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Abstract

Over the course of a college mathematics degree, students are inevitably exposed to ele-
mentary physics. The derivation of the equations of motion are the classic examples of
applications of derivatives and integrals. These equations of motion are easy to understand,
however they can be expressed in other ways that students aren’t often exposed to. Using the
Lagrangian and the Hamiltonian, we can capture the same governing dynamics of Newtonian
mechanics with equations that emphasize physical quantities other than position, velocity,
and acceleration like Newton’s equations do. Building off of these alternate interpretations
of mechanics and understanding gauge transformations, we begin to understand some of the
mathematical physics relating to gauge theories. In general, gauge theories are field theories
that can have gauge transformations applied to them in such a way that the meaningful
physical quantities remain invariant. This paper covers the buildup to gauge theories, some
of their applications, and some computational approaches to understanding them.
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1 Introduction

This paper was written as a senior thesis in mathematics under the guidance of Sam Nelson,
a Professor of Mathematics at Claremont McKenna College for the Spring semester of 2019.
I want to give a big thank you to the CMC Mathematical Sciences Department, Keck Science
Department, the College, and Professor Nelson for their support and guidance throughout
my undergraduate experience.

My primary goal with this paper is to introduce complicated mathematical concepts and
apply them to the simplest physical problems. This allows deeper insight into the way the
math works since little energy has to be spent understanding the motion of springs or falling
objects. Once the simple examples are explained, then the difficult concepts are alluded
to but not discussed in detail. This maintains the focus of the paper on the math rather
than the physics. I structured the paper so that each concept builds off of prior concepts
in a logical progression. The major topics covered are gauges, gauge theories, Lagrangians,
Hamiltonians, and Hamiltonian lattice gauge theory. However, in order to build up to those
main topics, I include several subsections that develop the necessary tools to formally derive
the main results.

2 An Introduction to Gauge Theories

This section will cover the foundations of gauge theories beginning with an overview of the
Lagrangian and continuing with a discussion of the implications of invariant Lagrangians.
Following that we will cover symmetry groups, Lie groups, restrictions we can place on the
Lagrangian, and gauge groups.

In general, gauge theories are a derivation of physical field theories that involve symmetry
groups. These symmetry groups are transformations which leave an object invariant once
acted upon. In a geometric context, a symmetry group of a triangle might look like rota-
tions, reflections, or translations of the triangle. The object was acted upon, but ultimately
remained invariant because nothing structurally was changed. Symmetric in the context of
gauge theory is less tangible; it means that once our physical field is acted on by a set of trans-
formations, the Lagrangian is invariant and the physics of the field is unchanged. Lagrangian
invariance tells us that the important physical characterizations that the Lagrangian cap-
tures remain unchanged. For example, acted upon by a symmetry group, a particle should
maintain the same energy.
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2.1 Overview of the Lagrangian

The Lagrangian is fundamental to our understanding of field theories like gauge
theories and Hamiltonian Field Theory. The dynamics that govern interactions
between objects, particles, and space are all captured in elegantly simple expres-
sions involving the Lagrangian. As an example, we’ll look at a basic Lagrangian
that appears in elementary mechanics

L ≡ T − V

where T is the total kinetic energy of the system and V is the total potential
energy of the system such that

T =
n∑
i=1

miv
2
i V =

n∑
i=1

Vi

Expressing a physical system in this way removes the clutter and system of equa-
tions that describes the forces on each individual object and instead deals with
cumulative energies. Another advantage of using the Lagrangian over the stan-
dard equations of motion is that the Lagrangian can be expressed using a gener-
alized coordinate system. This becomes advantageous with chaotic systems like
the double pendulum, where rather than laboriously calculating an x and y com-
ponent, one can simply look at the angles θ1 and θ2 each pendulum makes with
respect to some θ = 0.

This gives us that the Lagrangian in a classical system for a rigid bodied mass is

L ≡ T − V =
1

2
mẋ2 −mgx

where x is our generalized coordinate, ẋ is the velocity of the object, m is the mass
of the object, and g is the gravitational constant for Earth. A physical example of
where this might be useful is in dealing with a pulley system with several atwood
machines where the equations of motion would need to be expressed for each
segment of the pulley system as a separate force but in the case of the Lagrangian,
all that is needed is the energy of the system and a general coordinate.

Theorem: Let L denote the Lagrangian of a system such that L ≡ T − V =
1
2
mẋ2 − mgx. Then Lagrangian mechanics is a valid formalism of Newtonian

mechanics such that we can derive the same equations of motion.

Proof : Beginning with the Euler-Lagrange equation from the calculus of varia-
tions,

d

dt

(
∂L
∂ẋ

)
− ∂L
∂x

= 0
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d

dt

(
mẋ
)
− (−mg) = 0

−mg = mẍ

F = ma

which is consistent with Newton’s second law of motion. From F = ma, we can
isolate the acceleration a and integrate twice to get the equations of motion. Thus
Lagrangian mechanics is a valid formalism for classical mechanics for a rigid body.

2.2 Invariant Lagrangians

Invariant Lagrangians are of particular importance to us because gauge theories
arise from certain conditions held on the Lagrangian. In Lagrangian mechanics,
for example, the Lagrangian captures the scalar delta between the kinetic energy
and the potential energy. This means that regardless of our coordinate system,
that scalar quantity is unchanged and leads to the same equations of motion, thus
coordinate transformations leave the Lagrangian invariant. In electromagnetism,
the electric and magnetic potential are independent of coordinate systems just like
gravitational potential energy, thus both are also invariant. This understanding of
the importance of invariance brings us to looking at Lie groups and bundles, which
is our final step before we can fully understand gauges and gauge transformations.

2.3 Lie Groups, Bundles, and Gauge Groups

Now that we understand Lagrangians, we need to build up to an understanding of
gauge groups. We need to briefly cover Lie groups and bundles. In general, a Lie
group is a smooth manifold that can be paramterized locally in such a way that
the group operations (closure, associativity, existence of an identity element, and
invertibility) are smooth locally. More formally, we get the following definition:

Def 1: (Hamilton 1.1.4) A Lie Group is a group that is simultaneously
a manifold so that the map

G×G −→ G

(g, h) 7−→ g · h−1

is smoothly differentiable ∈ C∞ such that the manifold has ‘continuous
symmetry’.

To visualize what it means to have continuous symmetry, imagine a circle and a
square on a table. If you rotate the circle an arbitrarily small amount δ, then the
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circle looks unchanged. In contrast, however, if you rotate a square by that same δ
then you visually have a different looking object. However, if you rotate a square
by δ = π

2
, then of course that rotation will be symmetric to the original square.

That is where the difference in continuous symmetry comes in: symmetric objects
have discrete actions that remain symmetric whereas continuously symmetric
objects have symmetry that is continuous. In a 3-dimensional sense, consider
a sphere and a football, the sphere has continuous symmetry in all directions
of rotation for arbitrarily small δ. However, if you’re looking head on at the
football, it might initially appear to have continuous symmetry since its cross
section is a circle so rotations along that cross section are continuous. However,
any rotations that aren’t directly along that axis show that the football does
not have continuous symmetry since length-wise it does not have symmetry for
arbitrarily small rotations δ.

Now we shift our focus toward bundles as the final component we need to define
and understand to finally formally define gauges and gauge groups.

Def 2: (Hamilton 4.1.1) Consider a map π : E 7→ M where π is onto
between E and M and where E,M ∈ C∞. Now let the point x ∈ M
be any arbitrary element of M , then the fibre of π over x is the subset

Ex = π−1(x) = π−1({x}) ⊂ E

Def 3: (Hamilton 4.1.2) Consider manifolds E,F,M and π : E 7→ M
where π is onto between E and M and where E,M ∈ C∞. Then
(E, π,M ;F ) is called a fibre bundle if the following condition holds:
∀x ∈ M, ∃ U ⊂ M where U = Nε(x) such that π restricted to EU can
be trivialized, i.e. there exists a diffeomorphism φ ∈ C∞ and φ−1 ∈ C∞

φU : EU 7−→ U × F

such that
pr1 ◦ φU = π

The following are some examples of fibre bundles:

(1) Consider a cube. We can think of the base space as {(x, y) : 0 <
x < l , 0 < y < l}, a square with sides l. Then the fibre is the interval
z = [0, l] and so we map the square to the fibre which projects each
point of the square vertically for the interval [0, l], yielding a cube of
side length l. This is an example of a trivial bundle since the fibre is
just an interval.

(2) Consider the same base space {(x, y) : 0 < x < l , 0 < y < l}. Now
if the fibre takes points through {(x, y, z) : x = cos(t), y = sin(t), z = t}
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then the fibre takes points through a helix, or ‘corkscrew’ in a 3rd

dimension and we get a spiraling square (this looks like those stacks of
Post-It notes that spiral upward). This is an example of a non-trivial
bundle.

Now that we have a framework for Lie groups, fibres, bundles, and examples of
each, we can start to understand gauges and gauge groups. Terence Tao collo-
quially describes gauges as the following:

Def 4: (Terence Tao) A gauge is nothing more than a ‘coordinate
system’ that varies based on a particle’s location with respect to a
base, parameterized space.

A gauge can be used to reduce the complexity of calculation (regulating redun-
dant degrees of freedom in L) by temporarily changing a coordinate system to
be normalized. Consider a coordinate-invariant system where we can convert ge-
ometric quantities to a numeric quantity but all statements are invariant under
changes in coordinates. This lets us take a quantity, say |AB|, that continually
appears and let |AB| = 1 and reduce the complexity of the problem. However,
statements like |AB| = 1 is not necessarily a true statement under a new coordi-
nate system. Something like the Pythagorean Theorem |AC|2 = |AB|2+|BC|2 for
a right triangle, however, is a true statement in any coordinate system, thus the
Pythagorean Theorem is coordinate invariant. We can regulate our calculations
by normalizing one quantity per degree of freedom in the symmetry group (Tao).
A gauge is a way to use the invariance of objects under coordinate transformations
to simplify calculations.

As another example of a gauge, consider a baseball thrown with sideways spin.
Ignoring the complexities of fluid dynamics, at each point on the ball there is a
positive or negative drag force vector from air resistance that runs in the direction
of the spin. At every point on the baseball we can define a function d(x, y, z) that
gives the direction of the drag vector at that point. We could orient d = 0 to
be either the true north of the ball or the direction of the spin or anything in
between. This choice of gauge changes our direction function d, but is such that
none of the physical quantities or information at any point on the ball is lost.

Now, we’ll formally define a gauge group to be the following

Def 5: (Hamilton 5.3.1) First suppose we have a map π : P → M
be a principal G-bundle. A gauge group, denoted G (p), is a group
formed by the composition of bundle automorphisms of P , a principal
bundle (a bundle where the fibre is a group). This is equivalent to
a diffeomorphism f : P → P which preserves the fibres of P and is
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G-invariant where the following conditions hold.

1. π ◦ f = π

2. f(p · g) = f(p) · g ∀ p ∈ P and g ∈ G

Put more simply, gauge groups are Lie groups of a principal bundle’s automor-
phisms.

To make the definitions more concrete, consider a coordinate system Φ : A→ G
which takes a geometric object A and identifies it as an isomorphism of a standard
object G. Now if we take any isomorphism of G which we call Ψ : G → G.
Then we can create a new coordinate system Ψ ◦ Φ : A → G by composing the
isomorphism of G with the coordinate system. Every possible coordinate system
Φi of A is formed by taking an isomorphism of G and composing it with Φ. This
tells us that the space of coordinate systems of A is identifiable with the group
of isomorphisms of G. This group of isomorphisms is the gauge group of the
class of geometric objects (Tao). To make the idea more concrete, consider Φ
that relates A the circle |z| = n, n ∈ R+, to G the unit circle |z| = 1. Then the
gauge group would be the group of coordinate systems formed by relating circles
of all radii to the unit circle.

2.4 Group Actions

In this section, we begin to look at the ways in which gauges appear in physics
and how they are helpful. Lie groups and gauge groups have several ways in
which they can act as transformation or symmetry groups on geometric objects
(Hamilton p. 127). This is one of the areas in physics where gauges are most
helpful since electromagnetism is gauge invariant. As physicists were trying to
develop physics for particles and looking at the strong and weak interaction, gauge
invariance and gauge groups were important since the ease of coordinate shifting
lent itself well to developing more simple models. Physicists wanted to develop
theories based on the action of gauge groups and symmetry groups of particles
(Pickering p. 159, 164). An action can be thought of as a way of examining how
a group’s elements correspond to transformations of a space which preserves the
structure of the space, so it has the same equivalence relations, measures, etc.

Def 6: (Hamilton 3.2.1) A left-action of a group G on a set M is a
map

Φ : G×M −→M

(g, p) 7−→ Φ(g, p) = g · p = gp
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which satisfies the following properties:
1. (g · h) · p = g · (h · p) for all p ∈M and g, h ∈ G
2. e · p = p for all p ∈M

Def 7: (Hamilton 3.2.2) A right-action of a group G on a set M is a
map

Φ : M ×G −→M

(p, g) 7−→ Φ(p, g) = p · g = pg

which satisfies the following properties:
1. (p · g) · h = p · (g · h) for all p ∈M and g, h ∈ G
2. p · e = p for all p ∈M

While we have defined separately left and right-actions, we can show that either
can be converted to the other in the following theorem:

Theorem: Suppose, without loss of generality, we have a left action of
a group G on M :

Φ : G×M −→M

(g, p) 7−→ Φ(g, p) = g · p = gp

Then the following defines a right action on M :

Φ : M ×G −→M

(p, g) 7−→ Φ(p, g) = p ∗ g = g−1 · p

Proof : Suppose we have defined (p, g) 7−→ Φ(p, g) = p ∗ g = g−1 · p
Then, from the notion that inversion changes the order of composition,
we get

(g · h) · p = g · (h · p) = (p · h−1) · g−1 = p · (h · g)−1 = (h · g) · p

which shows us that left-actions can be rewritten as right-actions and
vice versa. This is similar to relating sin(x) = cos(π

2
−x). The theorem

tells us that it isn’t important which type of action we’re given because
we can transform it into another, just as it is not particularly important
whether we are working with sin or cos in trigonometry because they
are convertible.
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Now that we’ve seen that left and right actions are in some sense the same, we can
look at some of the more prevalent actions that arise in physics. Two particular
types of action we’ll look at are linear and Hopf actions.

Def 8: We have a linear action if the following holds true. Consider
ρ : G→ GL(V ), a representation in a vector space V of a Lie group G.

Φ : G× V −→ V

(g, v) 7−→ g · v = ρ(g)v

The above is an example of a linear left-action, but as we saw from our previous
theorem we can rework the example to be a linear right-action as well.

Turning our attention toward Hopf actions now, we quickly introduce the idea of a
Hopf algebra and duality. In general, a Hopf algebra is simultaneously an algebra
and coalgebra such that it is dual (for a sense of duality, Desargues’ theorem in
projective geometry is a good reference). This gives rise to nice commutative
diagrams and symmetry.

Def 9: (Hamilton 3.3.1) Consider the groups R∗,C∗, and H∗ of non-zero
real, complex, and quaternionic numbers. Let K = R,C,H the follow-
ing linear right actions, called Hopf actions by scalar multiplication:

Kn+1 \ {0} ×K∗ −→ Kn+1 \ {0}

Now when we look at elements of real, complex, and quaternionic num-
bers of unit norm on unit spheres we get the following Hopf actions

Sn × S0 −→ Sn

S2n+1 × S1 −→ S2n+1

S4n+3 × S3 −→ S4n+3

(x, λ) 7−→ xλ

Before we can reach one of the most important results from group actions, we
need to quickly define orbits and isotropy groups.

Def 10: Consider Φ, a left-action of a group G on a set M , then the
orbit of G through a point p ∈M is given by

Op = G · p = {g · p | g ∈ G}

and the isotropy group of p is given by

Gp = {g ∈ G | g · p = p}
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Remark: When looking at a linear action, we can see that the orbit of the zero
element of V (a vector space as opposed to M , a set) consists of only one point
such that

G · 0 = {0} since ∀ g ∈ G, g · 0 = 0

which tells us that the isotropy group G0 = G, that is the isotropy group of 0
is G itself. Thus when dealing with an element v ∈ V such that v 6= 0 we get
Gv ⊂ G. This means that we went from the entire group of G to a proper subset
Gv. This is the very important idea of symmetry breaking in the standard
model of quantum mechanics.

2.5 Restrictions on the Lagrangian

In theory, there exist an infinite number of Lagrangians that could model physical
systems. However, we restrict them by particular principles to get a finite set.
The Lagrangian and action of any individual field theory should be invariant
under certain symmetry groups of gauge transformations.

Looking specifically at gauge groups, Hamilton demonstrates the importance of
having Lagrangian invariance with respect to gauge symmetries. He showed that
“a quantum field theory involving massless spin 1 bosons can be consistent, uni-
tary, only if it is gauge invariant”(Hamilton p. 404). This leads to the restriction
that Lagrangians be invariant under gauge symmetries.

The bracketed terms in the following Lagrangian are Lie brackets such that

[A,B] = AB −BA

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

and now we define the YMDHY Lagrangian, the Lagrangian of the Standard
Model.

Def 11: (Hamilton 7.1.4) We define the Lagrangian of the Standard
Model as follows

L = LD [Ψ, A] + LH [Φ, A] + LY [ΨL,Φ,ΨR] + LYM [A]

which can be simplified to be

L = Re(ΨDAΨ)+〈dAΦ, dAΦ〉E−V (Φ)−2gY Re(ΨLΦΨR)−1

2
〈FA

M , F
A
M〉Ad(P )

where LD is the Dirac Lagrangian, LH is the Higgs Lagrangian, LY is
the Yukawa Lagrangian, and LYM is the Yang-Mills Lagrangian. This
causes the Lagrangian of the Standard Model to sometimes be referred
to as the Yang-Mills-Dirac-Higgs-Yukawa Lagrangian.



12

The Standard Model Lagrangian attempts to describe the interactions between
fundamental subatomic particles from the effects of the electromagnetic, gravi-
tational, strong, and weak forces. The Standard Model is a gauge theory that
expresses force interactions as changes in the Lagrangian. The fully factored out
Lagrangian in Def 11 contains kinetic, potential, and interaction terms between
the different forces as they relate to gauge symmetries of the fundamental parti-
cles. Our build up of Lagrangians, Lie groups, bundles, gauges, and gauge groups
culminates in this Standard Model Lagrangian which serves as a cornerstone of
modern quantum mechanics. Again, this text is not meant to delve too deep into
the physics of the Lagrangian, but rather to illuminate some of the mathematical
structure governing it.

2.6 Gauge Theories

This section is the unification of our discussions on gauges, gauge groups, Lagrangians, and
invariance. At a high level, a gauge theory is any field theory in which the Lagrangian is
invariant under local gauge transformations. As we discussed above, the entire group of
gauges which satisfies this condition form a gauge group (a special case of a Lie group).
Physically this manifests itself as looking at all the ways in which a system can be redefined
so that the underlying physics remains unchanged.

An example of a gauge theory which we are familiar with is electromagnetism. The basis
of electromagnetism is formed by Maxwell’s equations, given by the following system of
equations

∇ · E = ρ
ε0

∇ ·B = 0

∇× E = −∂B
∂t

∇×B = µ0

(
J + ε0

∂E
∂t

)
Like most of the physics in this paper, the importance and derivation of these equations are
outside our scope. We are interested in the relationship between the fields E and B and the
scalar and vector potentials through which they can be re-expressed. The electric potential
VE and the magnetic potential A are given by

VE = −
∫
C

E · dl

∇×A = B

These two equations show us that we could redefine Maxwell’s equations in terms of VE and
A if we wanted. However, there is some arbitrariness since we can slightly alter VE and A
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with gauge transformations and leave E and B invariant. Another way to say this is that we
have degrees of freedom in choosing how we define VE and A such that the resulting physics
remains unchanged.

Consider the following example of a gauge transformation for electromagnetism. Let A→ A′

and VE → V ′E then

A′(x′, t) = A(x′, t)−∇′f(x′, t) (Fitzpatrick 3.90)

V ′E(x′, t) = VE(x′, t) +
∂f(x′, t)

∂t
(Fitzpatrick 3.91)

and this arbitrary function f leaves the magnetic and electric fields unchanged. Thus A →
A′ and VE → V ′E is a gauge transformation and the electromagnetic field and its gauge
group forms a gauge theory. This example gives us insight into how we can use gauge
transformations with the degrees of freedom we have to redefine a system. As we’ll see later
with the Hamiltonian and lattice gauge theory, we can use these gauge transformations to
obtain a partial differential equation to describe our system. This is advantageous because
even if the exact solution is unknown, the PDE can give characteristics of the solution which
can be a helpful analytical technique in understanding physical problems. Before we can take
advantage of the Hamiltonian and lattice gauge theory, we need to understand Hamiltonians.

3 Hamiltonian Field Theory

Hamiltonian mechanics is a different formalism from Newtonian and Lagrangian mechanics.
It predicts the same outcomes, but using a different mathematical structure. Hamiltonian
mechanics represents a classical system with canonical coordinates r = (q,p). We have that
q = (q1, q2, · · · , qn) is the generalized position and p = (p1, p2, · · · , pn) is the generalized
momentum (Prokhorov p. 1). A distinction between Hamiltonian mechanics and classical
mechanics is that q need not be rectangular coordinates. For example, a generalized coordi-
nate might be an angle similar to polar coordinates or it could be a magnitude of distance
from a reference point, etc. Additionally, these canonical coordinates gives an advantage over
Lagrangian mechanics since with the Hamiltonian there is a canonical transformation that
allows one to change the coordinates quickly and easily so that the system is simplified; we’ll
see how this is done later.

Hamiltonian field theory is the field theory pertaining to Hamiltonian mechanics. Hamilto-
nian mechanics differs from classical mechanics in that the Hamiltonian captures how the
system changes over time and then that Hamiltonian is used in Hamilton’s equations of mo-
tion. In classical mechanics, the equations of motion each directly and separately capture
how the particular aspect of the system changes over time, i.e. acceleration over time vs.
velocity over time vs. position over time.
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3.1 Derivation of Hamilton’s Equations

In this first section we want to show how one can derive consistent, but new equa-
tions of motion for a rigid body using the Hamiltonian. In general, Hamiltonian
Mechanics are based off Hamilton’s principle which states that

Def 12: (Prokhorov 1.1) Hamilton’s Principle states that the equa-
tion of motion q(t) with fixed end points q(t0) and q(t1) is an extremum
of the action functional given by

S[q; t0, t1] =

∫ t1

t0

L(q̇, q, t)dt

where L is the lagrangian of the system

From Hamilton’s Principle, we get that the Euler Lagrange equation of motion
for dynamical systems is given by

d

dt

∂

∂q̇i
L(q̇, q, t) =

∂

∂qi
L(q̇, q, t) (Prokhorov 1.5)

This equation is derived from the fact that dynamical systems are described by
Hamilton’s Principle. We can describe a new variable

pi =
∂

∂q̇i
L(q̇, q, t)

where pi is the canonical momentum of qi which gives us the canonical coordinates
r = (q,p) we introduced at the beginning of this section. Now using the Euler
Lagrange equation along with pi we get

ṗi =
∂

∂qi
L(q̇, q, t)

Now in order to finish deriving Hamilton’s equations, we need to define the fol-
lowing

Def 13: (Prokhorov p. 7) Given an equation

y =
∂f

∂x

we can let x = x(y) and get the following equation:

g(y) = y · x(y)− f(x(y))

which is defined as the Legendre transform of f
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Now we can define the Hamiltonian of a system and finish deriving Hamilton’s
equations

Def 14: (Prokhorov 1.23) The Hamiltonian of a system is the Leg-
endre transform of L(q̇, q, t) w.r.t. the variable q̇ and is given by

H(p, q, t) = piq̇i − L(q̇, q, t)

Now looking at the action functional of the Hamiltonian, we get

SH =

∫ t1

t0

(piq̇i −H) dt

which is just a rewriting of the action functional from Def 12 above using the
relation in Def 14. Now to get Hamilton’s equations of motion, we differentiate
SH w.r.t. the two independent variables pi , qi which gives

δSH
δpi

= q̇i − ∂H

∂pi
,

δSH
δqi

= −ṗi − ∂H

∂qi

and once we set δSH = 0 then we get

Def 15: (Prokhorov 1.25) Hamilton’s Equations of Motion are
given by

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
,

∂H

∂t
= −∂L

∂t

Since pi is the momentum of our particle in the ith frame of reference, we can
rewrite the Hamiltonian as the total energy in the system which gives

H = T + V T =
p2

2m
V = V (q, t)

which gives us that T = 1
2
mq̇2, the kinetic energy, and V is the potential energy

of the particle mass. If we want to extend this formulation to an arbitrary N
number of particles, we simply get

H =
N∑
n=1

Tn + V

where Tn is the kinetic energy of the nth particle and V is the potential energy
function where V = V (q1, q2, · · · , qN , t).

Exercise: Derive Hamilton’s equations for an oscillating mass
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Solution: From elementary physics, we know that T = 1
2
mq̇2 and that

V = 1
2
kq2 where k ∈ R+. Now if we look at H we get that

H =
1

2
mq̇2 +

1

2
kq2

Now if we take the derivative of T with respect to q̇, we get

∂T

∂q̇
=

∂

∂q̇

(
1

2
mq̇2

)
= mq̇ = p

since p is the momentum of the particle and mq̇ represents the momen-
tum of an object. With some algebra, this coincides with above where
we stated that T = p2

2m
. Substituting this into H = T + V we get

H =
p2

2m
+
kq2

2

And so once we apply Hamilton’s equations to our oscillating system,
we get

q̇ =
∂H

∂p
=

p

m
+ 0 =

p

m

ṗ = −∂H
∂q

= −(0 + kq) = −kq

And we can see that ṗ, which is the Newtonian force, agrees with
the force for an oscillator from classical mechanics so our Hamiltonian
derivation agrees with classical mechanics.

3.2 Canonical Transformations

As mentioned above, Hamiltonian mechanics is convenient because there is a
formal way to redefine a coordinate system to simplify the complexity of a given
system through canonical transformations.

Def 16: A canonical transformation is a change of canonical co-
ordinates (q,p, t) → (Q,P, t) which preserves the form of Hamilton’s
equations, although not necessarily the Hamiltonian itself.

As we saw earlier for Hamilton’s equations, we get that

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
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and if we redefine new variables, Q and P, then we get for our new canonical
equations

Ṗi =
∂K

∂Pi
, Q̇i = − ∂K

∂Qi

where K is a new Hamiltonian, since in our definition we noted that H is not
necessarily invariant. This lets us redefine our coordinates in such a way that we
preserve the form of Hamilton’s equations, but with an alternate Hamiltonian.

3.3 Hamilton-Jacobi Equation

The Hamilton-Jacobi equation is notable since it is a way to use mechanics to
describe the motion of a particle as a wave. It can also be used to identify con-
served quantities in classical systems. The equation is linked to classical mechan-
ics through the function S, defined below, which also happens to be the action of
the particle. The Hamilton-Jacobi is a partial differential equation, which has the
advantage of identifying certain attributes and characteristics of a system even
when the explicit problem cannot be solved for completely (Chang).

Theorem: The Hamilton-Jacobi equation is given by

∂tu(q, t) +H(∇qu(q, t),q) = 0

where u is a generating function giving time-dependent canonical trans-
formations.

Proof(Based on Chang): Suppose we want to find a time-dependent
canonical transformation where K, the transformed Hamiltonian is 0.
Before we can derive such a K it will be helpful to have a relationship
between the new and old Hamiltonians. Suppose we have a canonical
transformation

(q,p) 7→ (Q,P)

then there is a function S such that

S : Rn
q × Rn

P → R | p dq−PdQ = dS

We know such a function exists because

d(p dq−P dQ) = dp ∧ dq− dP ∧ dQ = 0 (Chang 2.2)

where ∧ represents the wedge product. Since the differential is 0 then
there exists an S. Now suppose that we want a time-dependent canon-
ical transformation

(q,p, t)→ (Q(q,p, t),P(q,p, t), t)
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then we can relate the new and old Hamiltonians with the following
equation

K(Q,P, t) = H + P · ∂tQ + ∂tS

Now suppose that

S = u(q,P(q,p, t), t)−Q(q,p, t) ·P(q,p, t)

where u is a generating function that gives time-dependent canonical
transformations. Then the partial derivative of S with respect to time
gives

∂

∂t
S = ∇tu · ∂tP + ∂tu−Q · ∂tP−P · ∂tQ

∂

∂t
S = Q · ∂tP + ∂tu−Q · ∂tP−P · ∂tQ

∂

∂t
S = ∂tu−P · ∂tQ

And when we substitute this result into K(Q,P, t) = H+P ·∂tQ+∂tS
then we get that

K = H + ∂tu

letting K = 0 and recognizing that the above equation has no depen-
dence on P, we get

∂tu(q, t) +H(∇qu(q, t),q) = 0

and thus concludes the proof.

Remark: The Hamilton-Jacobi equation can be rewritten using the
action functional as ∂tS = −H

Exercise: Use the Hamilton-Jacobi equation to derive the equations of motion
for a falling object

Solution: The Hamiltonian for a falling object is

H =
1

2m
p2 +mgq

corresponding to the kinetic energy plus the gravitational potential energy. Next,
we notice that H is not explicitly dependent on time since g, the force, is not time
dependent. Relating H to a new Hamiltonian K by a generating function S as
we did in the Hamilton-Jacobi equation derivation above, we get ∂tS + H = K.
Letting K = 0 so energy is conserved, we get

1

2m
p2 +mgq + ∂tS = 0



19

Now if we have p = ∂qS, i.e. the momentum equal to the partial derivative with
respect to q of the generating function we get

1

2m
(∂qS)2 +mgq + ∂tS = 0

Fortunately, this PDE is solvable and will generally have a solution of the form

S(c, q, t) = W (c, q)− ct

where W is an arbitrary function and c an arbitrary constant. This lets us rework
the above equation to be

1

2m
(∂qW )2 +mgq − c = 0

Now we can solve the above differential equation for W to get

W =

∫ √
2m(c−mgq) dq

So now we have an expression for S using our expression for W above

S(c, q, t) =

∫ √
2m(c−mgq) dq − ct

where we have a new input c. This action S will make the Hamiltonian zero
through a canonical transformation so if we look at ∂cS then we know it will be
some constant γ.

γ = ∂cS =

∫ √
m√

2(c−mgq)
dq − t −→ γ =

√
2(c−mgq)

mg2
− t

and rearranging in terms of q we get the following

q =
c

mg
− (γ + t)2g

2

The above equation has some arbitrariness to it, so if we have initial conditions
that q(t = 0) = qo so that our object starts falling from a height of qo and if we
let p(t = 0) = 0 so that our object has zero initial velocity. Then we have

p(t = 0) = 0 = ∂qS =
√

2m(c−mgqo)

So we get that at time t = 0, c = mgqo. Replacing this and γ = 0 so that both
our initial conditions are satisfied then we get

q = qo −
gt2

2
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which is also the classical solution for a falling object.

The above exercise shows both the usefulness of the Hamiltonian and also shows
how the Hamilton Jacobi equation can be used to solve physical problems with
rigid bodies. Next we’ll quickly turn our focus to the Hamiltonian in quantum
mechanics and use the wavelike properties that the Hamiltonian lends itself to.

3.4 The Hamiltonian in Quantum Mechanics

The point of this section is not to provide a thorough explanation of quantum
mechanics but to introduce how the Hamiltonian can be useful in other areas of
physics beyond mechanics. As we saw in the derivations and in the exercise above,
the Hamiltonian leads to classically consistent results. However, the Hamiltonian
also has useful applications to quantum mechanics because of its relationship with
momentum. While the general derivation of the Hamiltonian is the same as our
classical derivation, one key difference is that

p̂ = −i~∇

which redefines momentum with a quantum mechanical definition. Using this
new p̂ gives that the Hamiltonian is

Ĥ = − ~2

2m
∇2 + V̂ (q, t)

This formulation of the Hamiltonian is important because it allows it to be ap-
plied to systems described by the wave equation. Another way that Hamiltonian
mechanics lends itself nicely to quantum mechanics is that the formulation deals
with momentum more often than velocity, which is helpful for particle motion
and the standard model. An example to demonstrate the usefulness of momenta
versus velocities is the Heisenberg Uncertainty Principle which states that

∆x∆p ≥ ~
2

the derivation or interpretation of the Principle is outside the scope of this paper
but it is a cornerstone of quantum mechanics and demonstrates the importance
of understanding momenta rather than velocity.

We saw above that

H =
N∑
n=1

Tn + V
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where Tn is the kinetic energy of a particle and V is the potential energy of the
system. If we take the momentum derivative of H, we get

∂H

∂p
=

∂

∂p

( N∑
n=1

Tn + V

)

∂H

∂p
=

∂

∂p

( N∑
n=1

1

2
mnq̇

2
n + V

)
∂H

∂p
=

∂

∂p

( N∑
n=1

1

2mn

p2n + V

)
∂H

∂p
=

N∑
n=1

1

mn

pn =
N∑
n=1

1

mn

mnq̇n =
N∑
n=1

q̇n

and this gives us an elegant relationship between the Hamiltonian and velocities,
using the momentum. Moreover, if the derivative of the Hamiltonian with respect
to momentum is derived with respect to time, we get acceleration. That is,

d

dt

∂H

∂p
=

d

dt

N∑
n=1

q̇n =
N∑
n=1

q̈n

These sections on Hamiltonian mechanics demonstrate some of its advantages
over Lagrangian and classical mechanics. The Hamiltonian equations give us the
equations of motion in terms of the derivatives with respect to momentum which
is advantageous for quantum mechanics because as we saw with Heisenberg’s
Uncertainty Principle, the momentum of a particle is of particular importance
for the standard model. Additionally, Hamiltonian mechanics is constructed at
the particle-level and summed over all the particles in the phase space, whereas
Newton’s equations can only deal with a single body at a time. This is cumber-
some for calculations over an entire system. Additionally, Hamiltonian mechanics
lends itself to canonical coordinate changes which simplifies systems and calcula-
tions, which is a big advantage for modeling large groups of particle interactions.
These advantages make the Hamiltonian useful for classical mechanics, quantum
mechanics, thermodynamics, and other fields of physics.

4 Hamiltonian Lattice Gauge Theory

We’ve so far seen a lot of theoretical concepts and derivations. This final section shows the
intersection between gauges and the Hamiltonian. Hamiltonian lattice gauge theory provides
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a calculational approach to gauge theory using the Hamiltonian. As a brief overview, Hamil-
tonian lattice gauge theory discretizes space but not time. This then allows the Hamiltonian
to be expressed on a multi-dimensional lattice.

4.1 Fermionic Fields on a Lattice

Consider a cubic lattice. Any arbitrary point on the lattice can be represented
by ~r = (γx, γy, γz). At each lattice site, let ψ(γ) denote a two-component spinor.

Def 17: A spinor is a two component complex vector that describes
fermions and is characterized by the way it behaves under rotations.

Then we can construct a Hamiltonian such that

H = a−1
∑
γ,n

ψ†(γ)
~σ · ~n
i
ψ(γ + n) +mo

∑
γ

(−1)γψ†(γ)ψ(γ) (Kogut 2.1)

where a represents the lattice spacing (the distance between each lattice site),†
represents the adjoint, γ represents an arbitrary radius, ψ represents a two-
component spinor, ~σ is a Pauli vector, mo is the rest mass, and ~n is the outward
unit norm.

Now consider a fermionic field, a quantum field whose quanta are fermions. The
scope of fermionic fields is beyond this paper, but the general idea is that fermions
(particles that have half-integer spin) follow Fermi-Dirac statistics, which explains
a distribution of many identical particles over energy states that follow the Pauli
exclusion principle. If we look at certain transformations of the spinors of the
lattice, we get the following global and local gauge transformation definitions.

Def 18: (Kogut 2.6) Under a global gauge transformation, the trans-
formed fermionic field is given by

ψ̂(γ) = ei~τ · ~ω/2ψ(γ) ≡ V ψ(γ)

Under a global gauge transformation, we can see that the Hamiltonian is invariant
since we’ve only multiplied ψ(γ) by a constant V ≡ ei~τ · ~ω/2 which doesn’t change
the interpretation of the Hamiltonian system. This is one of the advantages of
using the Hamiltonian: we can change the coordinate system with which our
lattice is defined by a global gauge transformation to make the system more
simple. We have to be careful, however, because the Hamiltonian is not invariant
under local gauge transformations which we define as

Def 19: (Kogut 3.1) Transforming the fermionic field by a local gauge
transformation gives

ψ̂(γ) = ei~τ · ~ω(γ)/2ψ(γ) ≡ V (γ)ψ(γ)
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Under these transformations, we can see that V is now a function of γ which
means that the Hamiltonian is no longer affected by a constant amount but
rather depends on the specific lattice site under consideration. Intuitively this
makes sense since a global transformation of the entire lattice shouldn’t depend
on any specific lattice site and a local transformation of an individual site should
depend on a particular site.

In an effort to account for the Hamiltonian’s local invariance, a gauge field ~B(γ, n)
is introduced, where (γ, n) is an individual link between lattice sites γ and n. We
also introduce an operator U which preserves the inner product between two sites
such that

U(γ, n) = ei
1
2
~τ ·~B(γ,n) (Kogut 3.2)

Here the gauge field is associated with the links between sites as opposed to the
sites themselves. In that sense, the gauge field transfers information between
points, like how an electric field transports charge. In this case, the gauge field
transports color between points.

Def 20: In particle physics, color charge is a property of elementary
particles that relates to the strong interactions in the theory of quantum
chromodynamics. In chromodynamics one can draw color field lines
much like how electric or magnetic fields can be drawn and this is the
information the gauge field is transporting.

The equation above for U(γ, n) is convenient because we can look at elements of
the Hamiltonian and see that they are now invariant. Kogut gives the example
of the operator

ψ†(γ)ψ(γ + n)

which was previously transformed under gauge transformations to

ψ†(γ)V −1(γ)V (γ + n)ψ(γ + n)

and is clearly not gauge invariant because of the terms V −1(γ)V (γ+n). However,
when we transform the operator to become

ψ†(γ)U(γ, n)ψ(γ + n)

then it is gauge invariant. Now we introduce this change to the Hamiltonian of
the system to make the entire Hamiltonian locally and globally gauge invariant:

H = a−1
∑
γ,n

ψ†(γ)
~σ · ~n
i
U(γ, n)ψ(γ + n) +mo

∑
γ

(−1)γψ†(γ)ψ(γ) (Kogut 3.5)

And thus we have used an operator transform to make our Hamiltonian locally
and globally gauge invariant. This section shows that regardless of whether the
Hamiltonian is gauge invariant, there is a method in place when using lattices of
particles to redefine the Hamiltonian to be gauge invariant.
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4.2 Gauge-Field Hamiltonian

In order to ensure local gauge invariance, the Hamiltonian must be composed of
gauge-invariant operators. One such operator we looked at briefly before is U .
There are other methods which Kogut covers that can induce gauge invariance in
a Hamiltonian. However, the methods are involved and require complex physical
explanation so this paper doesn’t go into them. Combining all of these disparate
components into a unified equation, we get the following Hamiltonian.

Def 21: (Kogut 6.6) The Gauge Field Hamiltonian is defined to be

H = a
2g2

∑
r,m Ḃ

2(γ,m) + 4
ag2

∑
trU(γ, n)U(γ + n,m)U(γ + n+m,−n)

U(γ +m,−m) + a−1
∑
ψ†(γ)~σ·~n

i
U(γ, n)ψ(γ + n) +mo

∑
(−1)γψ†(γ)ψ(γ)

such that H is invariant under both local and global gauge transforma-
tions, completing our formulation of a gauge theory.

This section on the Hamiltonian formulation of lattice gauge theories covers very
complicated physical topics.The gauge field Hamiltonian covers enough physics
for an entire paper by itself; the physics is not the point of this section of the
paper. Rather, we are trying to illuminate the uses of some of the mathematical
concepts that we have covered earlier in the paper. This section on lattice gauge
theories uses many of the ideas we covered earlier in the paper from invariance
to Hamiltonians to gauges into a singular application.

Conclusion

As I mentioned at the beginning of the paper, this is not meant to be an exhaustive text on
the topics. My primary intention was to define and understand the mathematical concepts,
briefly explain their significance, and then apply them to very simple physical situations.
When I introduced more complicated topics like the Standard Model Lagrangian or the
Gauge Field Hamiltonian, they were mostly to illustrate that the math could be applied to
those complicated situations. The main topics of the paper are Lagrangians, gauges, gauge
groups and theories, and Hamiltonians. Each of these required several subsections to build
up to their formal definitions. I accompanied each of these topics with physical applications
and included calculational examples where they made sense. The final section of the paper on
Hamiltonian lattice gauge theory is the culmination of all of the seemingly disparate topics
we covered. It showed us how gauges and invariance can be linked to the Hamiltonian and
how that can provide calculational applications to gauge theories in quantum mechanics.

I’d like to once again thank Professor Sam Nelson for his guidance throughout my undergrad-
uate experience and in writing this paper as well as the College’s mathematics department
for its wonderful faculty and courses.
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