al. (2009) connect the CDS auction mechanism and outcomes with corporate bond prices 

and returns at default and just before recovery. Longstaff, Mithal, and Neis (2005) propose 
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that CDS auction results are superior to bond prices at default as indicators of actual 

recovery rates because bond spreads are significantly more sensitive to illiquidity factors 

than CDS spreads. However, there are some arguments that the greater liquidity of the CDS 

market is not entirely passed on to CDS auctions, and both recovery rates may not 

accurately reflect actual recovery rates. Helwege et al. (2009) investigate if the recovery 

basis is large enough to “drive apart” the pricing of credit risk in the CDS market and 

secondary bond market. Using historical data, they determine that the estimates of recovery 

from CDS auction prices and the secondary bond market prices are close, suggesting little 

evidence of a large recovery basis. They also find little evidence that the illiquidity of the 

bond market affects how closely the bond market price “tracks” the auction price. 

While Helwege et al. (2009) conclude that the bond price the day before or day of 

the auction is extremely close to the final recovery price in the CDS auction, they calculate 

several cases of abnormally high or low bond returns from the time of default to the auction 

day. In their paper, they do not investigate the source of these returns and/or volatility, and 

there is little other research examining the returns and return volatility of bonds from 

default to auction. The abnormality of these returns and return volatility around the time of 

default could indicate manipulation by market players, which this paper is the first to 

examine. This paper seeks to expand upon Helwege et al. (2009) by calculating bond return 

volatility around the time of default for a larger dataset of bonds both included in and not 

included in CDS auctions. 

Although there is little research examining bond returns and volatility around the 

time of default, there is extensive research on corporate bond returns and volatility, return 

and volatility factors, and credit spreads. Significant research focuses on structural models 
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of default; Jones, Mason, and Rosenfeld (1984) and Eom, Helwege, and Huang (2004) find 

that these structural models do not match the magnitudes of credit spreads. Specifically, 

Huang and Huang (2003) determine that numerous structural models underestimate 

corporate bond yield spreads when matched to historical default probabilities. This 

dislocation, named “the credit spread puzzle,” has attracted significant research since 

Huang and Huang (2003).  This research endeavors to explain the credit spread puzzle, 

particularly through model dynamics, see, for example, Elias, Hellwig, and Tsyvinski 

(2014), Bhar and Handzic (2008), and Feldhutter and Schaefer (2018). Alternative 

literature suggests an illiquidity component, such as in Bao and Pan (2013) and Chen, 

Lesmond, and Wei (2007). 

Bao and Pan (2013) confirm excess volatility in corporate bond and CDS returns 

and run a series of regressions to determine the cause of this excess volatility. To determine 

excess bond volatility, they compare bond volatility from the Merton model implied 

volatility, calculated from an extension of the Merton (1974) model using stochastic 

interest rates with Treasury bond and equity return volatilities, with empirical volatility 

from monthly returns, calculated from the transaction size-weighted prices. Bessembinder 

et al. (2009) recommend calculating prices as transaction size-weighted average prices to 

minimize the impact of bid-ask spreads in prices. Edwards, Harris, and Piwowar (2007) 

and Bao, Pan, and Wang (2011) further expand this research, showing high, negative 

autocovariance in the corporate bond market, suggestive of a large effective bid-ask spread 

which would dominate volatilities over short horizons and small trades. Bao and Pan 

(2013) determine that empirical volatility of credit securities is higher than Merton model 

implied volatility due to illiquidity rather than firm fundamentals. Consistent with Collin-
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Dufresne, Goldstein, and Martin (2001) and Schaefer and Strebulaev (2008), Bao and Pan 

(2013) confirm both that the Merton model offers good estimates of fundamentals in the 

equity and corporate bond markets and that there are still some factors of debt returns and 

credit spreads that remain uncaptured in the Merton model. 

The regression analysis and control variables used in this paper are primarily 

motivated by Bao and Pan (2013), as well as the aforementioned papers.  This paper 

extends the work of Bao and Pan (2013) by examining empirical bond return volatility 

specifically around the time of default. It will also be the first to compare these metrics for 

bonds included in CDS auction and bonds that are not included and determine if there is 

indirect evidence of market participants manipulating bond returns and CDS for more 

favorable CDS auction outcomes.  

 

3. News Review 

While there is no previous research on determining empirical evidence of such 

manipulation, there has been significant media coverage, conversation, and debate about 

whether these events constitute market manipulation (Bloomberg, WSJ, Reuters). Perhaps 

the most topical case is the US homebuilder Hovnanian Enterprises Inc. trade in January 

2018. Blackstone Group’s credit hedge fund unit, GSO Capital Partners, offered 

Hovnanian a low-cost loan with the condition that Hovnanian default on a portion of its 

debt and issue weird new bonds to trigger the CDS and generate a large payout on the $300 

million CDS position held by GSO.7 These weird bonds offered very low coupons which 

                                                           
7 Levine, Matt, 2018, “When Cleverness Becomes Manipulation,” Bloomberg, Apr 26. 
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made the bonds extremely cheap and would maximize CDS payouts. Hovnanian agreed to 

default on a portion of its debt by missing a bond payment, known as a “manufactured 

default.” Hovnanian was not in default, but GSO’s loan rate was significantly cheaper and 

therefore more attractive than others’ offers. Goldman, one of the CDS sellers on the trade, 

tried to push up the bond price to reduce its CDS payout. After another CDS seller, Solus 

Asset Management, tried to sue GSO, GSO altered its offer so that Hovnanian no longer 

had to default on a portion of its debt. Hovnanian paid the interest it had skipped and thus 

did not trigger the CDS payout. 

Although GSO was not able to accomplish its manufactured default trade with 

Hovnanian, the hedge fund conducted a similar trade in 2013 with Spanish gaming 

company Codere. GSO offered a loan to Codere, structured in a way that would result in a 

payout on the CDS GSO held. The loan required Codere to pay an interest payment two 

days late, triggering the CDS “failure to pay” clause. Codere was willing to take the loan 

to ease its restructuring debate with bondholders, since many bondholders would gain from 

the CDS they simultaneously held. This “failure-to-pay" manufactured credit event 

resulted in a $197 million payment to holders of the CDS.8 

GSO’s manufactured credit events are only the tip of the iceberg as Sujeet Indap at 

the Financial Times writes, “US companies are facing an escalating threat from activist 

debt investors, who want to push them into default to make a profit from bearish bets on 

their bonds.”9 Codere is often regarded as the “precursor to iHeart,” since the 

                                                           
8 Ruhle, Stephanie, Mary Childs, and Julie Miecamp, 2013, “Blackstone Unit Wins in No-Lose Codere 
Trade: Corporate Finance,” Bloomberg, Oct 23.  
9 Indap, Sujeet, 2018, “USA Inc Faces Growing Threat from Activist Debt Investors,” Financial Times, 
Sept 18. 
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iHeartCommunications, Inc. case triggered the same “failure-to-pay” clause. iHeart chose 

not to repay the $57.1 million of principal on its 2016 senior unsecured notes held by its 

own affiliate but repaid the $192.9 million of principal on the same note held by outside 

investors. While some of these cases offer a benefit to the company defaulting, other more 

severe cases do not. For example, at the end of 2017, Aurelius Capital Management, who 

held a significant bond and CDS position in Windstream, began a legal case arguing the 

company had been in default for two years to trigger profits from its CDS position. As 

these cases increase in frequency and severity, concern is rising that more and more 

financial institutions will follow GSO, Aurelius, etc., in performing this “net-short debt 

activism.” 

Hedge funds have also manipulated the CDS market in the opposite direction, in 

which a hedge fund offers a distressed company a deal that helps keep the company afloat 

and prevents triggering the CDS payout. Bolton and Oehmke (2009) investigate the 

classification of these restructuring deals and their effect on CDS contract prices, creditor 

behavior, and credit market outcomes. They determine that, while classifying debt 

restructuring as a credit event reduces restructuring inefficiencies that result from the 

empty creditor problem, it also eliminates the economic gains from the use of CDS as a 

commitment device. Both Amherst Holdings in 2009 and Radioshack’s CDS writers in 

2014 similarly sold CDS and used the proceeds to buy up the company’s bonds or offer a 

cheap loan to prevent default, a form of restructuring.  

ESL Investment Inc. and Chatham Asset Management designed more creative 

engineered credit events in May and April of 2018, respectively. ESL, the biggest Sears 

shareholder at the time, offered to buy some of Sears’ businesses in exchange for Sears 
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buying back a portion of its own lower priced debt, resulting in large profits for CDS 

writers that were betting on Sears staying afloat for the next year.10  Chatham offered to 

refinance most of McClatchy’s debt with two new loans under one of its subsidiaries, 

creating what is termed an “orphaned contract” for its CDS because CDS holders would 

hold insurance on an entity without significant debt. If the deal had gone through, Chatham, 

who had been selling CDS and buying up the underlying bonds to raise prices, would be 

the seller of insurance against a nearly impossible default because of the lack of debt. The 

two new loans would also be sold to Chatham at a premium to par because of its own 

buying of McClatchy’s bonds. 11 

All of these engineered credit event cases are one of two scenarios: (1) buying CDS 

(long protection, short credit) and triggering the CDS clause or (2) selling CDS (short 

protection, long credit) and preventing default. Both scenarios represent potential 

manipulation in the credit derivatives market. The CFTC has voiced their opinion, stating 

“intentional defaults, which are not tied to a company’s financial health, could amount to 

‘market manipulation’ and ‘severely damage’ the CDS market.”12 The ISDA board also 

published a statement in April, “we believe that narrowly tailored defaults, those that are 

designed to result in CDS payments that do not reflect the creditworthiness of the 

underlying corporate borrower, could negatively impact the efficiency, reliability, and 

fairness of the overall CDS market.”13 Thus, these CDS and bond price manipulations, 

                                                           
10 Boston, Claire, and Sridhar Natarajan, 2018, “Sears Looks Like the Next Company With a Head-
Scratching CDS Trade,” Bloomberg, May 22.  
11Natarajan, Sridhar, 2018, “This Hedge Fund Trade Is Stirring Fresh Controversy in the CDS Market,” 
Bloomberg, Apr 2013. 
12 Scigliuzzo, Davide, 2018, “CFTC Steps into Debate on Voluntary Defaults,” Thomson Reuters, Apr 27. 
13 Internatinoal Swaps and Derivatives Association, Inc., 2018, “ISDA Board Statement on Narrowly 
Tailored Credit Events,” Apr 11.  
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many of which are unexposed, are an ongoing problem that future regulation may or may 

not be able to address.  

4. Overview of CDS Auction Design

CDS auctions determine the payments by CDS sellers to CDS buyers after the default

of bonds. Auctions are used to settle CDS trades of defaulting firms to improve settlement 

efficiency and determine a uniform recovery price for the underlying debt, minimizing 

“recovery basis risk,” which would otherwise occur if the recovery were not the same for 

all instruments. Investors have the option of cash settlement or effectively physical 

settlement because bonds can be traded in the auction. All CDS trades in the auction are 

cash settled, where in the physical settlement option a CDS buyer receives the principal 

balance outstanding (par in this case) from the trading of the underlying cash obligation 

(Creditex and Markit (2010)).  For example, if there is a 30% recovery rate, the CDS buyer 

receives 70% of par. 

Because of the requirement to settle in cash with an option to effectively physically 

settle, CDS auctions are an unusual two-stage process (Helwege et al. (2009)). In the first 

stage of CDS auctions, dealers provide a two-way quote for the defaulted assets and 

physical settlement requests are made (requests to buy or sell deliverable obligations at the 

final price). The dealers’ quotes are used to determine the initial market midpoint and the 

physical settlement requests are summed to measure open interest, which is used in the 

second stage. 
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The initial market midpoint, size and direction of open interest, and adjustment 

amounts are published on Creditfixing’s website within 30 minutes. Then, dealers and 

investors have 2-3 hours to decide if they would like to place limit orders on the deliverable 

obligations (and if so at what level) in the second stage of the auction. The initial market 

submissions on the relevant side are used as limit orders in the second stage of the auction 

as well. Limit order bids/offers are bound by the “cap,” usually half of the bid-offer spread. 

Further, if the open interest is to buy, a limit offer’s lower bound is the initial market 

midpoint minus the cap (any offers below are bumped to this value). If the open interest is 

to sell, a limit bid’s upper bound is the initial market midpoint plus the cap (any bids above 

are knocked to this value). 

Next, if the open interest is to buy/sell, the lowest/highest ‘sell’/’buy’ limit order is 

matched with the open interest that is equal in size. The next lowest/highest order is then 

matched, and the process continues until all open interest has been matched, in which the 

last match is the final price. If all limit orders are matched first, the final price is par if open 

interest is to buy and zero if open interest is to sell. Further, if the final limit order is greater 

than the initial market midpoint plus the cap or less than the initial market minus the cap, 

the final price will be the initial market midpoint plus or minus the cap, respectively 

(Creditex and Markit (2010)). 

Although Chernov, Gorbenko, and Makarov (2013) and Du and Zhu (2016) 

demonstrate that there is not a huge amount of bias in the final auction price, they ignore 

market participants’ activity in the bond market before default and even between default 

and auction. In the current CDS auction design, participants in the first stage influence the 

quantity of bonds to be auctioned (the open interest) in the second stage of the auction, 
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therefore influencing the final price. Because dealers’ markets create the initial market 

midpoint, dealers can influence the upper/lower bounds for pricing limit orders and the 

final auction price as well. Second stage participants (those placing limit orders) may hold 

derivatives on the assets being auctioned and thus, CDS auction participants may have 

large incentives to manipulate prices to gain from their existing positions, a major bias 

inherent in the current structure of CDS auctions. 

Specifically, a company’s lowest-priced debt is typically used to determine credit 

derivative payouts, and so when an institution bids up the bond price (Chatham/McClatchy 

and Goldman/Hovnanian) or takes out the lowest-priced debt (ESL/Sears), it dramatically 

reduces the CDS payout in the event of default. On the other hand, if a hedge fund owned 

a large CDS position, it would desire the bond price to decrease so it would receive a larger 

CDS payout after auction. This hedge fund could submit a large market sell order in the 

first stage of the auction and, depending on other market participants’ orders, possibly 

cause the net open interest to be selling and favorably move the CDS payout. But, the extent 

to which participants can bid or ask for bonds in the first stage of the auction is limited by 

their CDS position size, so participants cannot submit an order to sell a large amount if 

they only hold a small CDS position. However, CDS auction outcomes are also partly 

determined by how much these bonds trade before auction. Therefore, pre-default and pre-

auction bond manipulation could be an extremely effective tactic for market participants 

in order to achieve favorable CDS auction outcomes.  

Collectively, CGM, (2013), GS (2011), Peivandi (2015), and DZ (2016) demonstrate 

that the current design of CDS auctions can lead to biased prices and inefficient allocations. 

CGM (2013) propose altering current auctions with the introduction of a pro-rata allocation 
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rule and a conditional price cap to minimize mispricing. DZ (2016) also propose a method 

to improve current CDS auctions, although they recognize it is not the optimal method in 

practice. DZ (2016) recommend an alternative double auction design (as opposed to the 

current one-sided design) that would offer more efficient price discovery and allocations. 

 

5. Data 

5.1 Data Collection and Sources 

To analyze corporate bond return volatility around default, I first use data from 

Moody’s Default & Recovery Database (DRD). Moody’s Investor Service uses DRD’s 

issuer, default, and recovery data as the basis of their default research, which is used 

globally. This dataset is ideal for my purposes because it provides detailed coverage of 

default and recovery data for debts and corporate entities. I use this dataset to identify 

defaulted entities and issuances from 2005 to 2018 and define this as my defaulted bonds 

dataset. Each defaulted entity is dated by Moody’s rating agency default date. For each 

entity, DRD provides the entity’s industry, a default description blurb, the type of default, 

and resolution (if applicable). From DRD, it can be determined on which issuances each 

entity defaulted, the issuance-specific default date, and bond issuance characteristics, such 

as seniority, coupon, market, prior year’s rating, and default price where applicable. 

Next, I use Markit CDS data to determine which entities have CDS traded. This 

dataset consists of currently or historically traded CDS and provides the corresponding 

entity CUSIP, redcode, ticker, reference entity, jurisdiction, etc. I use this dataset as a 

reference for which bonds have reference entities that currently have or previously have 

25



had CDS trading. To determine which bonds are included in CDS auctions at the time of 

the bond and reference entity’s default, I use Creditfixings and ISDA’s CDS Index 

Protocols to identify CDS auction data. For each defaulted entity with auctionable CDS, 

the Protocol provides market participants with a method to address the settlement issues 

on the entity’s credit derivative products through the CDS auction process. 

The Protocol identifies each deliverable obligation to be priced and settled in the 

auction. The details of this auction settlement process, dealer bid/offers, initial market 

midpoint, net open interest, and final auction price are publicly available from the 

Creditfixings website. I construct my own CDS auction dataset consisting of each auction’s 

deliverable obligations. I then add all senior (unsecured and non-subordinated) deliverable 

bonds in my CDS auction dataset to my defaulted bonds dataset that are not already 

included in the latter. Although these additional bonds are not necessarily in default, they 

are subject to the same possible price manipulation around the time of the issuer’s default 

because of their inclusion in CDS auction. 

The bond pricing data for the defaulted and deliverable bonds in this paper are 

acquired from FINRA’s TRACE (Transaction Reporting and Compliance Engine). This 

dataset exists because of regulatory changes that aimed to add greater transparency in 

corporate bond markets. FINRA, successor to the NASD, regulates trading in equities, 

corporate bonds, securities, and options and reports OTC corporate trades. This dataset is 

optimal for my purposes because it provides “time-stamped” trading activity containing 

the clean price and par value traded which I use to calculate daily bond returns and volatility 

as well as several bond illiquidity measures. However, the par value traded is capped at $1 
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million+ for speculative great bonds and $5 million+ for investment grade bonds.14 Nearly 

all of the bonds in my sample defaulted after the NASD implemented Phase III of bond 

transaction reporting on February 7, 2005, which expanded reporting requirements to 

approximately 99% of total U.S. corporate bond market activity in over 30,000 securities.  

I match my defaulted bonds dataset, which includes bond characteristics from 

DRD, with the bond pricing data from TRACE. The DRD bond characteristics data is 

crosschecked with Bloomberg Historical Data, and I fill in missing values where 

applicable, namely for deliverable obligations from CDS auctions.15 DRD also provides 

the default date, which determines the dates of my trading time periods for each issuance. 

For each of the deliverable obligations added from CDS auctions, I use the default date for 

its issuer.  

The remaining data is from standard sources – firm fundamental data is from 

Compustat and bid-ask spreads are from Bloomberg Historical Data.  

5.2 Data Description 

The bond data is restricted to bonds that have defaulted between January 1st, 2005 

and August 31, 2018 because Creditfixings began publishing auction settlement data 

beginning in 2005.16 As motivated by Bao and Pan (2013), the bond sample is reduced due 

to the exclusion of all non-regular bonds and Financials, which make up about one-third of 

my dataset. 17 The bond data is further restricted by TRACE’s coverage, which includes 

corporate bond trades for U.S. companies only. Similar to most studies using bond pricing 

14 Par value traded is top-coded at $5 million for investment grade bonds and $1 million for speculative 
grade bonds.  
15 I do not use FISD as in previous literature because of lack of access to the database.  
16 August 31, 2018 being the start date of this research and therefore when the data was downloaded.  
17 Moody’s classifies a regular bond as one with no special features or hybrid characteristics.  

27



data from TRACE, such as Bao and Pan (2013), Dick-Nielsen, Feldhutter, and Lando 

(2012), and Helwege et. Al (2009), my sample is also limited because many bonds do not 

trade frequently. Lastly, I drop bonds issued by entities with insufficient information in 

Compustat for firm-level data and bonds that are missing other metrics, such as rating, bid-

ask spread, etc., around the time of default. For my longest time period, from 12 months 

before default to 29 days after default, these restrictions reduce my sample to 609 bonds 

that traded within the time period and 335 bonds that have data for each metric.18 The 

sample size decreases slightly in smaller time periods around default due to some bonds’ 

lack of trading. The smallest sample size is during the time period from default to 29 days 

after default, in which there are 554 bonds that traded and 247 bonds that have data for 

each metric.  

5.3 Return Construction  

I use the transaction-level bond pricing data from TRACE to construct bond return 

volatility for the bonds in my sample. As shown in Table 1, I examine 5 different time 

periods: 12 months before default to 29 days after default (12BDEFA), 12 months before 

default to default (12BDEF), 6 months before default to 29 days after default (6BDEFA), 

6 months before default to default (6BDEF), and default to 29 days after default. Twenty-

nine days after default is chosen because that is the approximate time between default and 

auction for the bonds in my sample.19 

                                                           
18 TRACE and Compustat differ on many entity CUSIPs. As such, most Compustat identification keys are 
determined manually (by looking up the name) for each entity. There are several entities that Compustat 
does not contain, and thus these are either omitted or included under their parent organization, where 
applicable. 
19 I determine this number by calculating the mean and median for time from default to auction for firms in 
my sample, while eliminating outliers.  
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First, I construct daily bond returns as follows. For a bond on day 𝑡𝑡, I take all trades 

from that day and calculate the clean price for the day as the transaction size-weighted 

average price of these trades. By transaction-size weighting prices, I minimize the effect 

of bid-ask spreads in prices.20  Returns are then constructed as: 

𝑅𝑅𝑡𝑡 = 𝑙𝑙𝑙𝑙 � 𝑃𝑃𝑡𝑡+𝐴𝐴𝐼𝐼𝑡𝑡+𝐶𝐶𝑡𝑡
𝑃𝑃𝑡𝑡−1+𝐴𝐴𝐼𝐼𝑡𝑡−1

� 

(1) 

where 𝑃𝑃𝑡𝑡 is the transaction size-weighted average clean price, 𝐴𝐴𝐴𝐴𝑡𝑡 is the accrued interest, 

and 𝐶𝐶𝑡𝑡 is the coupon paid on day 𝑡𝑡. This method of calculating bond returns is motivated 

by Bao and Pan (2013), but I calculate daily returns rather than monthly returns because of 

my narrow time periods and the large and rapid price moves of bonds around default.21 

Coupon rates and maturities are determined by DRD and Bloomberg. Accrued interest is 

calculated daily using the standard 30/360 convention, where applicable. Given the 

riskiness of many of the bonds in my sample and the nature of trading around default, it is 

unsurprising that there are days in the time periods that some bonds do not trade. I treat 

bond returns as independently and identically distributed (i.i.d.). This allows me to create 

20 Bessembinder, Kahle, Maxwell, and Xu (2009) advocate calculating prices as the transaction-size 
weighted average of prices to minimize the effects of bid-ask spreads in prices. Edwards, Harris, and 
Piwowar (2007) and Bao, Pan, and Wang (2011) show that these effects are greatest for small trades. I 
calculate transaction-size weighted clean prices by weighting each trade’s clean price by its volume and 
taking a daily average of all trades.  
21 Bao and Pan (2013) calculate monthly returns using a transaction-size weighed average of all trades from 
the 21st of the month or later. This allows for a balance between prices that reflect month-end prices and a 
reasonable number of trades to calculate average prices. 
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standardized daily returns, even if there are several days between trades in a given time 

period.22 I then calculate the volatility of daily returns for each time period and annualize. 

5.4 Bond Illiquidity Proxy Construction  

At the bond level, I construct a series of illiquidity variables. Dick-Nielsen, 

Feldhutter, and Lando (2012) note that there is no clear consensus on how to assess the 

illiquidity of an asset, and so I analyze a number of illiquidity-related measures for 

corporate bonds according to the previous literature.23 First, I include age and amount 

outstanding of a bond as motivated by Houweling, Mentink, and Vorst (2005).24  Following 

Chen, Lesmond, and Wei (2007), I collect bid-ask quotes from Bloomberg, but pull daily 

quotes rather than quarterly because I use daily returns to calculate volatility.25 For each 

day, I calculate the daily spread as: 

𝐵𝐵/𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵𝐵𝐵
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

        , 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵

2
 

Because there are not always bid-ask quotes every day, I take the monthly average in order 

to include as many bonds as possible. I define the B/A Spread for each time period as the 

mean monthly average over the time period. Following Bao and Pan (2013), I introduce 

                                                           
22 By assuming i.i.d., I can calculate the return between trades (“trade to trade return”) when there are 
several nontrading days between trades. I divide the trade to trade return by the number of days between 
trades to determine the standardized daily return.  
23 See Bao and Pan (2013), Dick-Nielsen, Feldhutter, and Lando (2012), Houweling, Mentink, and Vorst 
(2005), Chen, Lesmond, and Wei (2007) for discussion. Chen, Lesmond, and Wei (2007) also note the 
tradeoffs to using each measure while employing each measure to determine the relation between corporate 
bond yield spreads and liquidity. This both increases robustness and illustrates the comparative power of 
each metric.  
24 See Houweling, Mentink, and Vorst (2005) for further discussion.  
25 The bid-ask quotes from Bloomberg are the Bloomberg Generic Quote, which reflects the consensus 
quote among market participants.  
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the standard deviation of the bid-ask spread to account for the possibility of changing 

illiquidity during the time periods. 

As in Dick-Nielsen, Feldhutter, and Lando (2012), I include bond zero, calculated 

as the percentage of days in the time period for which the bond did not trade.26 I also 

include the four core illiquidity metrics used in Dick-Nielsen, Feldhutter, and Lando 

(2012): the Amihud illiquidity measure, the volatility of the Amihud measure, the Implied 

Round Trip Cost (IRC), and the volatility of the IRC. All four measures are calculated 

using the TRACE bond pricing data. The Amihud (2002) measure, defined as the price 

impact of a trade per unit traded, calculates the price impact of trades. The measure is 

constructed as the daily average of absolute returns 𝑟𝑟𝑗𝑗 divided by the trade size 𝑄𝑄𝑗𝑗 of 

consecutive transactions: 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑢𝑢𝑑𝑑𝑡𝑡 =
1
𝑁𝑁
�

𝑟𝑟𝑗𝑗
𝑄𝑄𝑗𝑗

𝑁𝑁𝑡𝑡

𝑗𝑗=1

=
1
𝑁𝑁
�

|
𝑃𝑃𝑗𝑗 − 𝑃𝑃𝑗𝑗−1
𝑃𝑃𝑗𝑗−1

|

𝑄𝑄𝑗𝑗
,

𝑁𝑁𝑡𝑡

𝑗𝑗=1

 

where 𝑁𝑁𝑡𝑡 is the number of returns on day 𝑡𝑡.27 I then define the Amihud measure as the 

mean of daily measures for each time period and include the standard deviation measured 

over the time period as the volatility of the Amihud measure. The IRC is a proxy for bid-

ask spreads, hinged on finding two or three trades very close in time that are likely a result 

of a dealer matching a buyer and a seller and taking the bid-ask spread as a fee.  If there 

are two or three trades of the same size on a bond on the same day and no other trades of 

                                                           
26 Dick-Nielsen, Feldhutter, and Lando (2012) refer to this measure as bond zero-trading days. 
27 In Dick-Nielsen, Feldhutter, and Lando (2012), at least two consecutive transactions on a given day are 
required to construct the Amihud measure. In order to include as many bonds as possible because there are 
several days that bonds do not trade, I loop to the previous trade and divide by the days between, as in my 
return construction, to calculate the average daily Amihud rather than using only consecutive trades on the 
same day. 
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the same size occur on that day, I consider the trades as part of an Imputed Roundtrip Trade 

(IRT). I then calculate the IRC as: 

𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  −  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
, 

where 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 is the largest price in the IRT and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 is the smallest price. Since the IRC 

could depend on trade size, I construct daily IRC values as the average roundtrip costs for 

all trade sizes on that day. I define the IRC as the mean of daily measures for each time 

period and introduce the standard deviation measured over the time period as the volatility 

of the IRC.28 

5.5 Firm Fundamentals Construction  

At the firm level, I construct a series of variables as proxies for firm fundamentals. 

I include EBIT/Assets, Sales/Assets, and Retained Earnings (RE)/Assets due to their 

inclusion in the Altman (1968) Z-Score as metrics to predict bankruptcy. This is 

particularly important since my dataset consists of defaulted firms at risk for bankruptcy. I 

introduce a leverage ratio, defined as Total Debt/Assets, to reflect the credit risk of the firm 

and the Coverage Ratio to measure the ability of a firm to pay interest expenses with 

earnings (Blume, Lim, and MacKinley (1998)).29 I also include Net Income/Assets and 

log(Assets), as motivated by the logit default predication model in Campbell, Hilscher, and 

Szilagyi (2008) and the tendency for firms with CDS to be larger in size (Subrahmanyam, 

                                                           
28 It is likely investors are concerned with future bond liquidity levels as well as the current level. The 
volatility of the Amihud measure and IRC thus may affect liquidity spreads and bond return volatility as 
noted in Dick-Nielsen, Feldhutter, and Lando (2012).  
29 I define Coverage Ratio as operating income after depreciation plus interest and related expense divided 
by interest and related expense.  
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Tang, Wang (2014), Batta and Yu (2017)). These level firm fundamentals are calculated 

from Compustat at dates closest to but not less than 30 days before each firm’s default.  

In addition to these level variables, I include four variables to account for the 

volatility of firm fundamentals. I calculate the volatility of Cash Flow/Assets following 

Minton and Schrand (1999) and volatility of Earnings/Assets following Jayaraman (2008). 

I also include the leverage (Total Debt/Assets) volatility, as motivated by Collin-Dufresne 

and Goldstein (2001), and sales (Sales/Assets) volatility, as motivated by Sufi (2009). I 

construct all of these firm fundamental volatility variables using quarterly Compustat data 

for the five years prior to each firm’s default. The inclusion of RE/Assets, EBIT/Assets, 

leverage, log(Assets), and these other firm fundamental proxies is further motivated by 

their influence on the propensity of a firm to have CDS trading and therefore a CDS auction 

(Subrahmanyam, Tang, Wang (2014)). These variables may also reflect a firms’ credit risk 

and thus market participants’ demand for CDS to hedge (Batta and Yu (2017)). 

5.6 Sample Description 

Table 2 summarizes the corporate bonds in my sample for the largest most 

comprehensive time period, 12BDEFA. The summary statistics for the remaining time 

periods are shown in the Appendix in Tables A1-A4. As shown in Table 2, 12BDEFA 

includes 609 bonds, largely reduced due to the limitations as explained in Section 4. There 

are 373 bonds not in CDS auction and 236 bonds that are in CDS auction, thus 38.8% of 

bonds in my sample are in CDS auction.  

As shown in Panel A, the sample has an average amount outstanding of $400 

million. Neither the average amount outstanding nor the average rating differ significantly 

between Panel B, bonds not in CDS auction, and Panel C, bonds in CDS auction. The 
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average rating is 17.15 (17 = Caa1) and the average age is 5.84 years. Bonds in CDS auction 

are both notably older and have a longer time until maturity than bonds not in CDS auction, 

with an average age of 7.28 years vs. 4.96 years and an average time until maturity of 5.275 

years vs. 6.351 years. There is also a larger average amount of trading on bonds in CDS 

auction than those that are not, both by number of trades (2,309 vs. 1,692) and volume 

traded (803.5 million vs. 507.5 million). Furthermore, bonds in CDS auction have higher 

Amihud and IRC measures than bonds not in CDS auction, with values of 0.00894 and 

0.00572 for the Amihud measure and 2.139 and 1.625 for the IRC measure. The same 

relationship is true for the standard deviation of these variables. The B/A Spread is slightly 

lower for bonds in CDS auction than bonds not in CDS auction (3.012 vs. 3.138). These 

differences suggest that, although bonds in CDS auction have a higher number of trades 

and volume of trading, bonds in CDS auction may be less illiquid than bonds not in CDS 

auction.  

Table 2 also shows that, with the exception of Sales/Assets, the average firm-level 

fundamental ratios are negative. This is intuitive given that these firms are about to enter 

default when these metrics are calculated. However, these ratios are either less negative or 

positive for bonds not in CDS auction. For bonds in CDS auction, these ratios are more 

negative, suggesting that firms with bonds in CDS auctions may be in greater financial 

distress. This result is intuitive since riskier firms are more likely both to be in greater 

financial distress and to have bonds outstanding with CDS written on them and therefore a 

CDS auction. 
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The remainder of this paper formally analyzes the aforementioned patterns by 

examining the effect of CDS auction on bond return volatility while controlling for bond 

characteristics, illiquidity, and firm fundamentals.  

 

6. Methodology 

To investigate bond price manipulation around default, I examine the effect of 

bonds’ inclusion in CDS auctions on bond return volatility for time periods around default. 

I begin with the following baseline regression specification: 

σ𝑖𝑖 = 𝛾𝛾𝛾𝛾𝛾𝛾𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑖𝑖 + 𝛽𝛽1′𝑏𝑏𝑖𝑖 + 𝛽𝛽2′𝑙𝑙𝑙𝑙𝑞𝑞𝑖𝑖 + 𝛽𝛽3′𝑓𝑓𝑖𝑖 + 𝜀𝜀𝑖𝑖                          (2)              

where σ𝑖𝑖 represents the bond return volatility for bond 𝑖𝑖. The variable of interest, 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑖𝑖, equals one if the bond is a deliverable obligation in an entity’s CDS auction 

and zero otherwise. Among the included control variables, 𝑏𝑏𝑖𝑖 denotes bond-level controls 

that are not included in illiquidity (Moody’s rating, and time to maturity), 𝑙𝑙𝑙𝑙𝑞𝑞𝑖𝑖 bond-level 

illiquidity control variables (age, amount outstanding, B/A spread, standard deviation of 

B/A spread, bond zero, Amihud, standard deviation of Amhiud, IRC, and standard 

deviation of IRC), 𝑓𝑓𝑖𝑖 firm-level fundamental control variables (EBIT/Assets, Coverage 

Ratio, Sales/Assets, RE/Assets, NI/Assets, leverage, log(Assets), cash flow volatility, 

earning volatility, sales volatility, and leverage volatility), and 𝑒𝑒𝑖𝑖 the residual term.  

Under the assumption that CDS auction is exogenous to the dependent variable, 𝜎𝜎, 

the projection coefficient 𝛾𝛾, identifies the treatment effect, without any control variables. 

However, if having CDS auction is endogenous, 𝛾𝛾 cannot be identified. Since random 

assignment of a CDS auction is likely implausible, I include a large number of control 
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variables related to firm fundamentals, bond-level metrics, bond illiquidity, and CDS 

auction propensity. The identifying assumption underlying my empirical strategy is that 

CDS auctions are randomly assigned, conditional on my controls. Any unobserved factors 

that influence both CDS auction assignment and bond volatility will bias my estimates of 

the treatment effect. I calculate both heteroscedasticity-robust standard errors and clustered 

standard errors by distinct default event.  

First, I examine the relation between bond return volatility, the CDS auction 

indicator, and variables that proxy for bond-level controls, firm-level fundamentals, and 

bond illiquidity around the time of default, using the baseline regression shown in Equation 

2. I look at five time periods, defined in Table 1, to determine whether the significance and 

impact of certain variables change in differing time periods around default, namely, in a 

longer/shorter time period before default and the time period after default. If bond price 

manipulation, indirectly represented by bond return volatility, is present around the time of 

default, the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑖𝑖 variable of interest should be significant and positive, based on 

the assumption that manipulated bonds and derivatives experience greater bond trading and 

price volatility around the time of default as market participants attempt to move prices 

favorably for more profitable auction outcomes. 

 Second, to demonstrate the robustness of my treatment effect estimate, I use 

propensity score matching (PSM) to identify control bonds not included in CDS auction 

that have a similar likelihood of “treatment,” or inclusion in CDS auction, as CDS auction 

bonds do. The matched sample is then used to run the same baseline regression. This 

requires the same identification assumption as the baseline regression model above - 

random assignment of CDS auctions, conditional on my covariates. This assumption 
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implies random assignment of CDS auctions, conditional on the probability of treatment, 

where the probability of treatment is determined by my covariates. A key advantage of 

PSM is that it avoids functional form specification for treatment, and thus does not depend 

on an evident source of exogenous variation for identification.30 It can therefore be used to 

reduce or eliminate the effects of confounding when estimating treatment effects. Further, 

by creating a matched sample, PSM addresses the differences between the CDS auction 

sample and the non-CDS auction sample that may not be properly or fully controlled for 

with a linear specification, provided the potential outcome is independent of treatment, 

conditional on the propensity score that is determined by my covariates. Further, another 

key advantage of PSM is that, assuming CIA, it can estimate treatment effects, particularly 

the ATE, while regression estimates the weighted ATE (WATE), where weighting is by 

the variance of treatment.  

 Then, I implement double-robust estimators, which combine the outcome volatility 

regression with a model for the treatment to estimate the causal effect of a treatment on an 

outcome. In this paper, the treatment is a bond’s inclusion in CDS auction and the outcome 

is bond return volatility. Bang and Robins (2005), Robins, Rotnitzky, and Zhao (1994), 

and Robins (2005) introduced these estimators as unbiased estimates of the treatment effect 

when only one or both of these models are correctly specified, while still assuming there 

are no unmeasured confounders. However, prior simulations have proven that the double-

robust estimator is unbiased if a confounder is omitted from one, but not both, of the 

component models (Robins (2005), Davidian (2004)). Funk (2008) confirms this and 

                                                           
30 See Rosenbaum and Rubin (1983), Rosenbaum and Rubin (1984), Austin and Mamdani (2006), Imbens 
(2004), Subrahmanyam, Tang, Wang (2014) for further discussion on propensity score methods.  
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expands its validity to when one of the two models has been misspecified by categorizing 

a continuous confounder.  

 Lastly, I run my baseline regression (Equation 2) with time fixed-effects, first with 

heteroscedasticity-robust standard errors and then with standard errors clustered by distinct 

default event. I examine time fixed-effects using both quarterly time periods (year-

quarters) and yearly time periods (years). CDS auction defaults could tend to occur during 

periods of high market volatility. If so, some of the volatility effects attributed to CDS 

auction in the baseline regression should be attributed to higher market volatility. Running 

the baseline regression with time fixed-effects controls for any time-varying cross-

sectionally-invariant variations in bond return volatility that are potentially omitted from 

my baseline regression. However, it also could be that CDS auction defaults tend to happen 

during periods of high market volatility because market participants’ battling for favorable 

positions and CDS auction outcomes around the time of default increases market volatility. 

In addition, all the bonds in my sample are defaulted bonds or CDS auction bonds, so there 

is still the control in my first baseline regression that all bonds are analyzed at a similar 

moment in time, respectively, the time of each bond’s default.  

 

7. Empirical Results  

7.1 Baseline Regressions  

I begin my analysis of bond return volatility, which represents indirect evidence of 

bond price manipulation, around default using the cross-sectional volatility regression 

setup shown in Equation 1 for different time periods, as outlined in Section 6. I regress 
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bond return volatility on my variable of interest, CDS Auction, and proxies for firm 

fundamentals and illiquidity as well as the volatility of fundamentals and illiquidity. The 

results are presented in Tables 4-9. Rating and time until maturity are included as bond-

level controls for all specifications.   

As shown in Table 2, the sample of DEFA consisted of fewer bonds and a lower 

average number of trades. Because of the smaller sample size of DEFA, I also look at time 

periods of post-default combined with pre-default (12BDEFA and 6BEFA) to jointly 

analyze bond return volatility before and after default. Further, except for the specification 

9, I omit the controls that are highly correlated with another variable in the regression.31 

The correlation matrix of these variables are shown in Table 3. The omitted controls are 

the standard deviations of the B/A Spread, Amihud, IRC, and leverage because they are 

highly correlated with the B/A Spread, Amihud, IRC, and leverage, respectively, and Net 

Income/Assets and Coverage Ratio, because they are both highly correlated with 

EBIT/Assets.  

Across nearly all specifications for all time periods, I find evidence of a positive 

relation between bond return volatility and CDS auction at the 10 percent significance 

level. In some specifications for certain time periods, I find significance at the 1 percent 

level. In specification 10, in which I two-way cluster standard errors by distinct default 

event, CDS auction is not significant at the 10 percent level. However, there is a “small 

sample problem” that arises when clustering with small and narrowly defined samples like 

my dataset. Further, under my identification assumption that CDS auction is randomly 

31 High correlation is defined as greater than 0.75 in this paper. 
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assigned, conditional on my controls, clustering is not necessary. Thus, it is unsurprising 

that I lose some significance of my CDS auction coefficient and most other variables.32 

Nonetheless, the coefficient on CDS auction is always positive and generally significant at 

conventional levels and varies from 0.249 to 1.357 across specifications and time periods. 

Bond return volatility around default is therefore likely much higher as a result of a bond’s 

inclusion in a CDS auction. The average annual bond return volatility across all bonds 

around the time of default is 99.6% to 139.8% and a bond that is included in a CDS auction 

is associated with greater bond return volatility of 24.9 to 135.7 percentage points around 

default than a bond not included in a CDS auction. While this is a wide range, the range is 

unsurprising given firms’ financial distress, market participants’ erratic trading, and 

possible manipulation of bond prices around the time of default.  

Looking at other variables in the regressions, bond zero is significantly positively 

related to volatility in all specifications at the 1 percent significance level except in 

specification 10 and time period DEFA. This suggests that the fewer the days that a bond 

trades in a time period, the greater the bond return volatility. Consistent with previous 

literature on bond return volatility and illiquidity (Bao and Pan (2013)), the IRC is 

significantly positively related to volatility in nearly every specification and time period, 

and the Amihud is as well in time periods 12BDEFA, 12BDEF, and DEFA. However, the 

B/A Spread is positively related to volatility with statistical significance in limited 

specifications and time periods. It is reasonable to expect a positive significant relationship 

                                                           
32 See Bakirov and Székely (2005), Ibragimov and Müller (2010), Imbens and Kolesar (2016), Ibragimov 
and Müller (2016), Abadie et. Al (2017) for discussion of small sample problem and clustering 
methodology.  
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between illiquidity measures and bond return volatility around the time of default since 

previous literature demonstrates that corporate bonds’ yield spreads are related to proxies 

for illiquidity.33 

Firm fundamentals, on the other hand, are seldom statistically significantly related to 

volatility. However, RE/Assets and Sales/Assets are significantly negatively related to 

volatility in many specifications and time periods. It follows that greater earnings and sales 

might decrease risk and therefore decrease bond return volatility. Further, cash flow 

volatility is statistically significant in time period DEFA, suggesting that having a 

historically higher cash flow volatility might increase bond return volatility after default. 

Lastly, unlike in Bao and Pan (2013), in most specifications and time periods, rating is 

insignificantly related to volatility, except in time period DEFA. This suggests that the 

rating of the bond has a greater impact on bond return volatility after default than before 

default. The poorer the rating, the greater the bond return volatility, which is intuitive since 

a bond with a lower rating is riskier and thus more likely to experience greater bond return 

volatility after default as market participants may strive for favorable auction pricing and/or 

default outcome. It could also be that the poorer the rating the more uncertainty there is 

regarding the default outcome and possible default resolution. Lastly, time until maturity 

is significantly negatively related to volatility.  

I now focus on specification 8 across time periods, presented in Table 4. In this 

specification, I omit the controls that are highly correlated with another variable in the 

regression, but include all other controls and my variable of interest. CDS auction is 

33 See Chen, Lesmond, and Wei (2007), Bao, Pan, and Wang (2011), Dick-Nielsen, Feldhutter, and Lando 
(2012), and Friewald, Jankowitsch, and Subrahmanyam (2012) among others. 
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statistically significant across all time periods. A bond that is included in a CDS auction is 

associated with a greater annual volatility of 31.2 to 63.8 percentage points. The coefficient 

on CDS auction is smallest for time period 12BDEF, and is greater for 12BDEFA when 

the post default time period is included. However, time period 6BDEF has the highest 

coefficient, higher than both time period 6BDEFA and DEFA. This suggests that there is 

greater bond return volatility for bonds included in a CDS auction in the six months before 

default than in the twelve months before default or in the post default time period. This 

indirectly supports the hypothesis that there is bond price manipulation for these CDS 

auction bonds around the time of default as market participants try to build up a favorable 

position prior to default, particularly in the 6 months prior. This manipulation is then 

continued, but possibly less intensely, after default due to the auction design and battle 

between market participants for favorable pricing during the auction settlement process. 

 Furthermore, Table 4 shows that illiquidity measures are of greater statistical 

significance than are firm fundamentals across time periods. However, there are more 

statistically significant illiquidity variables for 12BDEFA and 12BDEF than 6BEFA and 

6BDEF. It could be that ordinarily these variables are significantly positively related to 

volatility. But when a company is on the verge of default and market participants may be 

trying to build favorable positions prior to an anticipated default, these illiquidity variables 

are of weaker significance and whether the bond will be included in a CDS auction is more 

significant and has a greater impact on volatility.  

 Surprisingly and unlike in previous literature, time until maturity is negatively 

related to volatility. This relation suggests that, around the time of default, bonds with 

greater time until maturity experience less price volatility. Time until maturity is 
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statistically significant at the 1 percent or 5 percent levels in all time periods except for 

after default. In the post-default period, CDS Auction, Rating, B/A Spread, Amihud, IRC, 

and cash flow volatility are significantly positively related to volatility. These factors differ 

slightly from the significant factors in pre-default time periods. This result could be 

because of the small sample size and the short length of this time period or because different 

factors influence bond return volatility after default as a result of the auction design, battle 

among market participants for favorable pricing if there is an auction, and/or issuers and 

market participants’ attempts to create the most advantageous default outcomes.   

Overall, the baseline regressions clearly demonstrate the positive significance of 

CDS auction on bond return volatility around the time of default, as well as the positive 

relation between illiquidity measures and bond return volatility. This positive significance 

provides indirect evidence of bond price manipulation around default for bonds that are in 

CDS auction.  

7.2 Propensity Score Matching 

In this subsection, I repeat the previous baseline regressions (specification 8) using 

propensity score matched samples. The propensity scores are calculated with a probit 

model of CDS auction, as shown in Table 10. I use several of the variables included by 

Saretto and Tookes (2013) and Subrahmanyam, Tang, and Wang (2013) and add additional 

firm fundamental level and volatility variables. As in the baseline regressions, I exclude 

firm fundamentals that are highly correlated, namely Coverage Ratio, Net Income/Assets, 

and leverage volatility. I use two different matching criteria: (1) nearest neighbor, in which 

one non-CDS auction bond with the nearest propensity score is matched to each CDS 

auction bond and (2) three nearest neighbors, in which three non-CDS auction bonds with 
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the closest propensity scores are matched to each CDS auction bond.34 As the summary 

statistics in Table 2 demonstrate, CDS auction bonds and non-CDS auction bonds can be 

quite different in terms of age, illiquidity measures, and several firm fundamentals. The 

goal of PSM is to create a matched sample in which these differences are removed to be 

able to isolate the treatment effect of CDS auction.  

Table 11 shows the average predictive effect on the treated and average predictive 

effect of CDS auction on bond return volatility using PSM, which can be interpreted as the 

average treatment effect on the treated (ATET or ATT) and average treatment effect (ATE), 

respectively, under my identification assumption. The ATET measures the expected causal 

effect of the treatment for those bonds in the treatment group, whereas the ATE measures 

the expected causal effect of the treatment across all bonds. The ATET and ATE are 

positive and significant at the 1 or 5 percent level across all time periods and matching 

criteria. More specifically, the estimated ATET of CDS auction on bond return volatility 

indicates that, depending on the time period around default, the average bond return 

volatility for a CDS auction bond is 75.4 to 157.5 percentage points higher than if it is not 

in a CDS auction. Further, the ATE of CDS auction on bond return volatility estimates that 

the bond return volatility around the time of default is 63.7 to 191.1 percentage points 

higher when a bond is included in a CDS auction. The ATET and ATE differ in magnitude 

slightly, which suggests that the treatment assignment, or whether a bond will be in a CDS 

auction, may not be random.  

                                                           
34 Following Subrahmanyam, Tang, and Wang (2013) and Batta and Yu (2017) I use nearest neighbor 
matching. As in Subrahmanyam, Tang, and Wang (2013), I use nearest neighbor k matching but let k = 3 
rather than 2.  
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To control for the possibility that treatment assignment may not be random and the 

potential lingering imbalances between groups, I replicate the analysis performed in Table 

4 (Section 7.1) pertaining to the effect of CDS auction on bond return volatility around 

default. As shown in Table 12, CDS auction remains significantly positively related to 

bond return volatility in most time periods and matching criteria. In fact, with the exception 

of the time period DEFA, the CDS auction coefficients are mostly greater in magnitude 

and of greater significance than in Section 7.1.35 With the matched sample, a bond that is 

included in a CDS auction is associated with a greater annual volatility of 26.2 to 114.0 

percentage points. Consistent with Section 7.1 and Table 4, the coefficients on the 6 month 

before default time periods are the greatest, further supporting that there may be greater 

bond return volatility for bonds included in CDS auction in the 6 months before default 

than in the 12 months before default or in the time period after default. However, CDS 

auction is no longer significant for nearest neighbor and three nearest neighbors matching 

for the DEFA time period. This could be due to the lack of observations in the post default 

time period or inferior matching as a result of the short length of the time period, financial 

distress of the firm, and/or illiquidity of the bonds after default. Further, it could be that 

different factors influence bond return volatility after default due to the CDS auction design 

or the battle among issuers and investors for advantageous auction pricing or default 

outcomes.  

As shown in Table 12, many of the control variables that are significant in the 

baseline regressions remain significant and of the same relative magnitude. However, 

                                                           
35 6BDEFA NN(3) is also an exception in which the CDS auction coefficient is smaller in magnitude and of 
less significance, but this may be due to the three nearest neighbor matching method because the coefficient 
in 6BDEFA NN(1) is greater in magnitude and of greater significance than in Section 7.1.  
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several factors are of greater significance and/or magnitude (log(Amt), Age, Amihud, IRC, 

Sales/Assets, RE/Assets) or are now significant (EBIT/Assets, log(Assets)). As in Section 

7.1, illiquidity measures are of greater statistical significance across time periods than firm 

fundamentals. For the time periods 12BDEFA and 12BDEF, firm fundamentals are more 

significant and greater in magnitude than they were in the baseline regressions. This does 

not hold for the six month time periods, suggesting that firm fundamentals influence bond 

return volatility less the closer to default and, given the greater magnitude and significance 

of the CDS auction coefficient, whether a bond may be included in a CDS auction 

influences bond return volatility more.  

Taken together, my previous findings that CDS auction is significantly positively 

related to bond return volatility around the time of default, particularly the six months prior 

to default, and that illiquidity measures are significantly positively related to bond return 

volatility, are robust to using a propensity score matched sample. The coefficient on CDS 

auction is greater in the PSM regressions than in the baseline regressions (0.262 to 1.140 

vs 0.312 to 0.638). Similarly, for the illiquidity measures and few firm fundamentals that 

are significant, the coefficients from using PSM regression are generally higher than those 

from using baseline regression.   

7.3 Double-Robust Estimators   

Given the assumption of PSM that matching is based on observable information, I 

perform another robustness test by implementing double-robust estimators. The double-

robust estimator is unbiased even if a confounder is omitted from one of the component 

models or when one of the models has been misspecified (Robins (2005), Davidian (2004), 

Funk (2008)). This doubly-robust method requires me to specify regression models for the 
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outcome and the treatment as a function of covariates. I use the same baseline regressions 

as in Table 4 and treatment model as in Table 10 (Section 7.2), thus excluding highly 

correlated firm fundamentals in modeling treatment. I use two double-robust estimators 

through augmented inverse-probability weighting (AIPW) and inverse-probability-

weighted regression adjustment (IPWRA), which both model the outcome and the 

treatment to account for the nonrandom treatment assignment.36   

Table 13 shows the effect of CDS auction on bond return volatility using the AIPW 

and IPWRA double-robust estimators. I estimate the potential-outcome means, the ATE, 

and the ATET.37 The average potential outcome for non-CDS auction bonds is always 

lower than the average potential outcome for CDS auction bonds. This difference further 

demonstrates that bonds included in CDS auction are associated with greater price 

volatility around default since the average potential outcome, or price volatility, is greater. 

Further, the ATET of CDS auction on bond return volatility indicates that, depending on 

the time period around default, the average bond return volatility for a CDS auction bond 

is 37.8 to 78.3 percentage points higher than if it is not in a CDS auction.38 Further, the 

ATE of CDS auction on bond return volatility estimates that bond return volatility around 

the time of default is 14.6 to 75.7 percentage points higher when a bond is included in a 

CDS auction. The ATE values are significant for both estimators for 12BDEFA and 

                                                           
36 As defined by Stata, RA estimators model the outcome to account for the nonrandom treatment 
assignment. IPW estimators model the treatment to account for the nonrandom treatment assignment. 
IPWRA uses IPW weights to estimate corrected regression coefficients that are then used to perform 
regression adjustment. The AIPW estimator adds a bias-correction term to the IPW estimator. If the 
treatment model is specified correctly, the bias-correction term is 0 and the model is reduced to the IPW 
estimator. If the treatment model is misspecified but the outcome model is specified correctly, the bias-
correction term corrects the estimator. Both estimators are double-robust.  
https://blog.stata.com/2015/07/07/introduction-to-treatment-effects-in-stata-part-1/ 
37 The potential-outcome mean is the average potential outcome for that treatment level.  
38 The ATET cannot be measured using the AIPW double-robust estimators.  
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12BDEF time periods and the AIPW estimator for 6BDEFA and 6BDEF time periods. 

These ATE values using double-robust estimators are smaller in magnitude than using 

propensity score matching as in Table 11.  

However, these estimators have the double-robust property, which means that the 

estimates of the effects will still be consistent if the outcome or treatment model are 

misspecified or a confounder is omitted in one of the treatment models. Thus, the estimates 

suggest that CDS auction significantly positively impacts bond return volatility in the time 

periods twelve months and six months before default and when combined with the post 

default time period. As in Section 7.2, the double-robust estimators do not show CDS 

auction is significant for the time period DEFA. Therefore, my previous findings of the 

positive significance of CDS auction on bond return volatility for multiple time periods 

around default persist when using double-robust estimators. This positive significance 

when using double-robust estimators provides further indirect evidence of bond price 

manipulation around default for bonds that are in CDS auction. 

7.4 Time Fixed-Effects  

 Because CDS auction bonds could have the tendency to default during high market 

volatility times, I first investigate the time distribution of default for CDS auction and non-

CDS auction bonds. As shown in Figure 1, there does not seem to be a strong difference in 

the time distribution of default. However, I still run my baseline regressions (specification 

8) with the addition of time fixed-effects by year-quarters and years to control for any time-

varying cross-sectionally-invariant variations in bond return volatility that are potentially 

omitted from my baseline regression.  
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As shown in Table 14, the inferences in Section 7.1 are unchanged by the inclusion 

of time fixed-effects. The coefficients are of similar magnitude, although each coefficient 

is common to all year-quarters or years for the variable, respectively. Unlike in Section 7.1, 

the CDS auction coefficient for time period BDEFA with year-quarters time fixed-effects 

is significant at the 1 percent level and greater in magnitude (0.822 vs 0.383).39 This 

suggests bonds in CDS auction experience significantly greater bond return volatility from 

time of default to auction, common to all year-quarters. As shown in Table 15, in which 

standard errors are clustered by distinct default event, the CDS auction coefficient for time 

period BDEF is also positively significantly related to bond return volatility, although 

slightly less significant. This relationship indicates indirect evidence of market participants 

manipulating bond prices after default leading up to CDS auction to achieve favorable 

positions and profitable CDS auction outcomes.   

  Table 15 also shows, however, that when using standard errors clustered by distinct 

default event, many of the CDS auction coefficients that were previously significant are no 

longer significant at the 10 percent level. Several other variables, such as Maturity, 

log(Amt), etc., are also no longer significant at the 10 percent level or are of less 

significance than they were in Section 7.1. The Amihud and IRC measures are still strongly 

significant in most time periods, further supporting the positive relationship between 

illiquidity measures and bond return volatility at the time of default.  

Ultimately, by running time fixed-effects regressions, I am able to control for 

market-level variation that is not accounted for by my controls, although any omitted 

                                                           
39 Although the coefficients in the time-fixed effects regressions represent the effect of CDS auction on 
bond return volatility within a given year. Or, put another way, the (weighted) average of the treatment 
effects that would be estimated if the regressions were ran separately each year.  
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factors that affect my cross-section of bonds differently are still threats to my identification 

of a treatment effect. I find CDS auction is positively significantly related to bond return 

volatility with time-fixed effects (Table 14), and positively related to bond return volatility 

with time-fixed effects and standard errors clustered by distinct default event (Table 15). 

The decreased statistical significance of CDS auction and other controls with standard 

errors clustered by distinct default event is likely due to my small dataset (as discussed in 

Section 7.1), and under my identification assumption clustering may not be necessary.40  

 

8. Conclusion  

 In this paper, I investigate manufactured credit events and market participants’ 

attempts to favorably move the prices of bonds included in CDS auction to gain more 

profitable positions around default and emerging from CDS auctions. There is no previous 

empirical research on evidence of these practices because of the limited data and small 

number of revealed cases. However, these cases are becoming more common, with three 

public cases in the past twelve months, and are not necessarily fair market activity. The 

CFTC has stated that these credit events may constitute market manipulation and casual 

empiricism suggests the ramifications of these events and bond price manipulation could 

undermine not only the CDS market but the entire credit derivatives market.  In early 2019, 

the ISDA made a proposal to decrease these credit events, specifically “narrowly tailored 

credit events.” While this proposal is an attempt to prevent additional events, the proposal 

                                                           
40 See Bakirov and Székely (2005), Ibragimov and Müller (2010), Imbens and Kolesar (2016), Ibragimov 
and Müller (2016), Abadie et. Al (2017) for discussion of small sample problem and clustering 
methodology.  
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is very narrow and would only prevent a very certain type of credit event, not all forms of 

manipulation.41  

To investigate manufactured credit events and this bond price manipulation before 

CDS auctions, I analyze bond return volatility around the time of default for bonds that are 

included in CDS auctions, either because they have CDS written on them or their reference 

entity does, compared to their counterparts not in CDS auctions. I use bond return volatility 

as a measure of indirect evidence of market participants manipulating bond prices before 

default and from default to auction as market participants try to favorably move prices to 

achieve more profitable CDS auction outcomes.  

Using defaulted bonds over the 2005-2018 time period with pricing data in TRACE 

and sufficient data to measure bond illiquidity, firm fundamentals, and bond 

characteristics, I find a bond’s inclusion in a CDS auction is significantly positively related 

to bond return volatility around the time of default. First, I run baseline regressions in which 

I control for bond illiquidity, credit risk, firm fundamentals, and other bond-level controls 

and find that a bond included in a CDS auction is associated with a higher bond return 

volatility around default, particularly in the six months prior to default. Several bond 

illiquidity measures are also significantly positively related to bond return volatility around 

the time of default.  

As a robustness test, I use propensity score matching to create datasets of CDS 

auction bonds and control bonds that have a similar likelihood of being included in a CDS 

auction for each time period. The ATET and ATE of these propensity score matched 

41 Smith, Robert, 2019, “Isda’s whack-a-mole fixes for credit default swaps merit scrutiny,” Financial 
Times, Mar 7.  
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samples are positive and significant for all time periods and matching specifications. 

Further, CDS auction and bond illiquidity measures’ significantly positive effect on bond 

return volatility around default in the baseline regressions remain robust to using 

propensity score matched samples. The significantly positive treatment effect of a bond’s 

inclusion in CDS auction on bond return volatility for the time periods twelve and six 

months before default and when combined with the post default time period also persists 

when using double-robust estimators. Lastly, to control for the possible tendency of CDS 

auction bond defaults to occur during high market volatility times and for any market-wide 

variation in bond return volatility that is unexplained by my controls, I run my baseline 

regressions with time fixed-effects. I find that CDS auction and illiquidity measures are 

significantly positively related to bond return volatility with time fixed-effects and 

positively related to bond return volatility with time fixed effects and standard errors 

clustered by distinct default event.  

Therefore, given that bonds included in CDS auctions are associated with higher 

bond return volatility around the time of default, I find indirect evidence of bond price 

manipulation around the time of default for bonds included in CDS auctions compared to 

their counterparts not in CDS auctions. This paper is thus the first to find empirical 

indication of market participants manipulating bond prices prior to CDS auctions as they 

strive for more profitable positions and auction outcomes and possibly of manufactured 

credit events that are not necessarily already publicized in the news. This paper is also the 

first to model factors influencing bond return volatility around the time of default and finds 

strong evidence that bond illiquidity is significantly positively related to bond return 

volatility around the time of default. To continue this analysis and investigation, the dataset 
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could be expanded to include defaulted bonds not only included in TRACE or Compustat 

(by gathering data from other sources). This would further strengthen the results given the 

small size of my sample. As an extension of this paper, further research could examine the 

impact of a bond’s inclusion in CDS auction on excess bond return volatility using a 

Merton model with stochastic interest rates and equity volatility as in Bao and Pan (2013). 
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9. Tables and Figures 
 
 

Table 1: Time Period Names and Descriptions 

Name Description 
12BDEFA 12 months before default to 29 days after 

default 
12BDEF 12 months before default to default 
6BDEFA 6 months before default to 29 days after 

default 
6BDEF 6 months before default to default  
DEFA Default to 29 days after default  

 

 

Table 2: Summary Statistics 12BDEFA 

 Panel A Panel B Panel C 
All Bonds Bonds Not in CDS 

Auction 
Bonds in CDS Auction 

VARIABLES N mean std mean std mean std 
        
Number of 
Trades 

609 1,931 2,975 1,692 2,857 2,309 3,122 

Volume Traded 609 622.2 911.9 507.5 731.2 803.5 111.9 
Daily Return 599 -0.590 3.25 -0.252 1.15 -1.11 4.95 
Annual 
Volatility 

594 112.4 171.8 90.0 92.4 147.1 244.8 

Rating  498 17.15 2.087 17.12 2.025 17.21 2.232 
Age 602 5.847 4.701 4.965 3.722 7.285 5.684 
Maturity 602 5.684 6.749 5.275 7.328 6.351 5.635 
IRC 605 1.825 1.387 1.625 1.250 2.139 1.528 
Bond Zero 609 54.32 30.72 54.51 32.77 54.02 27.25 
Amihud 608 0.00697 0.0155 0.00572 0.00647 0.00894 0.0234 
SD(IRC) 600 2.810 2.924 2.464 2.720 3.358 3.150 
SD(Amihud) 603 0.0164 0.0332 0.0159 0.0390 0.0173 0.0211 
B/A Spread 472 3.089 4.751 3.138 5.150 3.012 4.048 
SD(B/A Spread) 456 0.998 1.816 0.932 1.834 1.102 1.787 
Log(Amt) 602 19.81 0.927 19.72 0.824 19.96 1.058 
CDS Auction 609 0.388 0.488 0 0 1 0 
CDS Firm 609 0.798 0.401 0.684 0.464 0.979 0.144 
EBIT/Assets 549 -0.0212 0.108 -0.0211 0.0806 -0.0215 0.141 
Coverage Ratio 555 -0.262 8.178 -0.0603 7.840 -0.584 8.699 
Sales/Assets 549 0.182 0.143 0.191 0.165 0.168 0.0963 
RE/Assets 549 -0.531 0.747 -0.524 0.772 -0.542 0.707 
NI/Assets 549 -0.0700 0.126 -0.0696 0.115 -0.0707 0.141 
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CF/Assets  549 -0.00591 0.0533 0.00400 0.0501 -0.0218 0.0545 
Earnings/Assets  548 -0.0689 0.124 -0.0694 0.114 -0.0682 0.139 
Leverage 549 0.422 0.846 0.408 0.796 0.446 0.922 
Cash Flow Vol 545 0.0361 0.0266 0.0407 0.0267 0.0288 0.0248 
log(Assets) 549 8.671 1.649 8.125 1.773 9.545 0.893 
Earnings Vol 545 0.0447 0.0459 0.0492 0.0502 0.0376 0.0372 
Sales Vol 545 0.0437 0.0519 0.0516 0.0608 0.0311 0.0289 
Leverage Vol 545 0.159 0.249 0.151 0.230 0.171 0.276 
        

Summary statistics for all bonds in my sample (Panel A), bonds not in CDS auction (Panel B), and bonds in 
CDS auction (Panel C) for time period 12BDEFA. Observations are reported at the bond level. Number of 
trades is the number of trades for a bond in the time period. Volume Traded is a bond’s trading volume in $ 
million face value for the time period. Daily Return is the average of a bond’s daily return over the time 
period reported in % and Annual Volatility is the annualized volatility of a bond’s daily returns reported in 
%. Rating is a numerical translation of Moody’s rating, where 1=Aaa and 21=C. Age is the time since issuance 
in years, and Maturity is a bond’s time to maturity in years, measured at the day of default. Bond Zero, 
Amihud, Amihud Vol, IRC, IRC Vol, B/A Spread, and SD(B/A Spread) are defined and calculated as described 
in Section 5.4. Bond Zero is expressed in percent. log(Amt) is the natural log a bond’s amount outstanding. 
CDS Auction indicates 1 if the bond is included in a CDS auction and 0 otherwise. CDS Firm indicates 1 if 
the bond’s issuing firm has ever issued CDS (on any bond) and 0 otherwise. Using Compustat data, 
EBIT/Assets is defined as OIADP/AT, Coverage Ratio is defined as (OIADP + XINT)/XINT, Sales/Assets is 
defined as SALE/AT, RE/Assets is defined as RE/AT, NI/Assets is defined as NI/AT, CF/Assets is defined as 
OANCF/AT, Earnings/Assets is defined as IB/AT, Leverage is defined as (DLC + DLTT)/AT, and 
log(Assets) is defined as the natural log of total book assets, AT. Cash Flow Vol, Earnings Vol, Sales Vol, 
and Leverage Vol are calculated as described in Section 5.5 using the last five years of Compustat quarterly 
data.  
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Table 4: Baseline Regression across Time Periods 

VARIABLES 12BDEFA 12BDEF 6BDEFA 6BDEF DEFA 

CDS Auction 0.485** 0.312* 0.572* 0.638** 0.383* 
(2.451) (1.964) (1.920) (2.206) (1.694) 

Rating 0.0315 0.0205 0.0620 0.0302 0.0759* 
(0.873) (0.698) (1.141) (0.558) (1.941) 

Maturity -0.0591*** -0.0330** -0.0925*** -0.0732*** -0.0222 
(-3.211) (-2.171) (-3.379) (-2.667) (-1.169) 

Age 0.0147 -0.00751 0.0834** 0.0592 -0.0449
(0.593) (-0.376) (2.196) (1.581) (-1.499)

log(Amt) 0.331** 0.255** 0.381* 0.350* -0.184
(2.411) (2.256) (1.872) (1.700) (-1.250)

B/A Spread 0.0135 0.0219* 0.00885 0.0237 0.0409**
(0.819) (1.654) (0.355) (0.969) (2.145)

Bond Zero 0.0169*** 0.0161*** 0.0153*** 0.0228*** -0.00174
(5.679) (6.255) (3.757) (4.689) (-0.554) 

Amihud 48.01*** 65.37*** -13.20 0.568 40.01*** 
(3.684) (6.514) (-0.629) (0.0286) (4.861) 

IRC 0.551*** 0.385*** 0.681*** 0.472*** 0.269*** 
(7.765) (6.088) (9.554) (5.839) (9.344) 

EBIT/Assets  0.722 -0.0725 3.907* 1.295 0.932 
(0.590) (-0.0724) (1.805) (0.588) (0.502) 

Sales/Assets -1.186* -1.072** -1.786* -1.605 0.708 
(-1.792) (-1.977) (-1.790) (-1.609) (1.023) 

RE/Assets -0.292* -0.289** -0.302 -0.438* 0.120 
(-1.891) (-2.294) (-1.253) (-1.824) (0.681) 

Leverage  -0.133 -0.0692 -0.299** -0.226 0.110 
(-1.383) (-0.878) (-2.025) (-1.532) (1.010) 

log(Assets) -0.0958 -0.0362 -0.182 -0.124 0.148 
(-1.155) (-0.523) (-1.449) (-0.974) (1.605) 

Cash Flow Vol 2.359 0.921 2.497 1.590 13.24*** 
(0.614) (0.295) (0.422) (0.271) (3.028) 

Earnings Vol  -1.163 -1.266 -1.016 -2.138 -0.748
(-0.488) (-0.653) (-0.282) (-0.599) (-0.202)

Sales Vol 0.216 1.498 -0.108 1.389 -3.376
(0.106) (0.901) (-0.0353) (0.459) (-1.575)

Constant -7.260*** -6.051*** -7.863** -7.506* 1.070 
(-2.763) (-2.800) (-2.020) (-1.915) (0.392) 

Observations 335 334 331 330 247 
Adjusted R-squared 0.318 0.321 0.314 0.197 0.447 

*** p<0.01, ** p<0.05, * p<0.1 

This table presents the baseline cross-sectional regression (specification 8) across all time periods. The 
dependent variable is σ𝑖𝑖 , the annualized daily volatility for bond 𝑖𝑖. CDS Auction indicates 1 if the bond is 
included in a CDS auction and 0 otherwise. Rating is a numerical translation of Moody’s rating, where 1=Aaa 
and 21=C. Maturity is a bond’s time to maturity in years, and Age is the time since issuance in years, measured 
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at the day of default. log(Amt) is the natural log a bond’s amount outstanding. B/A Spread, Bond Zero, 
Amihud, and IRC are defined and calculated as described in Section 5.4. Using Compustat data, EBIT/Assets 
is defined as OIADP/AT, Sales/Assets is defined as SALE/AT, RE/Assets is defined as RE/AT, Leverage is 
defined as (DLC + DLTT)/AT, and log(Assets) is defined as the natural log of total book assets, AT. Cash 
Flow Vol, Earnings Vol, and Sales Vol are calculated as described in Section 5.5 using the last five years of 
Compustat quarterly data. Note: Coefficients are interpreted in the following way. CDS Auction’s 0.485 
coefficient for 12BDEFA means a bond included in a CDS auction is associated with a greater annual 
volatility of 48.5 percentage points. t-statistics are in parentheses. 
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Figure 1: Time Distribution of CDS Auction vs. Non-CDS Auction Defaults 
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10. Appendix

Table A1: Summary Stats 12BDEF 

Panel A Panel B Panel C 
All Bonds Bonds Not in CDS 

Auction 
Bonds in CDS 

Auction 
VARIABLES N mean std mean std mean Std 

Number of Trades 605 1,787 2,756 1,588 2,652 2,104 2,890 
Volume Traded 605 571.6 830.3 481 691.2 715.2 997.5 
Daily Return 593 -0.00672 0.0364 -0.00331 0.0129 -0.0121 0.0558 
Daily Volatility  590 0.0667 0.117 0.0608 0.100 0.0760 0.138 
Annual Volatility 590 0.996 1.564 0.861 0.942 1.206 2.197 
Rating  496 17.16 2.089 17.13 2.028 17.21 2.232 
Bond Zero 605 57.44 28.63 57.37 30.47 57.55 25.51 
Age 600 5.820 4.680 4.915 3.662 7.285 5.684 
Maturity 600 5.670 6.733 5.251 7.305 6.351 5.635 
IRC 601 1.651 1.162 1.580 1.142 1.762 1.188 
Amihud 604 0.00613 0.00670 0.00574 0.00668 0.00675 0.00669 
SD(IRC) 594 2.447 2.433 2.354 2.546 2.596 2.237 
SD(Amihud) 598 0.0156 0.0330 0.0155 0.0399 0.0159 0.0171 
Log(Amt) 600 19.81 0.927 19.72 0.825 19.96 1.058 
CDS Auction 605 0.387 0.487 0 0 1 0 
CDS Firm 605 0.797 0.402 0.682 0.465 0.979 0.145 
EBIT/Assets 545 -0.0212 0.108 -0.0211 0.0808 -0.0213 0.142 
Coverage Ratio 551 -0.259 8.205 -0.0652 7.859 -0.569 8.739 
Sales/Assets 545 0.182 0.143 0.191 0.166 0.167 0.0962 
RE/Assets 545 -0.528 0.747 -0.523 0.773 -0.535 0.706 
NI/Assets 545 -0.0701 0.126 -0.0698 0.116 -0.0707 0.141 
CF/Assets  545 -0.00541 0.0528 0.00423 0.0498 -0.0209 0.0540 
Earnings/Assets  544 -0.0690 0.125 -0.0696 0.114 -0.0681 0.140 
Leverage 545 0.422 0.849 0.408 0.798 0.444 0.926 
Cash Flow Vol 541 0.0361 0.0267 0.0408 0.0268 0.0286 0.0248 
Earnings Vol 541 0.0447 0.0460 0.0493 0.0502 0.0373 0.0373 
Sales Vol 541 0.0434 0.0519 0.0515 0.0609 0.0305 0.0283 
Leverage Vol 541 0.159 0.249 0.151 0.231 0.171 0.277 
log(Assets) 545 8.655 1.642 8.111 1.768 9.528 0.881 
B/A Spread 470 3.084 4.816 3.117 5.193 3.031 4.158 
SD(B/A Spread) 454 0.972 1.834 0.911 1.842 1.067 1.821 

Summary statistics for all bonds in my sample (Panel A), bonds not in CDS auction (Panel B), and bonds in 
CDS auction (Panel C) for time period 12BDEF. Observations are reported at the bond level. All variables 
are defined as in Table 2. 

79



Table A2: Summary Stats 6BDEFA 

Panel A Panel B Panel C 
All Bonds Bonds Not in CDS 

Auction 
Bonds in CDS Auction 

VARIABLES N mean std mean std mean std 

Number of Trades 592 1,105 1,829 1,002 1,884 1,267 1,732 
Volume Traded 592 363.7 591.5 292 447.1 475.1 751 
Daily Return 583 -0.0138 0.0969 -0.00560 0.0580 -0.0263 0.135 
Daily Volatility  576 0.0961 0.186 0.0782 0.143 0.123 0.234 
Annual Volatility 576 1.398 2.504 1.029 0.995 1.952 3.707 
Rating 490 17.13 2.091 17.10 2.032 17.20 2.227 
Bond Zero 592 56.52 30.81 56.42 32.06 56.67 28.83 
Age 585 5.877 4.734 5.006 3.739 7.270 5.731 
Maturity 585 5.726 6.827 5.281 7.443 6.437 5.647 
IRC 589 2.328 2.129 1.946 1.796 2.920 2.450 
Amihud 592 0.00718 0.0158 0.00606 0.00644 0.00891 0.0238 
SD(IRC) 578 3.197 3.547 2.648 3.125 4.052 3.978 
SD(Amihud) 585 0.0159 0.0228 0.0153 0.0225 0.0169 0.0234 
Log(Amt) 585 19.81 0.917 19.73 0.809 19.95 1.056 
CDS Auction 592 0.392 0.489 0 0 1 0 
CDS Firm 592 0.799 0.400 0.683 0.464 0.978 0.146 
EBIT/Assets 534 -0.0211 0.106 -0.0205 0.0755 -0.0221 0.142 
Coverage Ratio 540 -0.309 8.265 -0.110 7.928 -0.621 8.778 
Sales/Assets 534 0.184 0.144 0.193 0.167 0.170 0.0967 
RE/Assets 534 -0.533 0.751 -0.528 0.776 -0.540 0.712 
NI/Assets 534 -0.0692 0.124 -0.0680 0.112 -0.0710 0.142 
CF/Assets  534 -0.00652 0.0537 0.00332 0.0505 -0.0221 0.0549 
Earnings/Assets  533 -0.0681 0.123 -0.0679 0.111 -0.0685 0.140 
Leverage 534 0.428 0.847 0.412 0.793 0.454 0.929 
Cash Flow Vol 530 0.0365 0.0268 0.0411 0.0270 0.0292 0.0249 
Earnings Vol 530 0.0451 0.0461 0.0497 0.0503 0.0379 0.0375 
Sales Vol 530 0.0442 0.0524 0.0522 0.0616 0.0316 0.0290 
Leverage Vol 530 0.159 0.248 0.153 0.228 0.170 0.278 
log(Assets) 534 8.668 1.636 8.118 1.756 9.537 0.899 
B/A Spread 459 3.135 4.966 3.279 5.501 2.909 3.993 
SD(B/A Spread) 444 1.009 1.868 0.964 1.924 1.078 1.781 

Summary statistics for all bonds in my sample (Panel A), bonds not in CDS auction (Panel B), and bonds in 
CDS auction (Panel C) for time period 6BDEFA. Observations are reported at the bond level. All variables 
are defined as in Table 2. 
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Table A3: Summary Stats BDEF6 

Panel A Panel B Panel C 
All Bonds Bonds Not in CDS 

Auction 
Bonds in CDS 

Auction 
VARIABLES N mean std mean std mean std 

Number of Trades 596 939.2 1,573 877.7 1,646 1,035 1,450 
Volume Traded 596 305.7 491.1 259.7 398.6 377.4 603.8 
Daily Return 585 -0.0187 0.139 -0.00677 0.0574 -0.0370 0.208 
Daily Volatility  577 0.0834 0.166 0.0749 0.141 0.0966 0.199 
Annual Volatility 577 1.215 2.159 1.008 1.060 1.533 3.159 
Rating  488 17.13 2.093 17.11 2.035 17.20 2.227 
Bond Zero 596 56.90 28.43 56.27 29.65 57.88 26.45 
Age 591 5.830 4.696 4.920 3.666 7.278 5.696 
Maturity 591 5.709 6.773 5.290 7.376 6.375 5.636 
IRC 591 2.102 1.721 1.921 1.586 2.389 1.883 
Amihud 596 0.00639 0.00724 0.00608 0.00669 0.00688 0.00802 
SD(IRC) 576 2.813 2.982 2.566 2.968 3.210 2.968 
SD(Amihud) 585 0.0149 0.0208 0.0147 0.0213 0.0153 0.0200 
Log(Amt) 591 19.83 0.924 19.74 0.817 19.96 1.060 
CDS Auction 596 0.391 0.488 0 0 1 0 
CDS Firm 596 0.800 0.399 0.686 0.463 0.979 0.145 
EBIT/Assets 538 -0.0206 0.106 -0.0200 0.0752 -0.0215 0.142 
Coverage Ratio 544 -0.280 8.234 -0.0910 7.891 -0.579 8.759 
Sales/Assets 538 0.182 0.144 0.191 0.167 0.168 0.0964 
RE/Assets 538 -0.525 0.747 -0.521 0.772 -0.532 0.706 
NI/Assets 538 -0.0693 0.124 -0.0686 0.112 -0.0705 0.142 
CF/Assets  538 -0.00587 0.0529 0.00377 0.0499 -0.0211 0.0540 
Earnings/Assets  537 -0.0683 0.123 -0.0685 0.110 -0.0679 0.140 
Leverage 538 0.422 0.846 0.406 0.790 0.446 0.928 
Cash Flow Vol 534 0.0363 0.0267 0.0410 0.0268 0.0287 0.0248 
Earnings Vol 534 0.0447 0.0460 0.0494 0.0502 0.0373 0.0374 
Sales Vol 534 0.0435 0.0521 0.0518 0.0613 0.0306 0.0284 
Leverage Vol 534 0.159 0.248 0.151 0.227 0.172 0.278 
log(Assets) 538 8.676 1.630 8.139 1.760 9.528 0.883 
B/A Spread 465 3.151 5.025 3.228 5.513 3.031 4.158 
SD(B/A Spread) 449 0.987 1.891 0.936 1.936 1.067 1.821 

Summary statistics for all bonds in my sample (Panel A), bonds not in CDS auction (Panel B), and bonds in 
CDS auction (Panel C) for time period BDEF6. Observations are reported at the bond level. All variables are 
defined as in Table 2. 
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Table A4: Summary Stats DEFA 

Panel A Panel B Panel C 
All Bonds Bonds Not in CDS 

Auction 
Bonds in CDS Auction 

VARIABLES N mean std mean std mean std 

Number of Trades 554 170.9 294.1 127.5 272.7 234.2 312.9 
Volume Traded 554 597.9 121.2 329.8 607.4 989.9 168.1 
Daily Return 549 0.00504 0.143 0.0144 0.0961 -0.00846 0.190 
Daily Volatility  524 0.0863 0.172 0.0633 0.111 0.119 0.229 
Annual Volatility 524 1.304 2.497 0.893 0.960 1.886 3.634 
Rating  455 17.11 2.115 17.08 2.064 17.18 2.223 
Bond Zero 554 52.93 29.41 55.84 30.95 48.67 26.50 
Age 547 5.957 4.790 4.994 3.758 7.410 5.732 
Maturity 547 5.831 6.958 5.500 7.667 6.331 5.704 
IRC 544 2.894 4.424 2.058 3.679 4.117 5.096 
Amihud 554 0.00670 0.0180 0.00608 0.0114 0.00760 0.0248 
SD(IRC) 506 2.979 4.634 2.182 3.655 4.129 5.574 
SD(Amihud) 529 0.0111 0.0293 0.0112 0.0332 0.0110 0.0227 
Log(Amt) 547 19.88 0.923 19.81 0.804 19.99 1.070 
CDS Auction 554 0.406 0.492 0 0 1 0 
CDS Firm 554 0.807 0.394 0.687 0.463 0.982 0.132 
EBIT/Assets 503 -0.0222 0.109 -0.0222 0.0784 -0.0222 0.143 
Coverage Ratio 509 -0.566 7.296 -0.537 6.018 -0.609 8.862 
Sales/Assets 503 0.181 0.145 0.189 0.169 0.169 0.0969 
RE/Assets 503 -0.536 0.750 -0.532 0.777 -0.540 0.711 
NI/Assets 503 -0.0703 0.127 -0.0699 0.115 -0.0709 0.143 
CF/Assets  503 -0.00694 0.0535 0.00317 0.0512 -0.0218 0.0535 
Earnings/Assets  502 -0.0693 0.125 -0.0699 0.114 -0.0683 0.141 
Leverage 503 0.440 0.866 0.427 0.818 0.459 0.935 
Cash Flow Vol 501 0.0360 0.0266 0.0408 0.0267 0.0289 0.0249 
Earnings Vol 501 0.0457 0.0471 0.0510 0.0519 0.0379 0.0378 
Sales Vol 501 0.0435 0.0529 0.0518 0.0629 0.0312 0.0293 
Leverage Vol 501 0.164 0.253 0.155 0.233 0.176 0.279 
log(Assets) 503 8.785 1.593 8.254 1.742 9.563 0.890 
B/A Spread 356 2.432 4.368 2.315 4.768 2.602 3.721 
SD(B/A Spread) 338 0.770 1.963 0.622 2.016 0.976 1.874 

Summary statistics for all bonds in my sample (Panel A), bonds not in CDS auction (Panel B), and bonds in 
CDS auction (Panel C) for time period DEFA. Observations are reported at the bond level. All variables are 
defined as in Table 2.  
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