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Abstract  

 

Alzheimer’s Disease (AD) is the only condition in the top ten leading causes of death for 

which we do not have an effective treatment that prevents, slows, or stops its progression. 

Our ability to design useful interventions relies on (a) increasing our understanding of the 

pathological process of AD and (b) improving our ability for its early detection. These 

goals are impeded by our current reliance on the clinical symptoms of AD for its diagnosis. 

This characterizations of AD often falsely assumes a unified, underlying AD-specific 

pathology for similar presentations of dementia that leads to inconsistent diagnoses. It also 

hinges on postmortem verification, and so is not a helpful method for identifying patients 

and research subjects in the beginning phases of the pathophysiological process. Instead, a 

new biomarker-based approach provides a more biological understanding of the disease 

and can detect pathological changes up to 20 years before the clinical symptoms emerge. 

Subjects are assigned a profile according to their biomarker measures of amyloidosis (A), 

tauopathy (T) and neurodegeneration (N) that reflects their underlying pathology in vivo. 

AD is confirmed as the underlying pathology when subjects have abnormal values of both 

amyloid and tauopathy biomarkers, and so have a biomarker profile of A+T+(N)- or 

A+T+(N)+. This new biomarker based characterization of AD can be combined with 

machine learning techniques in multimodal classification studies to shed light on the 

elements of the AD pathological process and develop early detection paradigms. A guiding 

research framework is proposed for the development of reliable, biologically-valid and 

interpretable multimodal classification models.  
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Introduction  

 

Alzheimer’s Disease (AD), a condition affecting 50 million of people worldwide, is one of 

the top ten global causes of death (Patterson, 2018, p. 34). The number of diagnosed 

patients is expected to continue to grow exponentially as life expectancies increase and our 

ability to identify and diagnose the disorder improves. Stigma-reducing awareness 

campaigns, as well as improved training for caregivers and better diagnostic standards 

have all contributed to more accurate diagnoses worldwide. Unfortunately, AD is the only 

leading cause of death for which we still have no effective treatment that prevents, slows or 

stops the progression of the disease. Because of this, the main goal of the scientific field 

surrounding AD is the design of useful interventions, a task that depends heavily on (a) 

increasing our understanding of the pathophysiological process of AD and (b) improving 

our ability for its early detection.  

 

Our understanding of AD has been somewhat muddling from the first time the term was 

used to describe a condition. In 1910, Emil Kraepelin, first used ‘AD’ to describe the 

findings his associate, Alois Alzheimer’s, had made four years earlier, but many consider 

that in his description he might have downplayed the presence of vascular injuries that 

Alzheimer’s originally found, in order to present a united, new condition entirely 

dependent on amyloid plaques and neurofibrillary tangles, now considered the hallmark 

lesions of AD (George et al., 2011, p. 420). In the influential 1997 ‘Nun Study,’ Snowdon 

found some evidence of a vascular condition in many AD subjects, and, adding to the 

confusion, also found that there were several subjects that exhibited no clinical signs of 
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AD (no cognitive decline) but still had significant evidence of the pathological process of 

AD at autopsy (Snowdon et al., 1997). Although much research since then has focused on 

specifying the common ties between patients, the definition of AD is still unclear and 

many questions remain unanswered. This contributes to the stigma associated with the 

condition, and limits our ability for accurate diagnosis. Currently, standards for diagnosis 

rely on the clinical presentation of AD symptoms, even though these occur at least 10-20 

years after the pathological process has begun and therefore do not allow for methods of 

early intervention which are crucial to advancing the field’s research goals. Furthermore, a 

recent technological boom has paired our unclear characterization of AD with large 

amounts of data and data mining techniques that seem to advance without much concern 

for what we know about the neurobiological process of AD. At the same time, recent years 

have seen significant progress in the standardization and accessibility of AD biomarkers. 

The hope is that biomarkers, possibly in combination with advanced computational 

methods, will give us valuable insights into the otherwise undetectable pre-clinical process 

of AD and will allow us to develop methods for early detection and disease progression 

staging.  

 

In the first section of this paper I explore the history and challenges of the diagnosis of 

AD, with particular emphasis on the discrepancies between the clinical and pathological 

characterizations of AD and on the role that biomarkers have in bridging the gap between 

them. In the second section, I turn to an examination of the neuropathological elements of 

AD, first with an analysis of current standard regions of interests and staging schemes 

derived from postmortem studies and then with an evaluation of the causal relationship 
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between amyloidosis and tauopathy in light of new evidence. Finally, my last section 

focuses on the application of our understanding of AD and AD biomarkers to AD 

classification studies for early detection of the disease through machine learning 

techniques.  
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Diagnosing Alzheimer’s Disease 

 

History and Standards of Alzheimer’s Disease Nosology 

 

The layperson’s view of AD considers it a unified clinical-pathologic condition, of which 

age is the leading risk factor, that results in cognitive decline, significant memory loss and 

an increased likelihood of death. However, this view, upheld by most of the AD diagnostic 

standards, has led to a series of troubling results from postmortem verifications of the 

disease, suggesting that there are important limits to our diagnosis of the disease in 

everyday settings. For starters, 30-40% of cognitively unimpaired elders show evidence of 

the AD pathological process, and 10-30% of those diagnosed with AD show no evidence 

of the AD pathological process (Nelson et al., 2011; Bennett et al., 2006). Furthermore, 

mixed pathology, often involving other dementia-causing pathologies, is found in around 

45% of elders with an AD diagnosis (Schneider et al., 2009). Analyzing the history of AD 

nosology and the current standards used for AD diagnosis is a valuable first step in 

understanding why these inconsistencies arise, and to evaluate whether our clinical-

pathologic understanding of AD is enough to account for both the heterogeneity and 

specificity of the disease. 

 

The most widely used set of formalized criteria for the diagnosis of Alzheimer’s Disease 

(AD) is contained in the current version of the Diagnostic and Statistical Manual of Mental 

Disorders. The criteria outlined are used by insurance companies, social service agencies, 

and in court, as well as in clinical settings, to accurately classify AD, along with other 
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mental disorders, according to their psychiatric symptoms (George et al., 2011, p. 424) . 

Throughout its different editions, however, the DSM has showed profound changes in the 

way it categorizes and defines the progressive form of dementia that Kraepelin first called 

“Alzheimer’s Disease” in 1910.  The DSM-I and DSM-II used the term ‘chronic brain 

syndrome’ to refer to age-related progressive dementia, with ample interpretive room for 

identifying its causal factors (American Psychiatric Association (APA), 1952 and 1968)  

 

In the DSM-III, the first version of which came out in 1980, the disorders are specified in 

much more detail (the manual triples in length) and there is a greater focus in categorizing 

according to the known or speculated biological substrates of the disorders. In this version 

they used the term Primary Degenerative Dementia to encompass progressive dementias, 

including AD, that were considered to only be distinguishable with access to 

histopathological data, and so represented subtypes that were not useful for purely clinical 

classification (George et al., 2011, 424; APA ,1980, p. 125). This changes by the 1987 

version, DSM-III-R, in which Primary Degenerative Dementia of the Alzheimer’s type is 

established as a type of ‘Organic mental disorder,’ a category was meant to include 

disorders involving cognitive deterioration due to physical brain pathology rather than 

psychiatric illness (APA, 1987). The manual emphasizes that AD should not be considered 

a mental disorder but rather a physical one, and so uses the variant Primary Degenerative 

Dementia of the Alzheimer’s Type to refer to the most common clinical dementia 

syndrome, which arises from a discrete Alzheimer’s pathology and which is characterized 

mainly by an insidious onset and progressive deterioration of symptoms. 
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In the DSM-IV, the focus on insidious onset and progressive deterioration in AD is kept, 

but the underlying categorization of disorders reflecting cognitive decline changes again, 

replacing the ‘organic mental disorders’ with a new group that includes ‘Delirium, 

Dementia, and Amnestic and other cognitive disorders’ (APA, 1994). The problem with 

the term ‘organic mental disorders’ is that it assumed that other mental disorders did not 

have a biological basis, an idea rooted in now out-dated dualist conceptions of the mind 

and body. Another issue with using the term, which is not acknowledged in the DSM-IV 

but which I will return to shortly is the lack of a discrete knowledge of the underlying 

pathologies, reflected in a lack of direct correlation between the pathological substrates and 

the clinical symptoms observed in many of the ‘organic mental disorders’ mentioned, 

particularly AD. The DSM-IV somewhat takes this into consideration by introducing a 

new diagnosis, ‘Dementia due to Multiple Etiologies,’ that accounted for cases of mixed 

pathology within dementia (APA, 1994, 155).  

 

Nevertheless, the diagnosis of dementia is similar to what it had been in previous versions 

of the DSM. The cognitive decline is characterized as including definite memory 

impairment (in learning or recall) on one side, and either aphasia, apraxia, agnosia, or 

executive function disturbances on the other side. The cognitive deficits must be an 

impairment to daily functioning and a clear decline to classify as dementia.  Dementia of 

the Alzheimer’s Type is then characterized more precisely by the insidious onset and 

progressive deterioration of cognitive deficits.  It’s sub-categorized depending on whether 

there was an early or late onset of the condition, and whether it existed with or without 

behavioral disturbances.  
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Again, a radical change occurs with the publication of the fifth and most up-to-date version 

of the DSM (APA, 2013). The current criteria identifies a new category, Neurocognitive 

disorders (NCDs), encompassing delirium, dementias, amnestic and other cognitive 

disorders. Within this category, different criteria define whether a subject has delirium, 

Mild NCD or Major NCD, three separate diagnosis that mark the progression of the 

disorder. In the DSM-5 the term dementia is abandoned, although still accepted in some 

contexts, in order to account for cases of NCDs that are not considered deviations from 

healthy aging, which is what the term is habitually used for, such as NCDs caused by HIV 

or brain injury. The term dementia is replaced by Major NCD, and a Minor NCD is 

introduced so as to include less severe cases of cognitive dysfunction that can still be cared 

for in the clinical setting, and which might lead to Major NCD. The distinction between 

Major and Minor NCD hinges on whether the cognitive deficits interfere significantly with 

independence in daily functioning. This means that their distinction is not inherently 

discrete, and the disorders exist on a continuum.  

 

Importantly, the DSM-5 also introduces a more in-depth explanation of cognitive domains 

that may or may not be involved in an NCD, along with examples of symptoms relevant to 

the particular domain, and psychiatric assessments that can be used to measure it. This 

explanation allows for more detailed specifications of the cognitive dysfunctions in each 

NCD’s criteria, and the criteria for NCDs in general no longer requires memory 

dysfunction (which it did when talking about dementia in the DSM-III).  
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The neurocognitive disorders outlined in the DSM-5 include those due to AD, 

Frontotemporal Lobar Degeneration, Lewy Body Disease, Vascular Disease, traumatic 

brain injury, substance use, HIV infection, Prion disease, Parkinson’s disease, 

Huntington’s Disease, multiple etiologies or another medical condition. All of these share 

cognitive deficit symptoms that are acquired rather than developmental, and are considered 

separately from each other and from other mental disorders because they have a known, 

presumed or potentially discoverable underlying pathology.  

 

The criteria for Major NCD involves, first, evidence of significant cognitive decline in at 

least one of the specified cognitive domains, as demonstrated by the subject’s or a 

clinician’s observation of cognitive decline, as well as with results from 

neuropsychological testing. These deficits must also interfere significantly with daily 

functioning, whereas for Minor NCD there must be evidence of more modest deficits that 

do not interfere with the subject’s independence in everyday activities. While subjects with 

Minor NCD might report interference in daily functioning, with tasks requiring more effort 

or time, their ability to complete these tasks independently must still be preserved to be 

classified as Minor NCD.  For both, the deficits cannot be explained by just delirium or 

any other mental disorder.  

 

Once a subject is diagnosed with a Major or Minor NCD, the etiological subtype is 

determined by considering the criteria for each. Ideally, one of the set of criteria will apply 

while the others are used for differential diagnosis. For the diagnosis of NCDs due to 

neurodegenerative conditions, including Lewy Body Disease, FTLD or Parkinson’s 
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Disease, once a subject is diagnosed with NCD they must also exhibit an insidious onset 

and gradual progression of symptoms, and these symptoms cannot be explained more 

adequately by another mental, neurological or systemic disorder. For NCD due to 

Alzheimer’s particularly, the classification of Major or Minor NCD is followed by a 

classification of either Probable or Possible Alzheimer’s Disease, depending on whether 

there is evidence of a causative AD genetic mutation from family history or genetic testing 

or whether particular criteria related to the symptoms’ progression and type are met. In 

Major NCD, Probable AD is diagnosed if either there is evidence of a familial genetic 

mutation or if all three of the following criteria are met: (a) there is evidence of cognitive 

decline in the learning and memory domain and in another cognitive domain, (b) the 

symptoms progress steadily without extended plateaus and (c) there is no evidence of NCD 

due to mixed etiology (with particular emphasis on differential diagnosis of other 

neurodegenerative or cardiovascular diseases). If neither of these are met, then the subject 

should be diagnosed with Major NCD due to Possible Alzheimer’s Disease. For Mild 

NCD, evidence of a causative AD genetic mutation is sufficient and required for 

diagnosing Probable AD, and Possible AD is diagnosed when (a-c) are met but there is no 

evidence of genetic mutation. In this case, however, (a) only requires deficits in the 

learning and memory domain.  

 

Additional behavioral specifications are also outlined so as to support diagnosis, since 80% 

of individuals with major NCD due to AD exhibit behavioral and psychological symptoms 

(APA, 2013, 612). For AD, these include possible depression and/or apathy at the mild 

level, and more psychotic manifestations, including agitation, irritability and wandering, at 
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more moderately severe levels. More extreme cases might also exhibit gait disturbance, 

dysphagia, incontinence, myoclonus and seizures.  

 

Another key set of criteria for the diagnosis of AD comes from the work of the National 

Institute on Aging and the Alzheimer’s Association in their 2011 revision of the criteria 

they had set forth in 1984 (McKhann et al., 2011). Although valuable for clinical 

diagnosis, their criteria differs form the DSM-5 in that it offers a more helpful approach for 

guiding research of AD. The main way they do this is by defining a new classification, 

‘AD dementia with evidence of the AD pathophysiological process,’ that is meant solely 

for research purposes, since it can include evidence from autopsy. 

 

Other crucial changes to the criteria set forth in 1984 had to be made to account for the 27 

years of research on AD. Importantly, they distinguish between the AD-pathophysiological 

process and AD dementia, the former encompassing both the antemortem biological 

changes and the postmortem neuropathological substrate and the latter referring to the 

clinical syndrome that arises from such pathophysiological process. They expanded the 

criteria so that AD diagnosis would no longer require memory deficits, in order to account 

for cases of AD pathophysiology that present in nonamnestic forms. The DSM-5, 

published three years later, still requires memory impairment for the diagnosis of mild, 

major, probable and possible AD. The 2011 guidelines also incorporate more detailed 

accounts of other disorders that might often co-occur or be confused with AD, particularly 

of Dementia with Lewy bodies, vascular dementia, behavioral variant frontotemporal 

dementia, and primary progressive aphasia. Finally, the 2011 guidelines takes into 
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consideration research progress in the development of AD biomarkers and genetic 

mutations to give a more comprehensive account of what is known about AD.  

 

The core clinical criteria for the diagnosis of AD are not too different from what we find in 

the DSM-5. For probable AD, there must be a clear decrease in cognitive function, with 

deficits demonstrating insidious onset and gradual progression, and no evidence of another 

condition such as cardiovascular disease or dementia due to Lewy Bodies. The nature of 

the cognitive deficits determines what kind of variant of AD the subject presents. It can 

either be amnestic, and require deficits in memory and recall, or non-amnestic, and involve 

the language, visuospatial, and/or executive function domains. For any of these variants, 

deficits in only one domain are not enough to diagnose AD, as they specify that at least 

two are required to be diagnosed with any type of dementia. If the subject continues to 

show decline in cognitive function, or if they are a carrier of one of the causative AD 

genetic mutations (in APP, PSEN1, or PSEN2), then the subject is diagnosed with 

Probable AD dementia with increased level of certainty.  Possible AD dementia, according 

to the diagnostic guidelines, applies to subjects who meet most of the core criteria except 

that they either (a) show evidence of etiologically mixed presentation or (b) have 

symptoms that emerged suddenly (not insidiously) or for which there is not enough 

historical detail or neuropsychiatric evidence.  

 

Finally, they specify criteria for Probable and Possible AD dementia with evidence of the 

AD pathological process. This diagnosis can be made when there is either evidence of AD 

pathology from autopsy or enough biomarker evidence to “increase the certainty that the 
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basis of the clinical dementia syndrome is the AD pathophysiological process,” but the 

authors warn against using biomarker evidence routinely for diagnosis (McKhann et al., 

2013, p. 6). The incorporation of biomarkers into our definition of AD is a crucial issue to 

consider, one discussed briefly in these guidelines, and one to which I will return later. For 

now, it is important to note that, in their consideration of biomarkers, the NIA/AA 

conclude that (in 2011) “the data are insufficient to recommend a scheme that arbitrates 

among all different biomarker combinations” and that more research is needed to 

standardize them and introduce them into the core criteria (McKhann et al., 2013, p. 8). For 

Possible AD dementia with evidence of the AD pathological process, the subject must 

have met the diagnostic criteria for a non-AD dementia.  

 

Cognitive Domains in the Clinical Diagnosis of Alzheimer’s Disease 

 

In order to evaluate the validity and standardization of the criteria used to diagnose AD, 

and to come closer to a definition of AD that encompasses all variants of the disorder and 

that is based on what we know about the brain, it is important to consider what cognitive 

domains each set of criteria is based on. As we have seen, the NIA/AA guidelines and the 

DSM-5 criteria already show a crucial distinction in their evaluation of the cognitive 

domains affected by AD. The DSM-5 requires impairments to learning and memory 

whereas the NIA/AA guidelines allow for non-amnestic versions of AD that instead 

primarily impair other domains. At a lower level, however, the underlying categorization 

of cognitive function is a major factor in coming to a diagnostic conclusion, and when 

compared to a more robust research-based classification of cognitive domains can point to 
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how in line our clinical definition of AD is with current research standards in cognitive 

neuroscience. The National Institute of Mental Health’s (NIMH) Research Domain Criteria 

(RDoC) offer us such a robust scheme. It is meant as a guiding framework for researchers, 

one that incorporates information from multiple domains (i.e. genomics, behavior, self-

report) to approach a generalized and standardized understanding of mental health and 

illness that can be adapted to research findings (NIMH, 2013). While acknowledging the 

benefit of having reliable diagnostic standards, the NIMH criticized the lack of validity of 

the DSM’s clinically based approach to pathopsyiology, and proposed these domains as a 

counter approach (Insel, 2013).  

 

The RDoC define five constructs within cognitive systems: ‘attention’, ‘perception’, 

‘declarative memory’, ‘language’, ‘cognitive control’ and ‘working memory’. The only 

domain that demonstrates almost perfect overlap with the NIA/AA guidelines and DSM-5 

criteria is the one pertaining to language. Let us first see how these categories compare to 

the main domain of interest when making AD diagnostic decisions in the DSM-5 and the 

NIA/AA guidelines, the one involving memory (although the NIA/AA allow for non-

amnestic variants, they acknowledge that the amnestic version is the most prevalent).  

 

In the DSM-5 this is the ‘learning and memory’ domain, and it involves assessment of 

immediate memory, free recall, cued recall and recognition memory (the last three of 

which are grouped under recent memory) (APA, 2013, p. 594). This fits reasonably well 

with the description of declarative memory in the RDoC, which emphasizes the processes 

of recall and recognition, but it also takes into consideration immediate memory, as 
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assessed in the subject’s ability to repeat a list of numbers or words. Immediate memory 

impairments are in line with working memory impairments, which in the RDoC are 

encompassed by the ‘working memory’ domain, but in the DSM are recommended as a 

subprocess within executive functioning. The DSM’s distinction between immediate 

memory and working memory seems to reflect a distinction between impairments in 

immediate recall for the former and impairments in recall and manipulation for the latter, 

but their inclusion in two different domains means that if a subject reflects impairments in 

both recall and manipulation of working memory, the subject would demonstrate deficits 

in two different domains, whereas when using the RDoC, the deficits would be subsumed 

only under the separate ‘working memory’ cognitive construct. When using the NIA/AA 

domains, memory impairments fit within the somewhat vague category encompassing 

deficits in acquiring and remembering, but there is no explicit mention of working memory 

impairments. Additionally, because none of the NIA/AA categories explicitly deal with 

attention processes, attention deficits might be included in this category when they affect 

the subject’s ability to acquire information, or they might also be taken to reflect 

impairments in complex task handling, which is one aspect of another one of their domains 

that is more concerned with executive functioning. The distinction between deficits to 

executive functioning and memory updating can be difficult to make, since they both 

reflect aspects of cognition that often work together, along with attention processes, to 

guide behaviors. Because of this, it is important to have specific descriptions with non-

overlapping components and precise assessments for each, which the RDoC do by defining 

a category for attention, declarative memory, cognitive control and working memory, 

separately, with separate recommended assessments.  
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The DSM-5 and NIA/AA guidelines also contain domains with processes that are not part 

of what the RDoC defines as ‘cognitive functioning’ processes, such as those subsumed 

under the ‘social cognition’ category in the DSM-5 and the ‘personality/behavior’ category 

of the NIA/AA. Both categories are best reflected in the RDoC criteria under the ‘social 

processes’ domain, which is distinct form the ‘cognitive systems’ domain involving 

cognitive processes. The lack of correlation between categories here raises two important 

issues. In the case of the NIA/AA, the category involves behavioral symptoms that in the 

DSM-5 are included only in the auxiliary behavioral specifications, which exist in roughly 

80% of major NCD patients. This category is best reflected in the RDoC criteria under the 

‘social processes’ domain, but also specifies behaviors such as compulsive or obsessive 

behaviors that do not perfectly fit within this category (in that they reflect inhibition 

deficits, for example). It raises the question of whether a category so loosely defined by a 

wide array of behavioral or personality-related symptoms, mostly involving social 

processes that the RDoC does not consider to reflect major cognitive processes, should be 

used as a domain of cognitive deficits for AD diagnosis.  

 

The ‘social cognition’ category of the DSM-5 deals more specifically with deficits in 

emotion recognition and theory of mind, which are, again, subsumed under the ‘social 

processes’ category in the RDoC, the former reflected specifically in the ‘social 

communication’ subconstruct and the latter in the ‘perception and understanding of self’ 

subconstruct. Because of the more direct reference to emotion recognition deficits, this 

category brings up another significant issue when creating domains. Constructivist theories 
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of emotion, which have been gaining increased support in recent years for challenging 

classical theories of emotion, suggest that it is not possible to separate the emotional and 

cognitive processes à la Plato’s chariot metaphor, where cognition directs and limits 

emotional processes, because emotional processes are not emotion-specific and so are 

involved in the formation of any cognitive process (Barrett, 2017). In the RDoC, both 

emotion recognition and emotional experiences are not considered within the cognitive 

domain. Emotion recognition is in the social processing domain, and emotional 

experiences are best accounted for in the arousal subdomain of the arousal and regulatory 

systems construct, if arousal is taken to be an inherent and basic property of emotional 

experiences (which according to most theories, it is). The issue becomes how to define 

emotion related disturbances in cognitive functioning. The DSM-5 does this by introducing 

emotion recognition deficits within the social cognition domain, but this does not 

correspond to the categories of the RDoC guidelines, and it still only reflects one aspect of 

emotional processing that might be affected.   

 

Another category in the DSM-5 that does not correlate well with the RDoC constructs is 

the Perceptual-Motor domain, which encompasses deficits related to visual perception, 

visuo-construction, perceptual-motor integration, praxis and gnosis. This includes a wide 

array of deficits that deal with perception, movement and their integration through 

learning. The focus on perception is in line with the NIA/AA category involving 

visuospatial abilities and corresponds well to the visual perception subconstruct in the 

RDoC framework, although it specifically includes a subject’s impaired ability to “orient 

clothing to the body” which in the DSM-5 is mentioned under the social cognition domain 
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(McKhann et al., 2013). The focus on movement and integration of perception with it fits 

best within the motor action construct in the RDoC domain for sensorimotor systems, 

which is defined separately from cognitive systems. The idea might be that subjects with 

AD will likely exhibit deficits in tasks that involve integrating perception and movement 

because of possible deficits in perception and the co-dependence of those systems in tasks 

that involve their integration. The RDoC motor systems construct does suggest that 

motivational processes from other domains will co-occur with motor actions (NIMH, 

2013). However, they also say that motor systems explicitly includes the modulation of 

motor actions through learning, and so whether it reflects a unified set of cognitive deficits 

is not clear. Nevertheless, the category seems useful in carrying out cognitive assessments 

because it focuses on the interaction between perception and motor abilities, and is more 

detailed and inclusive than the visuospatial abilities category of the NIA.  

 

Toward a Biomarker-Based Characterization of Alzheimer’s Disease 

 

The lack of correlation between cognitive domains is problematic when classification of 

deficits according to these domains makes up the core criteria for AD diagnosis. Having 

different diagnostic criteria logically leads to having differences in diagnostic outcomes.  

In a 2017 study,  Dolci et al. compared the diagnosis of AD of 94 subjects using either 

criteria from the DSM-IV plus National Institute of Neurological and Communicative 

Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association 

(NINCDS-ADRDA) or the 2011 NIA-AA guidelines, and found that 29% of the subjects 
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classified as demented according to the NIA-AA guidelines were not demented according 

to the DSM-IV criteria (Dolci et al., 2017).  

 

It is necessary to come to an understanding of Alzheimer’s Disease that allows for accurate 

diagnosis based on all available information, and that reflects a unified set of possible 

pathological changes that can lead to specific clinical symptoms. However, the widely used 

criteria outlined thus far portray a clinical-pathological definition of Alzheimer’s Disease 

that treats clinical syndromes as reflective of AD pathological change without 

neuropathological evidence. Using a syndromal definition of AD is problematic, first of 

all, because it does not allow for early detection and intervention, since it cannot diagnose 

subjects with pathological AD but no symptoms. The prevalence of mixed pathologies that 

might affect cognitive function in old age also demonstrates the limits of such a definition,  

because in those cases it is more difficult to associate specific cognitive deficits with a 

single pathology. The DSM-5’s incorporation of detailed cognitive domains is supposed to 

help in making such distinctions. For example, for cardiovascular disease the diagnosis 

relies partly on cognitive deficits within the ‘complex attention’ domain, whereas AD 

diagnosis, as we have seen, relies on impairments specific to the ‘memory and learning’ 

domain. Diagnosis of AD and its differential diagnosis hinges on the categorization of 

deficits according to cognitive domains, but our analysis suggests that these domains are 

not yet standardized, particularly when it comes to the categorization of deficits in working 

memory or executive function, social processes and emotional processes. Measuring 

cognitive decline in these different domains could be useful to see what processes are most 

targeted, but using them to include/exclude people from diagnosis is more problematic, 
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especially because the DSM-5 requires impairments in the learning and memory domain 

for AD diagnosis.  

 

The reality is that the amnestic symptoms we often associate to AD are not specific to 

cases of AD neuropathology. 10-30% of patients diagnosed with AD show no evidence of 

AD pathology, and 30-40% of cognitively unimpaired elders (over age 80) reveal AD 

pathological changes at autopsy, suggesting that the error rate for AD diagnosis according 

to amnestic symptoms as has been presented in the DSM-5 can be of over 50% in the 

elderly (Jack et al., 2018, p. 552). As the NIA/AA acknowledges in its 2011 guidelines, 

there is enough evidence to suggest that nonamnestic syndromes, such as progressive 

aphasia, which is associated with language impairments, or posterior cortical atrophy, 

which is usually associated with visuoperceptual and spatial deficits, present the 

pathological changes associated with AD (Alladi et al., 2007, Rabinovici et al., 2008).  

 

In order to improve our current understanding of AD, the NIA/AA recently published a 

new research framework for studying the condition that challenges the clinical-pathologic 

view of AD assumed in previous diagnostic criteria guidelines (Jack et al., 2018). They 

propose a biologically-based definition of AD in living persons that relies on 

neuropathological findings through biomarkers. The idea is that the AD pathological 

changes that are validated through postmortem examination can now be detected through a 

combination of multiple AD biomarkers that are capable of reflecting these changes in 

vivo. This new definition implies that, when designing studies of possible intervention 
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methods for AD, criterion validity is established if the intervention modifies both 

biomarkers and cognitive symptoms.  

 

The NIA/AA establish three categories of AD biomarkers which measure distinct aspects 

of neuropathological change. Through consideration of biomarkers in each category, a 

subject can is given a ‘biomarker profile’ that defines where they place on the (new) 

Alzheimer’s Continuum. Category A measures β-amyloidosis, or the deposition of β-

amyloid (Aβ) in the brain, through either cortical amyloid PET or cerebral spinal fluid 

(CSF) measures of Aβ42. Category T contains biomarkers that measure tauopathy, or the 

accumulation of fibrillary tau which gives rise to neurofibrillary tangles, and includes CSF 

measures of phosphorylated tau and cortical tau PET. Category (N) refers to biomarkers of 

neurodegeneration, and includes CSF measures of T-tau, FDG-PET, and MRI atrophy. 

This last category is put in parenthesis because, as opposed to A and T, it measures 

changes that are not specific to AD, as neurodegeneration can occur in non-AD conditions, 

especially with cases of mixed etiologies in the elderly (Jack et al., 2018, 539). Because of 

this, it is not considered in their definition of Alzheimer’s disease, but it does affect a 

subject’s placement in the Alzheimer’s continuum, and, together with clinical symptoms, 

is important to their definition of AD stages, which is introduced later.  

 

Their proposed definition, therefore, is based only on the biomarkers in A and T. More 

specifically, if a subject has abnormal values of A, they are placed in the Alzheimer’s 

continuum. The subject will then be placed in the Alzheimer’s Disease category if they 

also exhibit abnormal values in T, regardless of the results of N. If, instead, no abnormal 
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values in T are detected, the subject is placed in either the ‘Alzheimer’s pathological 

change’ category, if results from N are normal, or in the ‘Alzheimer’s and concomitant 

suspected non Alzheimer’s pathologic change’ category, if there is evidence of 

neurodegeneration. The biomarker profiles and their respective category are outlined in 

Table 1. Whether results in each biomarker category are normal or indicative of 

Alzheimer’s depends on a cut-point. Because AD pathology is defined as a continuous 

process and not a binary, they also suggest that investigators take a ‘three range approach’ 

in which two cut points separate the results as either clearly normal, in the intermediate 

range, or clearly abnormal. The more lenient cut point can be used in studies focused on 

early detection of pathological change, and the more conservative one can be used in 

studies were diagnostic accuracy is critical, an approach used in understanding biomarker 

results for other diseases (Jack et al., 2018).  

 

They then designed disease staging matrices that incorporate cognitive symptoms but keep 

them separate from the biological biomarker-based definition of Alzheimer’s by 

considering the subject’s biomarker profile on one axis, and the severity of cognitive 

deficits on the other. They divide the cognitive deficit continuum in cognitively 

unimpaired, Mild Cognitive Impairment (MCI) and Dementia. The distinction between the 

two last categories is the same as the distinction between major and mild Neurocognitive 

Disorder in the DSM-5, and hinges on the impact of the symptoms to independence in 

daily functioning. Table 2 shows their application biomarker profiles to clinical staging.  

 



 

  24 

This model for understanding AD might prove to be very useful in the research domain, 

and with better standardization of AD biomarker approaches and accessibility, it might 

also change the way we diagnose AD in everyday settings, but it certainly raises some 

issues. One one hand, it is an attractive shift in the literature because it makes use of new, 

standardized biomarker information and incorporates it into our model of the disease, 

therefore making efficient use of available information. Furthermore, it is a more 

quantifiable and biological-based definition, meaning that it is less likely to result in the 

Biomarker Profile A T (N) Diagnostic Category 

A- T- (N)- - - - Normal AD biomarkers 

A+ T- (N)- + - - Alzheimer's Pathologic Change 

A+ T+ (N)- + + - Alzheimer's Disease 

A+ T+ (N)+ + + + Alzheimer's Disease 

A+ T- (N)+ + - + 

Alzheimer's and concomitant 

suspected non Alzheimer's 

pathologic change 

A- T+ (N)- - + - Non-AD pathologic change 

A- T- (N)+ - + + Non-AD pathologic change 

A- T+ (N)+    Non-AD pathologic change 

 

Table 1: Possible biomarker profiles with their respective diagnostic category as suggested 

by the NIA/AA. Blue cells corresponds to profiles associated with the Alzheimer’s 

Continuum, with darker cells corresponding to profiles that are AD-specific. Adapted from 

Jack et al. (2018). 

Biomarker Profile 

Clinical Diagnosis 

Cognitively 

Unimpaired 

Minor Neurocognitive 

Disorder 

Major Neurocognitive 

Disorder 

A+ T+ (N)- 

 Preclinical AD Prodromal AD Major ND due to AD A+ T+ (N)+ 

 Increased risk of quick short term clinical progression  

Table 2: Syndromal staging within the AD specific biomarker profiles.  Adapted from Jack et al. 

(2018) 
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clinical-pathologic inconsistencies mentioned at the start of this section. A more biological 

approach also lessens the effect of discrepancies between the cognitive domain categories 

outlined by different institutions, and specifically allows for identifying and accounting for 

non-amnestic presentations of the disease. Importantly, it no longer makes use of the 

clinical presentation of AD as a starting point. By not assuming that a worse clinical 

presentation of AD corresponds to increased AD pathology, it leaves room to identify non-

pathologic factors that might contribute to a worsening clinical condition in individual 

subjects and that might help us understand more about AD.  

 

On the other hand, however, we must consider whether we know enough about the 

pathological process of AD as a discrete entity to define AD strictly in biological terms. 

Are biomarkers capable of detecting AD-specific pathological changes? This is particularly 

important in the design of future studies that may rely on biomarker information to give 

insights into AD pathology, and even more important if these studies make use machine 

learning algorithms to extract AD relevant meaning from biomarker data. Studies that 

attempt to derive accurate classification methods for the early detection of AD using 

machine learning need to be able to learn AD-specific differences in biomarkers, which 

can only be achieved with an understanding of what characterizes the pathological process 

of AD and how or when each biomarker reflects this process. We need an robust 

apprehension of the causal relationship between these biomarkers and the 

neuropathological processes they relate to in order to evaluate marker results as well as the 

prioritization scheme suggested by the NIA/AA. Does the proposed discriminating role of 

amyloidosis biomarkers and non-specific role of neurodegeneration markers fit with our 
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understanding of the pathological process? The next section on analyzing what we know 

about AD pathology in order to answer these questions by considering current pathological 

verification and staging standards in addition to dominant theories and research literature 

pertaining to the causal role of the different pathological elements.  
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Alzheimer’s Disease Pathology 

 

Major Components of Alzheimer’s Pathology and the Amyloid Cascade Hypothesis 

 

Pathological studies performing postmortem evaluations dating back to Alzheimer’s study 

in the early 1900s have identified two main hallmark lesions of AD; Aβ plaques and 

neurofibrillary tangles (NFTs). These lesions are found in the brains of AD subjects along 

with neurodegeneration, which reflects the neuronal and synaptic loss thought to be caused 

by the lesions, and which best correlates with the rate and nature of cognitive decline in 

AD (Serrano-Pozo et al., 2011). The main in-vivo biomarkers for neurodegeneration 

includes detection of area-specific atrophy in MRI and FDG PET, the latter of which uses 

fluorodeoxyglucose, an analog of glucose, to measure changes in synaptic and neuritic 

functioning (which are largely glucose-dependent) (Jack et al., 2018).  

 

NFTs result from the aggregation of hyperphosphorilated molecules of the microtubule 

associated protein (MAP) tau in the form of paired helical filaments in cell bodies. A 

hyperphosphorilated form of tau is more negative than its regular form, and as a result it 

prefers to bind to other tau molecules than to the microtubules it is associated with, which 

leads to the disintegration of the microtubule (Luo, 2015, p. 469). When the misfolding 

and aggregation of tau occurs in the axons or dendrites, the result is a more fibrous and 

usually smaller structure labeled neuropil threads (NTs) that are also revealing of AD 

pathology (Dening & Thomas, 2013, p. 88). Biomarkers that reflect tau pathology include 

elevated CSF phosphorylated tau (p-tau), which measures the levels of phosphorylated tau 
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in cerebral spinal fluid, and tau PET, which uses relatively recently developed tau-specific 

tracers to localize tau deposits in the brain (Jack et al., 2018).  

 

Aβ plaques are extracellular aggregations of the Aβ peptide that result from an 

overproduction of Aβ through abnormal β-secretase and γ-secretase cleavage of the 

Amyloid Precursor Protein (APP). APP cleavage can produce molecules of Aβ40 or Aβ42. 

Aβ40 constitutes 95% of cerebral Aβ and is more soluble than its variant form (Serrano-

Pozo et al., 2011, p. 9). Aβ42 is more likely to aggregate, and therefore thought to lead to 

the formation of toxic plaques characteristic of AD. Biomarkers that measure levels of 

fibrillary Aβ deposition include high ligand retention on amyloid PET or low CSF Aβ42 

(Jack et al., 2018). 

 

Because Aβ plaques do not correlate with cognitive impairment in AD subjects, and 

because plaques are often found in autopsies of cognitive unimpaired subjects, 

morphological characterization of types of plaques is extremely important in order to 

distinguish toxic, AD-related plaques to others that might be reflective of normal aging. 

Unfortunately, the literature does not converge on comprehensive plaque nomenclature, 

and terms are often used interchangeably. The main (and apparently most useful) 

morphological distinction is between diffuse and dense-core plaques.  

 

Diffuse plaques are large, have ill-defined borders (which means they are sometimes not 

even referred to as plaques, just deposits) and are often found in cognitively unimpaired 

elders. Dense-core plaques, also known as senile, local or neuritic (although ‘neuritic’ 
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should be used to entail more than just dense-core), are smaller and more focal and, 

importantly, are generally associated with negative effects to the surrounding neuropil, 

which might include neuronal or synaptic loss, abnormal activation of microglial cells, 

reactive astrocytes or distended axonal or dendritic processes referred to as dystrophic 

neurites (Serrano-Pozo et al., 2011).  The mechanism through which Aβ deposits can lead 

to neuronal or synaptic loss and whether microglial cells and reactive astrocytes have any 

causal role in the pathophysiological process are heavily disputed. In addition, the plaques 

most associated with AD pathology contain levels of hyperphosphorilated tau in dystrophic 

neurites. The term ‘neuritic plaques’ is usually used to refer to these more AD-specific 

plaques, which are important because they are areas where tauopathy and amyloidosis 

apparently integrate, and so are critical to understanding the causality of the pathological 

processes. A central question in AD is whether neuritic plaques are necessary and 

sufficient for the development of tau pathology, because if this were the case it would 

show a downstream causal role from amyloidosis to tauopathy. Whether diffuse plaques, 

also found in the brains of subjects of AD, have an effect on the subsequent pathological 

process also needs to be considered to answer this question. 

 

Understanding AD, therefore, requires uncovering the causal relationship between tau and 

Aβ aggregates, and modeling their connection to subsequent neurodegeneration and 

cognitive decline. The prevailing view of the pathological stream in the literature is the 

amyloid cascade hypothesis, which was suggested first by Hardy and Higgins in 1992 

(Hardy & Higgins, 1992). It hypothesizes that AD pathology begins with amyloid 

accumulation in limbic and association cortices, which leads to the formation of Aβ 
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plaques. Neuritic plaques affect synaptic functioning and lead to microglial and astocytic 

activation, which eventually alters kinase and phosphotase activities enough to result in the 

formation and spread of NFTs. This is followed by widespread neuronal dysfunction and 

selective neuronal loss (neurodegeneration). In terms of biomarkers, this hypothesis 

suggests that AD pathological changes will first be detected by CSF measures of Aβ42, 

followed by Amyloid PET, CSF levels of phosphorylated tau, tau PET and finally by 

neurodegeneration biomarkers, including MRI atrophy measures and FDG PET.  

 

Evidence for the amyloid cascade hypothesis comes largely from genetic studies of 

populations that demonstrate a higher risk for AD. Studies on the familial variant of AD 

(FAD) showed that a missense mutation in the Aβ section of the APP gene increases the 

likelihood of AD (Goate et al., 1991). In humans with trisomy 21 (Down Syndrome) an 

extra copy of the APP gene corresponds to higher rates of the disorder and earlier onset 

(Luo, 2015, p. 471). Mutations in presenilin 1 and 2, two major components of the Aβ 

production enzyme γ-secretase, lead to higher rates of Aβ42 and early disease onset 

(Selkoe & Hardy, 2016). Subjects with allele ApoE4 (instead of ApoE3), through 

increased binding to Aβ, demonstrate a lower rate of Aβ clearance and higher rates of AD 

(Selkoe & Hardy, 2016). In addition to genetic evidence, recent studies that have injected 

rodents with human Aβ oligomers have suggested that that Aβ accumulation can lead to 

synaptic dysfunction, tau hyperphosphorylation and neuritic dystrophy (Jin et al., 2011). 

All of these are considered evidence for the crucial and causal role of Aβ accumulation in 

AD. 
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However, more evidence is needed to prove the causal role of Aβ in AD, as some 

inconsistencies remain. One issue is that the amyloid cascade hypothesis does not explain 

the shocking observation that Snowdon first made in the ‘Nun Study,’ and that 

pathological studies since have corroborated, that cognitively unimpaired elders often 

show high levels of Aβ plaques in the brain (Snowdon et al., 1997; Nelson et al., 2011). 

This had led many to believe that Aβ plaques themselves, although typical of AD, might 

not have a downstream causal role, since they often appear without the tauopathy, 

neurodegeneration and cognitive dysfunction of AD.  

 

Furthermore, the amyloid cascade hypothesis does not provide us with a well-supported 

model of how Aβ itself becomes toxic and how this toxicity causes the onset of the disease. 

Part of the issue is that studies focused on uncovering the mechanisms through which Aβ 

becomes toxic are based on FAD or other cases where genetic mutations are the cause of 

changes in Aβ production. Although they might point to the centrality of Aβ in AD, they 

do not tell us how Aβ production can become maladaptive in mutation-free subjects. The 

toxicity of Aβ in these cases might be a result of something else entirely. A recent study 

found that people with trisomy 21 had increased  Aβ deposition regardless of whether they 

had an extra copy of the APP gene, suggesting that the mechanism that causes amyloid 

deposition is much less clear than what was thought to be, and might include genes that are 

not specific to amyloid (Wiseman et al., 2018) In addition, evidence of Aβ leading to 

dystrophic neurites and tauopathy has come from tissue culture or mice studies that 

produce limited results with unrealistic setups (Drachman, 2014). Studies focusing on the 

possible causal role of Aβ in situations where it is highly overexpressed run the risk of 
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ignoring the role of tau in bringing about these changes. In fact, reducing the amount of tau 

in mice that overexpress Aβ can prevent the negative downstream effects of synaptic 

dysfunction and even cognitive decline (Roberson et al., 2011). Furthermore, active 

immunization studies have been able to decrease the amount of Aβ in subject’s brains but 

have not resulted in decreases in the rate of cognitive decline, even when plaques were 

removed (Nicoll et al., 2016).  

 

Another issue involves the localization and spread of the disease. Aβ levels or the number 

of Aβ plaques do not correlate with the rate of neurodegeneration and cognitive decline in 

AD subjects, which occur much later in the disease and are best correlated with the amount 

of neurofibrillary tangles. The amyloid cascade hypothesis postulates that Aβ deposition 

only initiates the pathological process, through which it causes neural and synaptic loss 

that is logically more correlated with the level of cognitive function. This hypothesis 

would fit well with findings that amyloid deposits exist primarily in areas that are more 

prone to develop neurofibrillary tangles and neurodegeneration in the initial stages of 

disease progression, but as we will see later, this is not the case. The amyloid cascade 

hypothesis needs an explanation of how widespread amyloid burden, or plaques in certain 

regions, can lead to tauopathy or neurodegeneration in different, localized areas. This 

requires first and foremost a better understanding of the localization and spread of 

amyloidosis, tauopathy and neurodegeneration in AD, and how these relate to the 

presentation of the clinical symptoms of the disease (whether their amnestic, or dealing 

more with executive function, etc.) 
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In order to address these issues, and evaluate the contributions of new findings to the 

amyloid cascade hypothesis, I will explore the current standards for identifying AD 

pathology in postmortem brains as presented in 2012 NIA/AA guidelines and the 

standardized staging models these criteria are based on: the Braak staging for tauopathy 

and the Thal staging for Aβ deposition. Autopsy verification of AD is considered the most 

dependable (albeit impractical) way of identifying the condition, and so best reflects what 

we consider to be AD. Autopsy verification relies heavily on the Braak and Thal staging 

schemes, and so these are also examined below. The goal is to get a more in depth 

understanding of what AD is so that we can evaluate whether the amyloid cascade 

hypothesis and the new biomarker based framework for are adequate forms of 

characterizing AD.  

 

Standards in the Postmortem Verification and Staging of Alzheimer’s Disease 

 

In 2012, the NIA/AA outlined an ABC scoring system that should be used in the 

evaluation of postmortem brains to identify AD (Hyman et al., 2012). This scoring is based 

on the semiquantative evaluation of the number of Aβ plaques according to the Thal 

Staging system (A), NFTs according to the Braak staging system (B), and neuritic plaques 

according to the The Consortium to Establish a Registry for Alzheimer’s Disease 

(CERAD) guidelines (C). The separate assessment of general Aβ plaques and neuritic 

plaques was decided on to account for the range of Aβ deposits that are present in the brain 

(in A) while at the same time quantifying how many of those reflect surrounding neuritic 

or synaptic damage (in C). Except for in the late stages of neuropathology, there is no clear 
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relation between the semiquantitative assessment of neuritic plaques according to CERAD 

and the topographical distribution of Aβ aggregates described by Thal, suggesting that 

these categories should be evaluated separately (Hyman et al., 2012). The standards are 

adapted to each fit a four point scale (0-3), and final reporting includes reference to all 

parameters (i.e Alzheimer Disease Neuropathologic Changes: A3, B2, C2) and can be 

converted to a four point scale of AD neuropathalogic level (Not, Low, Intermediate, 

High). According to this conversion, ‘Not’ can only be applied to cases with an A0 and C0, 

where there is no evidence of Aβ deposits. Once a subject has at least some Aβ deposits 

(A1 and above), if they do not have a score of B2 or B3 (Braak stages III-VI), then they are 

assigned to the ‘Low’ group despite the amount of Aβ or neuritic plaques. ‘High’ is 

reserved for subjects with high amounts of Aβ (A3) and neuritic (C2 or C3) plaques and an 

advanced Braak Stage (B3).  

 

Importantly, the NIA/AA suggest brain regions of interest for each parameter that should 

be evaluated hierarchically for Aβ deposits. First considerations include the middle frontal 

gyrus, the superior and middle temporal gyri and the inferior parietal lobule, all of which 

should be evaluated for all three parameters. If these regions test positive for Aβ deposits, 

then the next regions to be evaluated are the hippocampus and entorhinal cortex, where C 

can be considered but only A and B score should be used for scoring, followed by the basal 

ganglia at the level of the anterior commissure with basal nucleus of Meynert, where B can 

be considered but only A defines the score. Then, if the evaluation is positive in these 

regions, the pathologist should evaluate the levels of A in the midbrain including the 

Substantia Nigra and in the cerebral cortex and dentate nucleus area. The occipital cortex, 
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particularly Brodmann Areas 17 and 18 should be stained for NFTs and scored on B, and 

A and C should be considered in these areas. These guidelines also suggest differential 

diagnosis of Lewy Body Disease, Vascular Brain Injury and Hippocampal Sclerosis 

through staining in particular regions. These regions of interest are derived from the 

findings of Braak et al., Thal et al. and CERAD.  

 

With regards to the distribution and progression of NFTs, Braak outlines six stages that 

define the typical case of AD tauopathy (Braak et al., 2006). Their results, obtained 

through immunocytochemistry and the Gallyas silver staining technique, suggested that 

tauopathy begins in a specific area in the perirhinal cortex, (which they refer to as the 

transentorhinal cortex to capture its structural similarity and proximity to the entorhinal 

cortex) a region highly associated with memory, and progresses along the neocortex and 

inwards towards the hippocampus. More particularly, NFTs first appear in the 

tranentorhinal cortex (Stage I), and then progress to the entorhinal cortex and CA1 and 

CA2 regions of the hippocampus proper (Stage II), followed by extension toward sensory 

areas of the temporal neocortex, particularly affecting the neocortex of the fusiform and 

lingual gyri (Stage III). Stage IV shows involvement of most of the occipital-temporal 

gyrus as well as new involvement of part of the insular cortex and a wider involvement of 

neocortical association areas. In Stage V, NFTs spread to the superior temporal gyrus and 

mildly affect the high order association areas of the frontal, parietal, and occipital 

neocortex. By Stage VI, tauopathy reaches the secondary and primary neocortical areas 

and in the occipital lobe has spread to the primary visual cortex (affecting the striate and 
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parastriate areas of the occipital neocortex, mostly in Brodmann areas 17 and 18, 

respectively). 

 

Thal et al. detected Aβ deposits using both the Campbell-Switzer silver technique, best 

suited for detecting deposits witih dystrophic neurites, and by immunohistochemistry, 

which detects all accumulations of Aβ (Thal et al., 2002). Their results suggested that Aβ 

deposits begin to appear in the neocortex and progress inwards toward the midbrain. In 

phase 1, deposits are found in areas of the neocortex, usually focused in the temporal and 

occipital regions. Phase 2 shows involvement of the entorhinal cortex, area CA1 of the 

hippocampus, and the insular cortex primarily, but also sometimes extending into the 

amygdala or cingulate gyrus. Phase 3 involves deposits in a number of subcortical regions, 

including the caudate nucleus, the putamen, the claustrum, the basal forebrain nuclei, the 

substantia immobilata (which includes the nucleus basalis of Meynert) the thalamus and 

the hypothalamus. In addition, deposits may extend further into the white matter, the 

hippocampus and into some areas of the central gray in the midbrain. In Phase 4 of β-

amyloidosis deposits appear in the brainstem’s medulla oblongata and in the substantia 

nigra of the basal ganglia, and are increased in the central gray in the midbrain and area 

CA4 of the hippocampus. Phase 5 is characterized by extension into a series of brainstem 

nuclei, including the locus coeruleus in the pons, the tegmental nuclei and the Raphe nuclei 

as well as the granular layers of the cerebellum, leaving the dentate nucleus intact.  

 

The standardized progressions suggest differential pathways for amyloidosis and tauopathy 

in the brain. Amyloid accumulation begins and progresses more widely, covering most of 
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the cortical areas and extending rather unselectively towards areas of the midbrain. Tau 

aggregation begins in the upper layers of the transentorhinal cortex, spreading to the rest of 

the transentohrinal cortex, the entohrinal cortex, some subcortical nuclei and part of the 

hippocampus and then accumulating in neocortical association areas. An important aspect 

of the spreading pattern of tau as outlined by Braak and Braak and replicated more recently 

by Cho et al. is that the spread of NFTs is correlated with the severity and duration of 

cognitive decline in AD (Cho et al., 2016, Huber et al., 2018). The first part of tau 

progression, Stages 1 to 2 are associated with prodromal Alzheimer’s disease, the later 

stages 3 to 4 with mild cognitive impairment or mild neurocognitive disorder, and the final 

stages 5 to 6 with Alzheimer’s disease (Spillantini et al., 2013). Genetic studies have also 

suggested that tau dysfunction is sufficient to cause neurodegeneration and dementia 

(Goedert, 2004). Furthermore, tau aggregates spread in a more step-wise manner than 

amyloid deposits, as does regional volume atrophy (Cho et al., 2016). This suggests that 

tau propagation relies on connectivity by spreading through white matter tracts rather than 

through proximity, which might be a better fit for amyloid deposit spread. This distinction 

may be due to the fact that NFTs are intracellular accumulations whereas Aβ plaques 

appear extracellularly. Further evidence for the centrality of connectivity to tau spreading 

comes from tracking infusion-related tau pathology in mice and observing rapid and robust 

propagation of tauopathy through particular tracts (Ahmed et al., 2013).  

 

Updating our Understanding of AD Pathology: Implications for the Amyloid Cascade 

Hypothesis and the NIA/AA Biomarker-Based framework 
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The connectivity-dependency of the propagation of tau might be one of the reasons why 

recent work has brought to light possible errors in the seemingly generalizable standard 

Braak stages that question what we consider to be the beginning of the pathophysiological 

process of AD.  To come to a better understanding of the beginning of AD, Braak 

conducted a study in 2011 that involved examining the brains of AD subjects under 30 

years old. Results demonstrated that rather than starting in the transenthorinal cortex, tau 

accumulation begins in subcortical areas with diffuse connections to the cortex before the 

appearance of NFTs, particularly in the locus coeruleus, a significant catecholaminergic 

nuclei (Braak et al., 2011). Importantly, Braak presented this as evidence against the 

amyloid cascade hypothesis, because of all the subjects involved, only 1/42 had amyloid 

deposits whereas 38/42 had tau aggregates, meaning that tau aggregates before amyloid, 

and so refuting the causal role of amyloid.  

 

More recent studies have been able to use advanced connectivity measures, as well as 

improved and more standardized AD biomarkers to shed additional light on the 

progression of tauopathy and amyloidosis. A 2016 longitudinal voxel-based morphometry 

study demonstrated that degeneration in the nucleus basalis of Meynert, another 

catecholaminergic nuclei with diffuse cortical connections, precedes and predicts 

degeneration in the entorhinal cortex (Schmitz et al. 2016).  Moreover, they found that 

memory impairments typical of AD consistently appeared only after the neurodegeneration 

had spread from the nucleus basalis of Meynert to the entorhinal cortex, suggesting a 

specific pathway that when damaged produces the well-known clinical symptoms. 
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Incorporation of non-amnestic presentations of AD would be a valuable next step in 

localizing this pathway and finding out how and why nonamnestic presentations differ.  

 

Other attempts have been made at linking the progression of AD pathological markers to 

functionally significant processes in the brain to potentially help explain the relationship 

between pathology and clinical symptoms in AD. Some have pointed out that the regions 

heavily involved in AD tauopathy, particularly the entorhinal cortex, the hippocampus and 

the association cortices, together with the parahippocampal cortex, are also the key 

components of what is known as the posterior Default Mode Network (DMN), a network 

that appears in resting state subjects during fMRI and that has been sometimes associated 

with processing of information regarding the self as well as with other cognitive processes 

(Cho et al., 2016).  

 

In an impressive multimodal connectivity study, Jones et al. demonstrated that the 

connectivity of the posterior DMN decreases throughout the the course of AD in a manner 

consistent with the known spatial involvement of pathological AD markers and that its 

cascading network failure begins before the formation of amyloid plaques (Jones et al., 

2015). This latter finding suggests that tau-related loss in connectivity precedes the causal 

stream of amyloid accumulation, and so provides evidence against the amyloid cascade 

hypothesis. Interestingly, they also found that the connectivity within the DMN, between 

the posterior and ventral parts of the system, actually shows an increase as the disease 

progresses, after the initial deterioration of the posterior DSM. This increased connectivity 

was found to correlate with elevated amyloid levels and declining hippocampal volume, 
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key markers of AD progression. They hypothesize that as a result of failures in the 

posterior DMN, a transient compensatory mechanism is activated to increase connectivity 

between the posterior and ventral networks, and that the metabolic demands associated 

with this increased connectivity could be the phenomenon that triggers downstream 

pathological processes. This is supported by animal studies that suggest that Aβ secretion 

and deposition is enhanced by neuronal activity (Li et al., 2013).  

 

Adding to these discoveries, Palmvquist conducted a study to uncover regions of early 

accumulations of Aβ, which they suspected would be more localized than the neocortical 

spread outlined in Thal’s Phase 1 because of the difficulties of precise early localization 

resulting from the time lag between the beginning of amyloidosis and the onset of clinical 

symptoms (Palmvquist et al., 2017). To do this they compared non-accumulators (with 

normal levels of amyloid) with early Aβ accumulators, who have abnormally low levels of 

CSF Aβ42 and normal levels of overall Aβ (detected by PET) and whose rate of 

accumulation of Aβ fibrils matches those with both abnormal CSF Aβ42 and PET Aβ 

levels. They found that Aβ fibrils accumulate first in the posterior cingulate cortex, the 

precuneus and the medial orbitofrontal cortex, regions centrally involved in the DMN, 

before extending across the neocortex. Furthermore, they found that early accumulators 

exhibited hypoconnectivity within the DSM and between the DSM and the frontoparietal 

network, but that even earlier accumulators (with less abnormal levels of CSF Aβ42) 

exhibited hyperconnectivity in these areas, potentially supporting the hypothesis of Jones 

et al. (2016).  
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Rather than suggest that the amyloid cascade hypothesis is incorrect, these studies point to 

a more complex interaction between tau and Aβ aggregates that causes the downstream 

neuropathological process of AD. More specifically, they point to a need for clarification 

on how tau pathology spreads and what role Aβ deposition has in the intensity and 

direction of this process. In 2018, Jacobs et al. conducted a study that combined a 

multitude of tau, amyloid, hippocampal and diffusion tract imaging methods with an 

intricate design to test the hypothesis that “tau deposition is associated with aberrant 

structural connectivity under the influence of increased amyloidosis” (Jacobs et al., 2018).  

 

They found, first, that lower baseline hippocampal volume was associated with increased 

mean diffusivity of the hippocampal cingulum bundle (HCB), a tract that connects the 

hippocampus to the posterior cingulate cortex (as well as other areas) and that forms part 

of a network subserving memory. Then they demonstrated that they could predict changes 

in overall levels of tau aggregates in the posterior cingulate cortex from baseline levels of 

diffusivity of the HCB. They obtained this result even when normalizing for hippocampal 

volume, although hippocampal volume itself was not able to predict changes in PCC tau 

levels, suggesting that the relationship between HCB diffusivity and PCC tau is stronger 

than between hippocampal volume and HCB diffusivity. This result supports the view that 

tau accumulates in a tract specific manner, where abnormally diffusive tracts lead to an 

increase in accumulation of tau in downstream regions. Importantly, this association 

between PCC tau and HCB diffusivity was found only in subjects with abnormal levels of 

Aβ and not in those with regular Aβ levels. This leads to their conclusion that the 

relationship between HCB diffusivity and PCC tau is stronger when the subject exhibits 
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high levels of amyloidosis. Finally, they were able to connect these processes to cognitive 

impairment by predicting memory impairments from HCB baseline diffusivity and, again, 

they found that the connection was stronger when the subject had abnormal levels of Aβ 

than when they did not.  

 

The tract specific propagation of tau, Jones et al.’s finding of connectivity failures 

preceding cortical plaque accumulations and Jacobs et al.’s findings of the dependence of 

downstream tau related pathology on the presence of abnormal levels of Aβ, as well as 

some of the other findings outlined thus far, might suggest an alternative to the amyloid 

cascade hypothesis in which tau related changes cause downstream pathology and 

modulation of the toxicity of Aβ in subjects with already abnormal levels of Aβ. The 

differential spread of tauopathy and amyloidosis, according to which tauopathy begins in 

central areas in the brain and spreads towards cortical areas and amyloidosis does the 

opposite, is more in line with this understanding of the relationship between tau and 

amyloid where each component might modulate the spread and toxicity of the other. 

Amyloid might act as a gatekeeper for the pathological process of AD, but amyloid 

accumulations alone are not the central cause of the process as suggested by the amyloid 

cascade hypothesis. Availability of alternative theories is important for the field to not be 

narrowed to an amyloid-centric view.  

 

Let us return to the A/T/(N) biomarker approach of the NIA/AA. Although they specify 

that their framework does not assume the amyloid cascade hypothesis, and they provide 

ideas for alternative hypothesis testing, the dependency on A+ markers to define the 
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Alzheimer’s Continuum seems to indicate at least some reliance on the belief that amyloid 

is more central than other markers in characterizing AD.  

 

Burke et al. conducted an autopsy based study that evaluated the presence and incidence of 

dementia in each NIA/AA proposed biomarker profile (Burke et al., 2018) and that 

provides insights into the practical applications of these biomarkers. They found that the 

two biomarker profiles with A+ and T+ values, corresponding to the AD specific profiles, 

were significantly more correlated with both prevalence and incidence of dementia, with 

similar rates for N+ and N- subjects. This support the NIA/AA’s consensus that a 

combination of abnormal levels of tau and amyloid account for the traditional AD profile. 

However, they also found that the lowest rate of dementia prevalence and incidence 

occurred in subjects with only abnormal amyloid biomarkers (A+ T- (N)-), and that this 

prevalence was almost the same for subjects with normal biomarker levels (A- T- (N)-). 

Amyloid alone is therefore not enough to cause downstream cognitive decline, and not 

specific enough to cases of AD, but the NIA/AA does consider it enough for identification 

on the Alzheimer’s continuum. The importance of this biomarker profile within the 

NIA/AA framework is likely do to an interest in identifying early pathologic change, but 

its preference over A-T+(N)+ profiles, which have higher rates of prevalence and 

incidence of dementia, seems like it is due, at least partly, to an assumption of the 

centrality of amyloid in line with the amyloid cascade hypothesis. If we make use of this 

aspect of their proposed framework, a biologically based approach might still not be able 

to explain how amyloid plaque burden is often found in cognitively unimpaired elders, and 
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might bias future studies against investigations of possible amyloid-independent tauopathy 

spread and progression.  

 

Despite the possible overvaluing of A biomarkers in defining the Alzheimer’s continuum, 

the A/T/(N) approach is largely in line with our understanding of the pathological elements 

of AD, particularly in their requirement of A+T+ to characterize the condition. Even 

though they do not account directly for non-AT(N) pathology, the A/T/(N) profiles provide 

a framework against which other pathological elements can be evaluated. Furthermore, 

analysis of the intricate relationship between amyloidosis and tauopathy presented in this 

section is highly suggestive of the need for a standardized system for classifying 

biomarkers that is interpretable and AD-specific and that facilitates the design of studies 

that can adequately shed light on the relationship between pathological elements of AD. 

The causality of the pathological elements of AD is still unresolved, but the NIA/AA 

biomarker approach is a useful tool for identifying different combinations of these 

elements and evaluating their differential effects on pathological progression, cognitive 

decline or other biomarkers.  



 

  45 

Multimodal Integration of Biomarkers for Early Detection of Alzheimer’s Disease 

Using Machine Learning 

 

Challenges and Advantages of Multimodal Machine Learning Approaches 

 

Machine learning has been of interest to the literature concerning AD primarily because of 

the possibilities it offers for early detection of the disease. Early detection of AD is crucial 

to our understanding of AD, for it would allow us to identify and investigate AD subjects 

early on in the AD neuropathological process. More importantly, early detection can 

contribute to the development of intervention methods that might alleviate the subsequent 

symptoms and neuropathologic progression of AD, and allows for patients to have earlier 

access to care settings where they can be treated according to the best methods available. 

Currently, these interventions, principally in the form of antidementia drugs and caregiver 

interventions, are limited, but they are supported by evidence that shows they can help by 

improving cognitive function, treating depression, improving caregiver mood, and 

delaying institutionalisation (Prince et al., 2011).  In addition, because of the prevalence of 

multiple neurodegerative conditions in patients far into the AD process, early detection 

also facilitates the isolation of AD, which might lead to better diagnostic accuracy by 

helping us avoid the confounding of neurodegenerative disorders that often occurs in later 

diagnoses of AD.  

 

The development of machine learning algorithms for improved classification of AD relies 

on the establishment of useful biomarkers of AD progression. A standardized 



 

  46 

understanding of AD biomarkers did not exist until the proposed NIA/AA framework, and 

so the literature of machine learning for AD has progressed rather blindly without 

standardized understanding of  the progression of biomarkers and how these relate to both 

the clinical presentation and the neuropathologic process of AD. In the 2018 framework, 

the NIA/AA define AD as the presentation of two possible biomarker profiles, A+/T+/N- 

and A+/T+/N-. The implication behind this definition is that biomarkers of 

neurodegeneration, which include total tau CSF measures (t-tau), FDG PET and MRI, are 

not specific enough to AD and so their normality or abnormality cannot be used to 

diagnose a subject as having AD (or as being in the Alzheimer’s continuum, a term that 

includes the biomarker profiles of AD as well as A+ profiles with T-). This is supported by 

an NIA/AA study from 2016 where they found that the correlation between biomarkers of 

neurodegeneration (particularly between t-tau and hippocampal volume as assessed by 

MRI) was minimal (59%) and much smaller than the correlation between A biomarkers 

(Amyloid PET and CSF AB42) (Vos et al., 2016). A recent study by Ekman et al. also 

found inconsistency within the N domain of biomarkers in subjects with MCI (Ekman et 

al., 2018).   

 

Nevertheless, the literature on ML for AD classification has relied heavily on imaging 

modalities for neurodegeneration, particularly on MRI but also on FDG PET (See Spasov 

et al., 2019,  Nguyen et al., 2019, Sorensen et al., 2017 or Lu et al., 2018 for examples). 

Even a large proportion of multimodal studies, which incorporate multiple biomarkers in a 

learning algorithm, have limited their scope to combining biomarkers within the N domain 

to accurately classify AD.   
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In order to improve and validate current neurodegeneration biomarkers, as well as newer 

and less standardized markers such as those involving plasma levels, EEG signals or fMRI 

connectivity, MRI, FDG-PET and t-tau need to be studied in relation to A and T 

biomarkers, especially when the desired outcome is accurate AD classification. 

Neurodegeneration is the pathological element of AD most correlated with clinical 

symptoms associated with the disease, which is why using MRI and FDG-PET might 

result in high accuracy rates for predicting clinically diagnosed AD, but they do not reflect 

AD-specific processes, and biomarkers within this domain show high variability (i.e. are 

not standardized), so they should not be used in isolation for accurate AD diagnosis. Even 

if N domain biomarkers are capable of achieving high accuracy rates in differentiating 

between AD and healthy controls or between prodromal stages of AD and AD, the 

algorithm is unlikely to be learning AD-specific changes, and its ability to differentiate 

between conditions is somewhat unsurprising considering that disease progression once a 

subject has already been diagnosed with Mild or Major NCD due to AD is highly 

correlated with neurodegeneration rates. Because of this, studies involving only N domain 

biomarkers are unlikely to be useful in identifying AD-specific patterns long before the 

appearance of cognitive systems, and this is the primary goal of early detection paradigms. 

Instead, I propose that future research focus explicitly on developing multimodal machine 

learning algorithms that combine biomarkers from each of the NIA/AA defined categories. 

These models are advantageous in that they can provide us with classification methods that 

make use of large amounts (or all) of available information, can allow us to see the relative 

importance of different modalities and their features, can provide us with information 

about the relationship between AD neuropathological elements, can help us evaluate non-
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standardized biomarkers with relation to standardized ones, and can contribute to the 

identification of more robust biomarker profiles that account for variation among the AD 

population.  

 

Literature Review 

 

In recent literature, multimodal ML methods that combine A/T/N biomarkers have been 

quite successful in the classification of AD and its prodromal stages. The following review 

demonstrates their benefits and highlights some of the main issues that need to be 

considered in the development of such methods. One major complication of multimodal 

techniques is that they can be more prone to overfitting as a larger amount of weights (for 

the modalities and the features of each modality) need to be derived. Another difficulty in 

the development of such models is accounting for missing values and biased datasets, 

where there is significantly more information about one modality or demographic than 

there is about others. Furthermore, the correlation between features between modalities, 

depending on what modalities were chosen, might need to be evaluated and fixed for 

efficient model building.  Different ML methods, as well as different methods for feature 

extraction, feature selection and model validation are used in the following papers to tackle 

these issues, to varying degrees of success.  

 

Just this year, Lee et al. assessed the conversion of MCI (similar to Mild 

Neurodegenerative Disorder) to probable AD with a deep learning recurring neural net 

variant that incorporated multimodal information from Aβ42, t-tau and p-tau CSF 
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measures, MRI hippocampal volume and entorhinal cortical thickness, cognitive 

performance through neuropsychiatric assessment of executive function and memory,  and 

demographic information for 1618 subjects taken from the  Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (307 MCIc, 558 MCInc, 415 controls, 338 AD) 

(Lee et al., 2019). An interesting and relatively unique aspect of this experiment was that 

the CSF levels and cognitive performance data were longitudinal, collected at multiple 

time points, and so the model was both multimodal and longitudinal, having to account for 

large amounts of (possibly correlated) information. The central question of the study was 

whether longitudinal and multimodal algorithms perform better when trying to classify 

MCIc (converted) from MCInc (non-converting). Because training in RNNs with long 

inputs, as the ones needed for longitudinal analysis, can sometimes be difficult, they used 

Gated Recurrent Units (GRU) to extract feature vectors for each modality and then 

concatenated the vectors. Final prediction of the MCI conversion rate for each subject was 

then performed using L1 regularized logistic regression.  They compared the results of 

their multimodal model to a single modal method based on cognitive performance (which, 

out of all the markers, gave the best single modal performance) and to a baseline model 

with all modalities but where longitudinal data were not included. Their findings indicated 

that multimodal and longitudinal information increased the accuracy of their prediction. 

Their proposed model was able to predict MCI conversion in 6 months with an accuracy of 

0.81, a sensitivity of 0.84 and a specificity of 0.80. Furthermore, they concluded that their 

GRU-based model was advantageous as compared to other models  
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(particularly kernel based SVMs) in that it was able to handle irregular longitudinal data 

and incomplete samples (which they had a lot of) and in that it can be more easily 

expanded to incorporate other modalities (by simply adding another GRU).  

 

Deep Learning has also been used in other AD classification studies in recent years, but 

their necessity for the problem has been questioned, as many others have preferred to use 

simpler, more interpretable methods and have not necessarily had worse results. Of 

particular interest are the studies that use decision trees to get reliable and interpretable 

predictions.  

 

In 2013, Gray et al. considered the three-way problem of distinguishing AD from healthy 

controls, MCI from healthy controls, and MCIc from MCInc using a random forest method 

and 149 ADNI subjects (37 AD, 75 MCI, and 35 healthy controls) (Gray et al., 2013). In 

random forests, the final predicted class of a subject is obtained by combining the 

predictions of a series of individual decision trees. It uses the method of bootstrap 

aggregating (bagging) as well as random feature selection in the construction of the trees to 

reduce variance and avoid overfitting. They combine random forests with a manifold 

learning technique, through which they derive supervised similarity measures for the 

different modalities. By delivering consistent pairwise similarity measures, their method is 

relatively interpretable and allows for a combination of multimodal and unbalanced 

features that can readily be extended to multi-class classification (more easily than SVMs). 

The modalities used in this experiment included MRI regional volume measures, FDG-

PET regional intensities, Aβ42, t-tau and p-tau CSF levels, and APoE genotyping. They 
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compared the performance of their random forest when the information from each 

modality was simply concatenated (as in Lee et al. 2019) to when it was embedded using a 

joint similarity matrix based on the pairwise similarity measures. They found that when the 

features where embedded, classification rates for all three cases was higher, suggesting that 

there is correlated and complementary information between modalities that when 

incorporated into the model can improve the performance of the classifier. For AC-healthy 

control classification, they achieved an accuracy rate of 89% with 87.9% sensitivity and 

90% specificity. For the other two problems, performance was expectedly worse, but still 

above chance (MCI-Healthy controls: acc=74.6%, sen=77.5%, spec=67.9%; MCIc-MCInc: 

acc = 58.0, sens = 57.1, spec = 58.7).  

 

Another Random Forest based classification scheme was presented by Dauwan et al. 

in a study focused on differential classification of AD and Lewy Body disease (Dauwan et 

al., 2016). Although more oriented towards differential diagnosis than early detection, the 

study is interesting because it combined an especially wide array of modalities, including 

clinical symptoms, CSF measures and MRI as well as resting state EEG signals for 198 

subjects from the  Amsterdam Dementia Cohort (66 subjects for each of the three 

conditions). To quantify clinical symptoms, they used the standard MMSE (Mini Mental 

State Examination) for general assessment of cognitive dysfunction, the trail making test 

part A (TMT-A) for assessing motor speed, the visual association test (VAT) for assessing 

episodic memory and a Digit span test to assess attention. This collection of 

neuropsychiatric tests provide a better measure of all the possible cognitive dysfunctions of 

AD (as seen in our discussion of cognitive domains in section 1) than does an assessment 
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of MMSE alone, which is more common in the literature. For CSF, they used all the AD-

related CSF levels and included additional features that reflected the ratio of tau and Aβ42, 

in order to account for the idea that the ratio of tau to Aβ42 rather than the magnitudes of 

each might be what modulates the pathological process of AD (SOURCE). MRI measures 

included assessment of medial temporal lobe atrophy, cortical atrophy and white matter 

hyperintensities. Another interesting feature of this study is that they derived a Variable 

Importance Score (VIMP) for each feature so that they could better assess the contributions 

of each feature and determine performances for various combinations of them. Their 

analysis of feature importance revealed the EEG was particularly important for the 

differentiation of LBD with AD and healthy controls, whereas it did not have much of an 

effect on the classification of AD from controls, for which MMSE was the best 

discriminant. This latter finding is unsurprising since they did not deal specifically with 

early AD patients where clinical symptoms are not yet presented fully but pathology exists. 

Nevertheless, the study found that incorporating the CSF and MRI biomarkers increased 

the accuracy of their model.  Unfortunately, they did not assess the relative values of CSF 

and MRI explicitly in the paper, but their design could allow for such comparisons. For the 

discrimination of AD from healthy controls (in which we are most interested), they 

achieved a high accuracy of 91%, a sensitivity of 92% and a specificity of 91% when 

combining all available features.  

 

A final, very recent, multimodal decision tree based model classifying AD, MCI and 

subjects with subjective cognitive decline (SCD, used as control) was proposed by Mofrad 

et al. (2019). The study was oriented toward validating the interpretation of CSF 
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biomarkers proposed by the NIA/AA, and so their decision to use a decision tree algorithm 

was largely based on their desire for and belief in increased intuitive interpretability for 

diagnostic purposes. Using a decision tree model that also incorporated regressively 

learning cutoff values (rather than using standardized ones) also allowed them to identify 

interesting subgroups within the sampled population, which would not have been possible 

using solely regression models for which the class labels need to be known a priori. Their 

supervised and nonparametric Classification and Regression Tree (CART) model 

incorporated data from all three categories of CSF as well as from demographics, ApoE 

genotyping and MMSE measures of cognitive decline for 1446 subjects diagnosed with the 

NIA/AA criteria (1004 AD, 442 healthy controls). Their analysis revealed that the best 

predictive model relied on two cutoff points for CSF Aβ42 (the most discriminative 

feature) and one cutoff point for CSF t-tau, and was not improved by incorporating age, p-

tau levels, sex or ApoE status. The model resulted in an overall accuracy of 90% 

(sensitivity of 93%, specificity of 88%) and 76% (sensitivity of 84% and specificity of 

70%) for distinguishing AD from SCD controls and MCIc from MCInc, respectively. To 

evaluate the generalizability of their model, they tested its ability to distinguish AD from 

SCD on an independent cohort, and were able to achieve similar, if somewhat lower, 

predictive performances. 

 

The combination of cutoff points allowed them to identify two AD subgroups of CSF 

profiles, one typical profile with low levels of Aβ42 and high levels of tau, and one 

atypical one with even lower levels of Aβ42 but normal levels of tau, both of which 

showed similar patterns of MRI atrophy and cognitive decline. Because p-tau and t-tau 
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were correlated, the atypical subgroup likely corresponds to the two A+/T- biomarkers 

within the Alzheimer’s continuum but outside of the Alzheimer’s Disease label (Jack et al., 

2018). When combined with the markers of neurodegeneration and cognitive decline, the 

NIA/AA label is Alzheimer’s and concomitant suspected non Alzheimer’s pathologic 

change with dementia. Furthermore, they found that most misclassified subjects (n=50 of 

89.56%) within the MCIc-MCInc comparison were subjects with abnormal biomarker 

profiles who had not clinically progressed to AD, and so represented subjects that might 

still convert to AD in the future. The identification of these subgroups, made possible by 

their choice of design, reveals the discrepancy between the clinical diagnosis according to 

pre-2018 NIA standards and the biomarker profile, but it also reflects the promising ability 

of machine learning techniques to identify and further analyze these groups through 

interpretation of their biomarkers.  

 

Despite the simplicity and intuitive interpretability of decision trees, the more sophisticated 

Support Vector Machines (SVM), seem to be the preferred or most common machine 

learning technique applied to AD classification,  

 

An influential study from 2011 used a linear SVM to combine multimodal information 

from 239 ADNI subjects for the prediction of MCI conversion to AD (MCIc-MCInc 

comparison  using 69 MCIc and 170 MCInc). Davatzikos et al. combined CSF measures, 

clinical information, demographics and ApoE status with an intricate score of brain 

atrophy, called SPARE AD (Spatial Pattern of Abnormalities for Recognition of Early 

AD), derived from pattern recognition of MRI scans as proposed by Fan et al. (2008). 
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When using only the SPARE-AD score in their linear SVM, they were able to correctly 

classify MCIc subjects 94.7% of the time, but at the cost of classifying MCInc correctly 

only 37.8% of the time. This reflects the non-specificity of neurodegeneration markers like 

MRI to AD even when using a high dimensional pattern recognition method like SPARE 

AD for the identification of relevant features. The classification rate and the specificity of 

the model increased slightly with the addition of biomarkers, with maximum overall rates 

reached when using t-tau (classification rate of 61.7%, sensitivity of 84.2%, specificity of 

51.2%). However, combining Aβ42, t-tau and Aβ42, p-tau and tau/Aβ42 ratios each 

individually with SPARE-AD showed similar results. They attributed their low 

classification rates at least partly to the fact that many misclassified MCInc are likely to 

convert to MCIc or to another neurodegenerative disorder in the future, and so focused 

more on the sensitivity and specificity metrics. Overall their results suggested that 

multimodal methods using MRI and CSF measures provided the most reliable models of 

MCI to AD conversion. They further concluded that, because SPARE AD scores were 

associated with faster decline in MMSE scores and because of the high sensitivity of their 

SPARE AD SVM, brain atrophy measures might be critical in the identification of MCIc. 

However, this only indicates that cognitive decline is more correlated with brain atrophy 

than other biomarkers, and cannot help in the identification of MCIc in individual subjects 

where their cognitive decline and atrophy might be due to another neurodegenerative 

condition.  
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Another influential study in 2011 distinguished AD and MCI subjects from healthy 

controls using an SVM that incorporated multimodal information from 202 ADNI subjects 

(51 AD, 43 MCIc, 56 MCInc, 52 healthy controls) using a kernel combination method 

(Zhang et al., 2011). This mixed kernel approach allows the learning of each modality to 

rely on a kernel that best reflects the distribution of its features rather than assuming the 

same distribution with a single kernel on a concatenated feature vector, and was selected 

for effective fusion of multimodal data.  They compared their model to a single modal 

SVM and a multimodal SVM with direct feature concatenation, and found that their model 

consistently outperformed the alternatives, achieving a high classification rate of 93.2% 

(sensitivity of 93.0% and specificity of 93.3%) for AD-HC, with an AUC of 0.98 and of 

76.4% (sensitivity of 91.8% and specificity of 66.0%) for MCI-HC, with an AUC of 0.81.  

 

Despite the relatively high performance scores of the mixed kernel SVM of Zhang et al., 

kernel combination methods have a higher risk of overfitting, and so would require 

additional evaluations of the model’s generalizability to ensure its predictive value. 

Unfortunately, Zhang et al. do not include this in their study, and so their conclusions still 

require further validation. This year, Varatharajah et al. published a study with a robust 

design that included an evaluation of their final proposed multimodal model’s 

generalizability as well as comparisons of different standard machine learning approaches 

(Varatharajah et al., 2019). They combined demographic information with genetic factors 

(ApoE genotyping as well as genotyping for nine other AD related genes), MMSE 

measures of cognitive decline, cognitive resilience measures, CSF biomarkers (all), MRI 

measures, FDG-PET and F-florbetapir (amyloid) PET for 135 ADNI MCI subjects (39 
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MCIc, 96 MCInc). They derived a cognitive resilience score by combining the subjects’s 

years of education with their responses to the American National Adult Reading Test 

(ANART) which gives an estimate of pre-morbid verbal IQ. The MRI features included 

volume and thickness measures of AD-related ROIs as well as hippocampal volume. 

Overall, they considered a wide range of biomarkers and multiple machine learning 

methods, which makes this study particularly interesting. Their model choice was a linear 

kernel SVC, but they started off comparing it to an RBF (nonlinear) kernel SVC in order to 

assess whether the problem of AD classification is linearly separable, and whether more 

complicated nonlinear methods need to be used to tackle it. Then, they compared the 

goodness of fit of the linear SVC with a multi kernel learning algorithm and a General 

Linear Model (GLM) using elastic net regularization (to avoid overfitting). For feature 

extraction, they used an information based approach (rather than a statistical correlation-

based approach) that relies on a join mutual information (JMI) metric for random variables. 

This approach starts with an empty feature set and adds attributes sequentially by choosing 

the attribute that maximized the JMI between the attributes and the outcome (Varatharajah 

et al., 2019, p. 5).  

 

The RBF kernel and linear kernel SVC had similar ROC curves and classification accuracy 

rates, suggesting that the classification of MCIc and MCIc is a linearly separable problem 

that does not necessitate nonlinear models. To evaluate the generalizability of the different 

models compared, they calculated a cross-validated AUC score for increasing amounts of 

features incorporated into each of the models, and compared their change over time for the 

training and testing data. This telling and applicable method revealed that even though all 
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methods showed increased AUC as features were incorporated in the training dataset, in 

the testing dataset the mixed kernel method’s AUC decreased significantly once enough 

features were added. This suggests that mixed kernel methods are more likely to overfit, 

and are therefore less generalizable than the fairly consistent GLM and SVC methods. 

Their performance evaluation showed that the linear SVC outperformed both the MLK and 

the GLM, achieving a maximum AUC of 93%,  sensitivity of 93% and specificity of 77% 

with 65 features. The GLM and mixed kernel classifier performed similarly (but not as 

well) when using an optimum number of 25 and 5 features, respectively.  Finally, they 

looked at the role of individual modalities in the linear SVC and found that CSF measures 

were the highest predictor of AD with a cross validated AUC of about 0.9, which is in line 

with the NIA/AA’s interpretation of CSF biomarkers. Interestingly, they also found that 

when removing CSF measures from the model, the AUC of the linear SVC did not reduce 

by much. The implication of this is that modalities are likely to be correlated, and so 

practices such as the JMI paradigm used above are essential to deriving efficient 

multimodal classifiers.  

 

Proposed Research Framework for the Development of Early Diagnosis Paradigms 

 

These studies demonstrate the validity and efficacy of multimodal approaches for AD 

classification in the development of early detection paradigms. A summary of the key 

studies considered is presented in Table 3. Relatively high performance scores are 

achieved throughout, and some studies specifically report better performances for 

multimodal approaches when compared to single modal approaches (Zhang et al., (2011), 
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for instance). These models allow for the inclusion of most available biomarker 

information, which is necessary in order to be certain that the methods are learning 

meaningful AD-specific changes and that they are accounting for all elements that 

characterize the pathology. In line with the proposed NIA/AA biomarker framework, at 

least A and T domain biomarkers need to be included for a valid assessment of AD, and 

additional domains should be included to explore their relationship to amyloid and tau. As 

the analysis of AD pathology revealed, many questions about the AD process are still 

somewhat unresolved, particularly concerning the causal relationship between markers of 

the disease. Machine learning based studies of AD classification, therefore, should avoid 

assumptions of a unified understanding and should instead be oriented towards providing 

highly interpretable models that can provide insights into the relationship between 

biomarkers. I suggest that a key way for multimodal studies to increase their 

interpretability and ability to elucidate more about the AD process is by using the A/T/(N) 

biomarker profiles to evaluate the contributions of individual subjects and to relate the 

pathological elements to the clinical presentation of AD. Although this approach was not 

adopted by any of the studies considered in my literature review, likely because it was so 

recently proposed, an analysis of their methodologies and results still provide us with 

useful guidelines for the design of future multimodal machine learning AD classification 

studies guided by the A/T/(N) framework.  

 

When it comes to choosing an appropriate machine learning algorithm, I propose that 

future studies apply Decision Tree-based algorithms or linear SVCs and avoid neural nets, 

nonlinear methods or mixed kernel methods. The Decision Tree based algorithms proposed 
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by Gray et al. (2013), Dauwan et al. (2016) and Mofrad et al. (2019) all achieve relatively 

high performance scores (with a maximum accuracy rate of 92% achieved by Dauwan et 

al. in differentiating AD subjects from healthy controls), generally avoid overfitting, and 

have the advantage of being highly interpretable. Mofrad et al.’s study, for example, was 

able to provide valuable insights into the relationship between tau and amyloid CSF 

biomarkers that is in line with an understanding of AD as involving a two way interaction 

between the key pathological elements (rather than the unidirectional understanding 

suggested by the amyloid cascade hypothesis). Varatharajah et al. demonstrate that linear 

SVCs can achieve even higher performances (AUC of 93%, sensitivity of 93% and 

KEY 

STUDIES ML method Modalities included Feature importance estimation 

Lee et al. 

(2019) 
RNN CSF (all), MRI 

Single modal feature extraction and concatenation-based 

integration 

Gray et al. 

(2013) 
Random Forest 

CSF (all), MRI, 

FDG-PET, ApoE 

Embedding of features using joint similarity measures of 

decision tree agreement 

Dauwan et al. 

(2016) 
Random Forest CSF (all), MRI, EEG Each feature has a Variable Importance Score (VIMP) 

Mofrad et al. 

(2019) 

Classification 

and Regression 

Tree (CART) 

CSF (all), ApoE 

genotyping 

Regression tree allowed for learning (rather than setting) 

of cut-off values that established the relative importance 

of the markers 

Zhang et al. 

(2011) 

Mixed kernel 

SVM 

CSF (all), MRI, 

FDG-PET, ApoE 
Atlas warping algorithm extracts ROIs from MRI 

Davatzikos et 

al. (2011) 
SVM 

CSF (all), MRI, 

ApoE 

Complex SPARE AD pattern recognition algorithm 

extracts MRI features 

Varatharajah 

et al. (2019) 

Linear SVC (+ 

RBF kernel 

SVC, mixed 

kernel SVC, 

GLM) 

CSF (all), MRI, 

FDG-PET, Amyloid 

PET, ApoE (+ 9 

more genes) 

Information based feature extraction method using joint 

mutual information scores and different amounts of 

extracted features. 

 

Table 3: Summary of key multimodal AD classification studies that integrate A, T and N biomarkers 
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specificity of 77%) without necessarily reducing interpretability. The linear SVC 

outperformed the RBF kernel SVC, suggesting that linear approaches are sufficient for AD 

classification paradigms. The linear SVC also outperformed the mixed kernel approach. 

Although in Zhang et al. (2011) the mixed kernel approach achieved good performances, 

because the results were not corroborated in the more robust study by Varatharajah et al. 

(2019), and because mixed kernel methods have the additional disadvantage of not being 

able to easily incorporate additional modalities, I suggest that they should not be preferred 

over linear SVCs. Neural nets, as the one proposed by Lee et al. (2019), are robust to 

irregular data, but are not very interpretable and might not exhibit as high performances as 

other methods when considering data with large amounts of features, as is the case with 

multimodal studies.  

 

Because of the large amounts of data, multimodal studies might be particularly prone to 

overfitting. As a result, I propose that all multimodal classification studies include some 

method for evaluating the generalizability of their model. Generalizability evaluations are 

particularly important when a large percentage of studies use data from the same database, 

and even more so when this database is known to be non-representative of the general 

population. Only 5% of the subjects included in the ADNI database, used in 5 of the 7 key 

studies in this review, identify as African-American, a percentage that is too low for a 

reliable examination of whether African-Americans differ from Caucasians, and one that is 

likely to be even lower when inclusion criteria involves information from multiple 

modalities, since social and economic factors heavily influence access to these modalities, 

and African-Americans are one of the groups most marginalized by the effects of these 
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factors. Studies continue to use these biased datasets and assume their generalizability 

despite the higher prevalence of AD for African-Americans, and findings of significantly 

lower CSF tau levels that might suggest heterogeneity of the AD pathological process not 

accounted for in the ADNI dataset (Shin et al., 2016; Howell et al., 2017).  

 

As an urgent starting point, the Alzheimer’s scientific field must invest in exclusively 

African-American cohorts, as well as cohorts specific to other marginalized groups, in 

order to counter data collection biases and include more heterogeneity of the disease for 

increased understanding of the AD process, especially if we are to embrace a biomarker 

based framework. Another necessary step is to always include generalizability assessments 

that demonstrate the model’s overfitting avoidance. One acceptable method for doing this 

is to simply test the model on an independent cohort, as is done by Mofrad et al. (2019). 

An interesting approach might be to train a model on an ADNI dataset and then evaluate 

its performance on a cohort made up of subjects not well represented in the ADNI, such as 

African Americans. Another interesting method is proposed by Varatharajah et al. (2019) 

and involves sequentially increasing the amount of considered features and comparing 

AUC scores of the model separately on the testing and training datasets.  

 

Lastly, I propose that increased interpretability will be achieved by future multimodal 

classification studies that use an appropriate method for estimating feature importance. 

Feature importance evaluations allow for informed multimodal integration that not only 

helps us visualize the relationship among biomarkers, but also lead to more robust models 

that account for correlation between variables. Dauwan et al. (2016) decide on a simple 
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approach that gives a variable importance score (VIMP) to each feature and allows for 

manually incorporating or deleting selected features in the model. For more intricate 

models, I suggest using information-based approaches, as suggested by Gray et al. (2013) 

or Varatharajah et al. (2019). Both successfully use joint similarity estimates for feature 

extraction, thus reducing the amount of correlated data incorporate into the model, and 

demonstrate that an information-based approach is more successful than simple 

concatenation of features or mixed kernel methods, the latter of which will likely also 

reduce the interpretability of the model. 

 

In summary, I propose that future multimodal studies using machine learning for the 

development of early diagnostic paradigms (a) classify their subjects according to the 

A/T/(N) biomarker profiles, (b) rely on linear SVCs or decision tree based algorithms, (c) 

make efforts to incorporate a diverse population to account for the heterogeneity of AD, 

(d) include an assessment of generalizability, (e) assess and visualize relative feature 

importance and (f) make use of information-based methods for multimodal integration. 
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Conclusion 

 

The discrepancy between the clinically-based characterization of AD and the pathological 

process of AD requires a movement toward a more biologically based definition that 

makes use of advances in the standardization and accessibility of biomarkers and is 

practical for both diagnostic and research purposes. An A/T/(N) biomarker profile as 

proposed by the NIA/AA, combined with clinical information, serves as a useful bridge 

between our clinical and pathological standards, and should be considered in the design of 

experiments that require a valid assessment of AD. According to this framework, 

biomarkers of both amyloidosis and tauopathy must be abnormal for a subject to be 

classified as AD. Their requirement of multimodal biomarker information for the accurate 

diagnosis of AD is largely supported by pathological evidence of an intricate relationship 

between tauopathy and amyloidosis in which they mediate each other’s function, and a 

secondary, but highly correlated relationship between clinical status and 

neurodegeneration.  

 

An important limit to this approach is its reliance on hard to access modalities for accurate 

assessment of AD. CSF measures are expensive and require lumbar punctures, and PET or 

MRI imaging modalities are, in many settings, difficult to access. However, this 

framework will significantly increase the validity of diagnoses and is absolutely crucial to 

developing research based interventions for early detected AD subjects. As we embrace 

this approach and begin to rely more on biomarker data, therefore, we must put significant 

effort into not further marginalizing already underrepresented communities. This is critical 
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considering that the incidence of dementia is is growing at a faster rate in ostensively 

developing countries. The 10/66 Dementia Research Group is an organization that is 

helping spearhead changes in the scientific community by conducting population-based 

research in Latin America, the Caribbean, India, Russia, China and South East Asia 

(Patterson, 2018). They are so named because when they begun 10% of global research 

was being conducted in low/middle income countries even though they contain 66% of 

people with dementia (Patterson, 2018, p. 14).  

 

If we continue to collect diverse biomarker data, our framework will become more robust, 

and we will be able to develop better performing and more valid machine learning models. 

Multimodal AD classification studies of AD that combined A, T and N biomarkers have 

made use of machine learning algorithms like decision trees, support vector machines and 

neural networks, along with a variety of techniques for feature extraction and evaluation, 

overfitting avoidance and generalizability estimation to successfully advance our ability for 

early detection of AD.  
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